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DECOMPOSITION OF HIGH DIMENSIONAL AGGREGATIVE
STOCHASTIC CONTROL PROBLEMS

ADRIEN SEGURET', CLEMENCE ALASSEUR?!, J. FREDERIC BONNANS!, ANTONIO
DE PAOLAY, NADIA OUDJANE!, AND VINCENZO TROVATO#

Abstract. We consider the framework of high dimensional stochastic control problem, in which
the controls are aggregated in the cost function. As first contribution we introduce a modified
problem, whose optimal control is under some reasonable assumptions an e-optimal solution of the
original problem. As second contribution, we present a decentralized algorithm whose convergence
to the solution of the modified problem is established. Finally, we study the application to a problem
of coordination of energy production and consumption of domestic appliances.

Key words. Stochastic optimization, Lagrangian decomposition, Uzawa’s algorithm, stochastic
gradient.

AMS subject classifications. 93E20,65K10, 90C25, 90C39, 90C15.

1. Introduction. The present article aims at solving a high dimensional
stochastic control problem (P;) involving a large number n of agents indexed by
i€ {1, - ,n}, of the form:

%ilglj(u)
11)  (P) nooo "
J(U) = Fo(% Zul(wszfl)) + %ZGZ(UZ( ’w*l)vgﬂ)
i=1 i=1

Here the noise w := (w',...,w") belongs to Q := MM, Q°, (Q, F', u%) is a proba-
bility space, and (Q, F, 1) is the corresponding product probability space. Let w™" :=

(W' .. w' W™ w") denotes an element of the space Q7' :=TI}_, ;. The

associated product probability space is (27 F~% u~%), where F~¢ := @y ji
and p~" = H;'L=1,j¢¢#j . Each decision variable u’ is a random variable (i.e. is
F-measurable), square summable with value in a Hilbert space U so that u :=
(u',...,u™) belongs to L?(£2, (U)"). The function w® — u'(w’,w™") is denoted by
u'(-,w™") and is a.s. (in w™") F'-measurable and belongs to L*(Q%,U). Also, U :=
", U; where U; is, for i = 1 to n, a closed convex subset of L*(Q,U). (In the ap-
plication to dynamical problems, the constraint u’ € U; includes the constraint of
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2 SEGURET, ALASSEUR, BONNANS, DE PAOLA, OUDJANE AND TROVATO

adaptation of u' to some filtration.) If each u’ is a random variable of w’, for i = 1
to n, we say that u is a decentralized decision variable.

The cost function is the sum of a coupling term Fy : U — R, function of the
n

aggregate strategies — Zui, and "local terms" functions of the local decision u’ and
n
i=1
local noise w' with G; : L*(Q",U) x Q; — R. This framework aims at containing
stochastic optimal control problems, where the states of the agents are driven by
independent noises (see equations (5.5) and (5.2) developed in Section 5).

1.1. Motivations. This work is motivated by its potential applications for large-
scale coordination of flexible appliances, to support power system operation in a con-
text of increasing penetration of renewables. One type of appliances that has been
consistently investigated in the last few years, for its intrinsic flexibility and potential
for network support, includes thermostatically controlled loads (TCLs) such as re-
frigerators or air conditioners. Several papers have already investigated the potential
of dynamic demand control and frequency response services of TCLs [22] and how
the population recovers from significant perturbations [4]. The coordination of TCLs
can be performed in a centralized way, like in [9]. However this approach raises chal-
lenging problems in terms of communication requirements and customer privacy. A
common objective can be reached in a fully distributed approach, like in [26], where
each TCL is able to calculate its own actions (ON/OFF switching) to pursue a com-
mon objective. This paper is related to the work of De Paola et al. [5], where each
agent represents a flexible TCL device. In [5] a distributed solution is presented for
the operation of a population of n = 2 x 107 refrigerators providing frequency sup-
port and load shifting. They adopt a game-theory framework, modelling the TCLs as
price-responsive rational agents that schedule their energy consumption and allocate
their frequency response provision in order to minimize their operational costs. The
potential practical application of our work also considers a large population of TCLS
which, contrarily to [5], have stochastic dynamics. The proposed approach is able to
minimize the overall system costs in a distributed way, with each TCL determining
its optimal power consumption profile in response to price signals.

1.2. Related literature. The considered problem belongs to the class of
stochastic control: looking for strategies minimizing the expectation of an objective
function under specific constraints. One of the main approaches proposed in the litera-
ture to tackle this problem is to use random trees: this consists in replacing the almost
sure constraints, induced by non-anticipativity, by a finite number of constraints to
get a finite set of scenarios (see. [10] and [20]). Once the tree structure is built, the
problem is solved by different decomposition methods such as scenario decomposition
[19] or dynamic splitting [21]. The main objective of the scenario method is reducing
the problem to an approximated deterministic one. The paper focuses on high dimen-
sional noise problems with large number of time steps, for which this approach is not
feasible. The idea of reducing a single high dimensional problem to a large number
with low dimension has been widely studied in the deterministic case. In determinis-
tic and stochastic problems a possibility is to use time decomposition thanks to the
Dynamic Programming Principle [1] taking advantage of Markov property of the sys-
tem. However, this method requires a specific time structure of the cost function and
fails when applied to problems for which the state space dimension is greater than
five. One can deal with the curse of dimensionality, under continuous linear-convex
assumptions, by using the Stochastic Dual Dynamic Programming algorithm (SDDP)

This manuscript is for review purposes only.
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DECOMPOSITION OF AGGREGATIVE STOCHASTIC CONTROL PROBLEMS 3

[16] to get upper and lower bounds of the value function, using polyhedral approxi-
mations. Though the almost-sure convergence of a broad class of SDDP algorithms
has been proved [18], there is no guarantee on the speed of the convergence and there
is no good stopping test. In [15], a stopping criteria based on a dual version of SDDP,
which gives a deterministic upper-bound for the primal problem, is proposed. SDDP
is well-adapted for medium sized population problems (n < 30), whereas it fails for
problems with magnitude similar to one of the present paper (n > 1000). It is natural
for this type of high dimensional problem to investigate decomposition techniques in
the spirit of the Dual Approximation Dynamic Programming (DADP). DADP has
been developed in PhD theses (see [8], [13]). This approach is characterized by a
price decomposition of the problem, where the stochastic constraints are projected
on subspaces such that the associated Lagrangian multiplier is adapted for dynamic
programming. Then the optimal multiplier is estimated by implementing Uzawa’s
algorithm. To this end in [13], the Uzawa’s algorithm, formulated in a Hilbert set-
ting, is extended to a Banach space. DADP has been applied in different cases, such
as storage management problem for electrical production in [8, chapter 4] and hydro
valley management [2]. In the proposed paper, in the same vein as DADP we propose
a price decomposition approach restricted to deterministic prices. This new approach
takes advantage of the large population number in order to introduce an auxiliary
problem where the coupling term is purely deterministic.

1.3. Contributions. We consider the following approximation of problem (P;):

11\1/1611{11 J(u)
(1.2) (P2) J(u) = Fy (i iE(ui)> n %E <i Gi(ui(ww—i)’wi)> .
Let U be the set of decentralized controls, defined by:
(1.3) U= ﬁlf{l, where U; := {u’ € U; |u’ is F' — measurable}.
i=1

The decentralized version of problem (P,) (i.e. J is optimized over the set /) can
be written as:

Min J(u,v),
uweld,vel
(1.4) (Ps) J(u,v) == Fy(v) + %IE <Z Gi(ui7wi)> ’
st g(u,v) =0, )

where ¢g : U" x U — U is defined by

Observe that for any u' € L?i, Gi(ut, -) is independent of F ~%. As a first contribution,
this paper shows that under some convexity and regularity assumptions on Fy and
(Gi)ieq1,....,n}y» any solution of problem (P;) is an e,-solution of (P;), with e, — 0

This manuscript is for review purposes only.



134
135

136

138

139

140

141

4 SEGURET, ALASSEUR, BONNANS, DE PAOLA, OUDJANE AND TROVATO

when n — co. In addition, an approach of price decomposition for (P), based on the
formulation (P%), is easier than for (P;), since the Lagrange multiplier is deterministic
for (Py), whereas it is stochastic for (P;). Since computing the dual cost of (P) is
expensive, we propose Stochastic Uzawa and Sampled Stochastic Uzawa algorithms
relying on Robbins Monroe algorithm in the spirit of the stochastic gradient. Its
convergence is established, relying on the proof provided by [7] for the convergence of
the stochastic gradient in a Hilbert space. We check the effectiveness of the Stochastic
Uzawa algorithm on a linear quadratic Gaussian framework, and we apply the Sampled
Stochastic Uzawa algorithm to a model of power system, inspired by the work of A.
De Paola et al. [5].

2. Approximating the optimization problem. In this section, the link be-
tween the values of problems (P;) and (P,) is analyzed.

Assumption 2.1. (i) Each set U; is bounded, i.e. there exists M > 0 such
that E|ju;||3, < M?, fori € {1,...,n}.

(ii) The function v’ — G;(u’(-,w™"),w") is a.s. non negative, convex and ls.c.

(iii) Problem (Py) is feasible.

From now on, Assumption 2.1 is supposed to hold.

LEMMA 2.2. Suppose that Fy is proper, ls.c. convexr. Then Problem (Pi) has a
solution, i.e. J reaches its minimum over U.

Proof. The existence and uniqueness of a minimum is proved by considering a
minimizing sequence (which exists since (Py) is feasible) {uy} of J over U. The set
U being bounded and weakly closed, there exists a subsequence {uy, } which weakly
converges to a certain u* € Y. Using Assumptions 2.1.(ii) and convexity of Fp, it
follows that liminf J(ug,) > J(u*) and thus v* is a solution of (Py). |

We have the following key result.

THEOREM 2.3. The decentralized problem in the L.h.s. of the following equality
has the same value as the centralized problem in the r.h.s. equality i.e.

(2.1) ;Ielza J(u) = 111615 J(u).

Proof. Since U C U, it is immediate that inf .J(u) < inf J(u).
ueU ue[;{
Fix ¢ € {1,...,n}, using the definition of conditional expectation, we define @' €

L*(Q,U) for any u € U by:
(W) = B (W', w ) |w'] = / u (W' w )dp (w™)  for any w; € Q.
Qi
Since G; is a.s. convex w.r.t. the first variable, the Jensen inequality gives:

Gi(i',w') < - Gi(u' (- w™),w)dp (w™) = E[G;(u' (-, w™"),w")|[w'] as.

On the other hand (u',...,u™) — Fy(

SRS

n
Z E(u")) is invariant when taking the con-
i=1

ditional expectation, thus:

Fy <711 i]E(M)) =F (i iE(fﬂ)) .

i=1

This manuscript is for review purposes only.
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DECOMPOSITION OF AGGREGATIVE STOCHASTIC CONTROL PROBLEMS 5

Taking the expectation of (2), we have inf J(u) < inf J(u), and the conclusion

weld uel
follows. d
Remark 2.4. In the applications to stochastic control problems (in discrete and
continuous time) we have the constraint of having progressively measurable control
policies. Since the set of progressively measurable policies is closed and convex, this
enters in the above framework. In particular, the decentralized policy @' constructed
in the above proof is progressively measurable.

Remark 2.5. By Theorem 2.3, for any ¢ > 0 there exists an e-optimal solution of
problem (P;) that is a decentralized control.

_ PROPOSITION 2.6. If Fy is Lipschitz with constant vy, then an optimal solution in
U of problem (Pz2) (resp. (Py)) is an e-optimal solution in U of problem (Py) (resp.
(P2)), with e = yM/\/n.

Proof. Since Fy is Lipschitz continuous with Lipschitz constant ~y, it holds for any
xz,y € U: |Fo(z) — Fo(y)| < 7llz — yllu. We set for any u € U:

(2.2) 0t = ut — E(u').

Using the Jensen and Holder inequalities, (E|Y]) < (E|Y|2)%, the fact that for any
J # 1, u; and u; are mutually independent, and that ||u;|ly is bounded a.s. by M, we

have Vu € U:

(2.3)
E <F0(711 Zui)) - Fo(% ZE(ui)) ‘ <E Z“i)) - Fo(% > E(u'))

1
Y . i
< LE(1 Y ally)
i=1

Fo(

S|

Y - ~d 1
< Tm() Y )
=1

< X
nz

Let @* denote a minimizer of .J on U, then using (2.3) for any u € U it holds:

(2.4) J(@*) < J(i*) + LM < J(u) + M < J(u) + - M. 0
nz nz nz

If Fp is convex, using Jensen inequality we have for any centralized control u € U:
Im, I,
(2.5) FO(EZE(u)) SE(FO(EZu ).
i=1 i=1

Assumption 2.1.(iii) and convexity of Fy implies that (P,) is feasible. By using the
same techniques as for Lemma 2.2, one can prove that (P;) admits a solution and

from (2.5) that Hli{{l J(u) < mig J(u), when Fp is convex.
ue uc

Assumption 2.7. Fy is Gateaux differentiable with c¢-Lipschitz derivative.

THEOREM 2.8. Suppose Fy is conver and Assumption 2.7 holds, then any decen-
tralized optimal solution of problem (Py) is an e-optimal solution (where e = ¢cM? /n)
of problem (Py).

This manuscript is for review purposes only.
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6 SEGURET, ALASSEUR, BONNANS, DE PAOLA, OUDJANE AND TROVATO

Remark 2.9. Observe that the centralized problem (P;) on the Lh.s. of the below
inequality is bounded by the following decentralized problem on the r.h.s of this
inequality i.e.

inf J(u) < inf J(u).
inf (u)_féa (u)

The article by [3] proposes an upper bound for the decentralized problem and a lower
bound for the centralized problem. The upper bound is provided by a resource decom-
position approach (with deterministic quantities) while the lower bound is provided
by a price decomposition approach with deterministic prices (see equation (28) of [3]).
Theorem 2.8 provides an upper bound for problem (P;) with an a priori quantification
of the deviation from the optimal value which vanishes when the number of agents
grows to infinity. Moreover, in Section 4 we provide an original algorithm that allows
to approach the solution of the decentralized problem.

Proof. Since Fy is convex, differentiable, with a c-Lipschitz differential, one can
derive for any u € U and a.s.:

A3~ R 3 i)
<VFo<iiui>,iai>U

(VEo( Zu VFOiiE[ui])),iﬁim
VFO ZE N -

1 Zfﬁ I+ <VF0<% S oE@), Y i )u.)

n
=1

[t

IN
3\>—‘ S|

—~
N
D

=

I

i)y

M:

where 4 is defined in (2.2). Taking the expectation of (2.6),

(VFO ZE ,ia%)o,

and using the mutual independence of the controls and their boundedness we get as
n (2.3):

c i i c
(27) SE(IY A ?) < Sa
=1

Let @ denote a minimizer of .J on 2, then using (2.1), (2.7) and (2.5), for any u € U
we have:

(2.8) J(@*) < J(@*) + SM? < J(u) + SM? < J(w) + SM2.
n n n

Thus for € = ¢M?/n, @* constitutes an e-optimal solution to the stochastic control
problem (P). d

This manuscript is for review purposes only.
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Remark 2.10. Let @* and u™ be respectively the optimal controls of problems (P)
and (P;). From Jensen inequality and by definition of @* we have:

Adding J(@*), one has:
(2.9) J@*) — J(@*) > J(@*) — J(u*) > 0.

An approximation scheme to compute @* is provided in Section 4. The practical
interest of inequality (2.9) is that one can compute an upper bound for the error
J(@*) — J(u*), that can be automatically derived from this approximation.

3. Dualization and Decentralization of problem (FP). From now on, the
assumption that Fy is convex is in force in the sequel. The Lagrangian function
associated to the constrained optimization problem (Pj), defined in (1.4), is: L :
UxeU%Rdeﬁnedby

(3.1) L(u,v,\) := J(u,v) + (A,%ZE(ui) — v)u.

The dual problem (D) associated with (P) is

(3.2) (D) maxW(A), where W(A):= Min L(u,v,\).
A€U w€U weU

For any A € U, it holds:

(3.3) W) = —F; (X Z (', W) + (N E(uh))y,

where Fjj () := sup (A v)u = Fo(v).

The problem is sald to be qualified if it is still feasible after a small perturbation
of the constraint, in the following sense:

(3.4) There exists € > 0 such that By(0,¢) C g4, U),

where By (0, €) is the open ball of radius € in U, g has been defined in (1.4) and 9(U, )
is the image by g of U x U.

LEMMA 3.1. Problem (Py) is qualified.

Proof. By Assumption 2.1.(iii), there exists @ feasible for problem (P;). Then
(3.5) By(0,e) c U = g¢(4,U) C g4, U).

The conclusion follows. 0

By Assumption 5.2, Lemma 3.1 and the convexity of Fy, the strong duality holds.

Let us denote the set of solutions of the dual problem by S. Since the primal problem

is qualified, the primal and dual values are equal, and the set of dual solutions S is

nonempty and bounded. In addition, taking A* € S, any primal solution u* satisfies

both W(X\*) = J(u*) and (u*,v*) € argmin L(\*,u,v). Since the set of admissible
ucl,vel

This manuscript is for review purposes only.
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8 SEGURET, ALASSEUR, BONNANS, DE PAOLA, OUDJANE AND TROVATO

controls U = Uy x ... x U, is a Cartesian product, if G; is strictly convex the first
variable, then each component ©** can be uniquely determined by solving the following
sub problem:

w* = argmin {E (G;(u',w’) + (X, u')y) } .

uiel;
Remark 3.2. By using the same argument as in Theorem 2.3, one can prove:
min {E (G;(u',w") + (X\*,u")u)}
(3.6) et . o ,
= min {IE (Gi(uz(.’w_l),w’) + ()\*,ulﬁu)} .
uteU;
4. Stochastic Uzawa and Sampled Stochastic Uzawa algorithms. We
recall that Assumption 2.1 is in force, as well as convexity of Fy.
This section aims at proposing an algorithm to find a solution of the dual problem

(3.2).

Assumption 4.1. (i) The function u’ — G;(u,w") is for a.a. w' € O strictly
convex on U;.
(ii) The function Fy has quadratic growth.

For all i € {1,...n}, and A € U, we define the optimal control u(\):

(4.1) u'(\) = arg min {E (G;(u',w") + (A, u'Yu) } s
uteU;

which is well defined since u’ — E(G;(u’,w?)) is strictly convex.
For any A € U, the subset V() is defined by:

(4.2) V(A) = ar%ergin{Fo(v) — (A v)ul

Since Fp is convex and has at least quadratic growth, V() is a non empty subset of
VY and is reduced to a singleton if Fy is strictly convex. For any A € U, we denote by
v(A) a selection of V(A), and for any v(A\) € V(A), one has v(A) € OFj(A).

Uzawa’s algorithm seems particularly adapted for this problem. However at each
dual iteration k and any i € {1,...,n}, for the update of At one would have to
compute the quantities E[u’(\¥)], which is hard in practice. Therefore two algorithms
are proposed where at each iteration k, A**1 is updated thanks to a realization of
ut(AF).

For any real valued function F' defined on U, F™* stands for its Fenchel conjugate.

LEMMA 4.2. Assumption 2.7 holds iff F is proper and strongly convex.

Proof. (i) Let Assumption 2.7 hold. Since Fp is proper, convex and ls.c., Fj
is L.s.c. proper. From the Lipschitz property of the gradient of Fj, it holds that
dom(Fp) =TU.

Let 5,5 € dom(F() such that there exist A\, € OF](s) and uz € dF;(5). From
the differentiability, l.s.c. and convexity of Fy, it follows that: s = VFy(\s) and
§ = VFy(ps). By Assumption 2.7 and the extended Baillon-Haddad theorem [17,

This manuscript is for review purposes only.
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Theorem 3.1], VEj is cocoercive. In other words:

(s =8, As —pus)u = (VFo(As) = VFo(us), As — pz)u
1
Y90 - PRI

Y

(4.3)
1 <112
= lls =3l

Therefore OF is strongly monotone, which implies the strong convexity of Fj.

(ii) Conversely, assume that FJ is proper and strongly convex. Then there exist
o, B> 0 and v € U such that for any s € dom(Fy): Fj(s) > als||3 + (v, a)y — B, and
Fy being convex, Ls.c. and proper, for any A € U it holds:

(4.4) Fo(A) < Sgg(s, A= —allsli + 8= 1A —I*/(4a) + 8.

Thus Fy is proper and uniformly upper bounded over bounded sets and therefore is
locally Lipschitz. In addition, from the strong convexity of F{j and the convexity of Fp,
for any A € U, 0Fp(A) is a singleton. Thus Fy is everywhere Gateaux differentiable.
Let A\,pu € U. Since Fj is strongly convex, the functions Fj(s) — (A, s)uy (resp.
F5(s) — (p, s)u) has a unique minimum point s (resp. s,), characterized by: X €
OFj(sx) and p € OF;(s,). From the strong convexity of F, the strong mono-

tonicity of OF] holds: (i — A, s, — s\)u > — ||, — sallf, where ¢ > 0 is a constant
c

related to the strong convexity of Fyj. Using that sy = VFy(\) and s, = VFy(p), it
holds:

1
(45)  (n=AVFo(n) = VE ) )r20m) 2  [IVFo(k) — VE MLz 0.1

meaning that VFjy is cocoercive. Applying the Cauchy—Schwarz inequality to the left
hand side of the previous inequality, the Lipschitz property of VFy follows. O

LEMMA 4.3. If Assumption 2.7 holds, then W is strongly concave.

Proof. For any A € U, the expression of W(}) is given by 3.3, where for any
i€ {l,....,n}, A = inf E(G;(u’,w")) + (X, E(u"))y is concave and from Lemma

utel;
4.2 —F{ is strongly concave. Since the sum of a concave function and of a strongly
concave function is strongly concave, the result follows. 0

We introduce the function f : U — U defined by:
(4.6) FN) = g(u(X),v(N) =

Since Fy has at least quadratic growth, one deduces that Fj has at most quadratic
growth. Using the boundedness of &/ and Lemma A.1 in Appendix A, there exist
My, M5 > 0 such that for any A € U one has:

(4.7) IF VNI < My + M| Al

For any A € U, we denote by d(—W!(A)) the subgradient of —W at A. Therefore for
any A € U:

(4.8) IH=WN)) 3 —f(N).

This manuscript is for review purposes only.
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10 SEGURET, ALASSEUR, BONNANS, DE PAOLA, OUDJANE AND TROVATO

The iterative algorithm, proposed as an approximation scheme for A* € arg max W(\),
A

is summarized in the Stochastic Uzawa Algorithm 4.1. Some assumptions on the step
size are introduced.

Assumption 4.4. The sequence (pg)r is such that: pp > 0, Zpk = oo and
Z(ﬂk)2
k=1

Note that a sequence of the form pp := b—?—k’ with (a,b) € RL x Ry, satisfies

Assumption 4.4.

Algorithm 4.1 Stochastic Uzawa

Initialization A’ € U, set {p;} satisfying Assumption 4.4.
k <+ 0.
for k=0,1,... do
v® « v(\F) where v(\¥) € V() , this set being defined in (4.2).
u? « ut(A\F) where u’(\¥) is defined in (4.1) for any i € {1,...,n}.
Generate n independent noises (w1 ... w™* 1) independent also of {w"? :
1<i<n,p<k}
7 Compute the associated control realization
(ul()\k)( 1k+1)7. n()\k)( n,k-i-l))'

8: Yk+1 « = Zu )\k ’Lk?+1) —’U()\k)

9: AL £k —l— pk yk+t,

At any dual iteration k of Algorithm 4.1, Y*™ is an estimator of
Zu (AF) (Wi +1) — v(A\F)). Therefore an alternative approach proposed in the

Sampled Stochastic Uzawa Algorithm 4.2 consists in performing less simulations at
each iteration, by takmg m < n, at the risk of performing more dual iterations, to

estimate the quantity E(— Z u (AF) (WP — p(AF)).

The complexity of the Stochastzc Uzawa Algorithm 4.2 is proportional to m x K,
where K is the total number of dual iterations and m the number of simulations
performed at each iteration. The error E(JA*T! — A\*||2) for \* € S is the sum of
the square of the bias (which only depends on K and not on m) and the variance
(which both depends on K and m). Therefore this algorithm enables a bias variance
trade-off for a given complexity. Similarly for a given error it enables to optimize the
complexity of the algorithm.

We recall that S is defined by S := argmaxW()\) and that S is non empty due
A€U
to strong duality. The following result establishes the convergence of the Stochastic

Uzawa Algorithm 4.1:
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Algorithm 4.2 Sampled Stochastic Uzawa

1: Initialization of m a positive integer and X\° € U, set {p;} satisfying Assumption
4.4.

2: k<« 0.

3: for k=0,1,... do

4: v® « v(\F) where v(A\¥) € V(\¥) , this set being defined in (4.2).

5: Generate m i.i.d. discrete random variables IF, ..., I* uniformlyin {1,...,n}.

6: Wik uI;(;\k) where u’ (AF) is defined in (4.1) for any j € {1,...,m}.

7 Generate m independent noises (wb 1, ... W™ 1) independent also of
{wi’p 1 <i<m,p <k}

8: Compute the associated control realization
(W't (W)@ HHD), ol (3F) @ H ).

. 1 & ko« k
0. el L IE (R (o5 k1) 3k
= o ) o3

10 AL N4 p YR

LEMMA 4.5. Let Assumption /4.4 hold, then:
(1) {IINF = X3} converges a.s., for all A€ S.
(i) WAF) —— maxW()) a.s.
k—oo XeU
(iil) {\*} weakly converges to some A € S in U a.s.
(iv) If Assumption 2.7 holds, then a.s. {\*} converges to X in U, with S := {\}.

The proof follows [7, Theorem 3.6]. That reference considers (changing minimiza-
tion in maximization) the framework of maximization a function W(\) = E(W (A, w))
where W(+,w) is a.s. concave. Although our setting does not enter in this framework,
due to the minimization of the Lagrangian w.r.t. the variable u, the proof of Lemma
4.5 follows from an obvious adaptation of the one in [7, Theorem 3.6]. It is enough to
provide the first steps of the proof.

Proof of Lemma 4.5. First consider point (i). Let A € S. For any k, Gr41 is the
filtration defined by:

(4.9) Gr+1 ::o({Wi’p}:1§i§n,p§kj+1}).

Using the definition of Y**! € U line 8 in the Stochastic Uzawa Algorithm 4.1, we
have:

IASFE= A = A + Y = A
(4.10) = A" = A% + 206 (N = X, Y*H )y

+(ow)*IIYE IR

Since Y**! is independent from Gy, it follows that:
k+1)(2 IR ik+1 NP
(4.11) E(Y* 101G =E { Do w (A WEE) — o (AR ) -
i=1

Using previous equality and the inequality (4.7), one can easily show that there exists
Mgz, My > 0 such that for any & € N one has:

(4.12) E(IYMHIBIGk) < My + Mol N[ < Ms + MulIN* = Mg

This manuscript is for review purposes only.



330

331
332

333

335
336
337
338
339

340

341
342

345

346
347

349
350
351
352

353

12 SEGQURET, ALASSEUR, BONNANS, DE PAOLA, OUDJANE AND TROVATO
Since \* is Gp-measurable and that E[Y**1|G,] = f(\F), we have that:

E[[ A" = XI5 ]

= [IN" = Il + 20k (A" = X, Y )g]Gr) + (o) BV *+1151G]
<IN = AlE + 206N = A, F))u + (pr)* (Ms + Ma||X* = M)
< IA® = B+ Mapi) + (pn)* Ms = 206(W(X) = WD),

(4.13)

In the last inequality, we used the concavity of W and (4.8). The rest of the proof
follows |7, Theorem 3.6]. d

Recalling the definition of J(u,v) in (1.4), we define u:

(4.14) @ := argmin {IE (Z Gi(u',w') + (x_\,uim) } :

uel;i

Since G; is strictly convex w.r.t. the first variable, w is well defined. If Fj is strictly

convex, then V() is a singleton and we can write:

(4.15) U= argergin {Fo(v) + (A, v)u}.

THEOREM 4.6. Let the Assumptions 2.7 and 4./ hold, then we have:
(1) {u(\*)} weakly converges a.s. to . B

If furthermore Fy is strictly conver, then (4, v, \) is the unique saddle point L, there-
fore U is the unique minimizer of J in U and:

(ii) J(u(A\*)) - J(@) a.s.

—00
(iii) limsup J(u(A¥)) < inf J(u) + 2¢ a.s. where e = cM?/n.
k—o00 ueld

Proof. Proof of point (i). Since the sequence {(u(A¥),v(\¥))} is bounded in U x

L*(0,T), there exists a weakly convergent subsequence {(u(A\%),v(A%))} such that:

(4.16) (u( N ), v(A\%%)) o (u?,v%) e U x U.
—00
Using the definition of A — w(\) in (4.1), it holds for any &k > 0:

E (Gi(a ') + (3%, 1))

(4.17) e _ o i
> E (Gi(u'(A%),w") + (A", u*(A\))u) .

Using that v’ — G;(u',w’) is a.s. w.ls.c. on U; and the a.s. convergence of {\FY
resulting from Lemma 4.5.(iv), we have from (4.17) when k& — oo :

(4.18) E (Gi(a",w") + (N, u"))y) > E (Gi(ui’e,wi) + (A, u“’)U) .

Since @ is unique, it follows u’ = @ and (4.18) is an equality. Using that every weakly
convergent subsequence of {u(A\¥)} has the same weak limit @, (i) is deduced.

Proof of point (ii).

From point (i) and (4.18), it follows for any ¢ € {1,...,n}:
(4.19) lim E (G;(u'(\F),w")) = E (Gi(a,w")) .

k—o0
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Using 4.16, the w.l.s.c. of Fp, equation (4.15), and applying the same previous argu-
ment to {v(\%)}, it holds that:

(4.20) Jim Fo(v(AF)) — N o\ = Fo () — (A, 9)u,
— 00
and v(\*) — .
k—o0
From the two previous equalities and the a.s. convergence of {)\k}7 it follows:
(4.21) Jim Fo(v(\F)) = Fy(o).
bde el

Using that (@, v, \) is a saddle point, it follows:

n

From (4.21) and (4.22), it holds:
(4.23) Jim Fy (i ZE(ui()\k))> _ R (i ZE(UZ-)> .

Then adding (4.19) and (4.23): lim J(w(A\F)) = J(a).
—00
Proof of point (iii). From point (ii), inequality (2.8) and Theorem 2.8, it holds:

(4.24)  limsup J(u(\¥)) < limsup J(u(A\¥)) + & = in{l J(u)+¢ < in{{ J(u)+2e. 0O
ue ue

k—o0 k— o0
Assumption 4.7. (i) Fp is strongly convex. ' .
(ii) For any i € {1,...,n} and w € Q, the function ' — E(G;(u’,w)) is strongly
convex.

LEMMA 4.8. Let Assumption 4.7.(1) hold, then the function A\ — v(\) is Lipschitz on
U.

Proof. From the definition of v in (4.2), we have for any A € U: X € dFy(v()N)).
Thus for any A, u € U, we have from the strong convexity of Fy:
Fo(o(u) = Fov(N) + (A 0(k) —v(N)u + aflo(u) —oMN)1F
Fo(v(N) = Fo(v(w)) + (p,v(N) = v(p)u + aflo(d) —o(u)|E-

Adding the two previous inequalities, after simplications, we get:

(4.25)

(4.26) (A= 1, 0(\) = v()u > 2allo(A) = o(w)|[f-
Applying Cauchy-Schwarz inequality and simplifying by [|[v(A) — v(u)|lu, we get the
desired Lipschitz inequality. |

LEMMA 4.9. Let Assumption 4.7.(i1) hold, thus the function X\ — u(X) is Lipschitz on
U.

Proof. The proof is similar to the proof of Lemma 4.8. O
THEOREM 4.10. Let the Assumption 2.7, 4.4, and 4.7 hold, then: uw(\F) P
— 00

u(N) a.s.
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Proof. The convergence follows from the Lipschitz property of A — u()) (as a
result of assumption 4.7) associated with the a.s. convergence of {\*}. d

Remark 4.11. Note that Lemma4.5 and Theorems 4.6 and 4.10 still hold when
replacing A\¥ by A\¥ and Y* by Y* (defined resp. line 9 and 10 in the Sampled Stochastic
Uzawa Algorithm 4.2). This can be proved by same argument, using that Yk is
bounded a.s. and E(Y*|Gy,) = f(\¥) for any k, where:

(4.27) Qk:a<{W15’p}:1§€§m,p§k})\/U({If}:lgfgm,pgk}),

with WP and If defined respectively at lines 7 and 5 of the Sampled Stochastic
Uzawa Algorithm 4.2.

Remark 4.12. From a practical point of view, this algorithm can be implemented
in a decentralized way, where the system operator sends the signal A\, which can
be assimilated to a price, to the domestic appliances, which compute their optimal
solution u(\), depending on their local parameters.

In (5.2), the states and controls of the agents are described in a general framework.
To illustrate the results, we consider in the next section stochastic control problems
in both continuous and discrete time settings.

5. Application to stochastic control.

5.1. Continuous time setting. Let (Q, F,F,P) be a complete filtered proba-
bility space on which W = (Wi),»:L,_,H is a n X d—dimensional Brownian motion,
such that for any ¢t € [0,T] and i € {1,...,n}, W} takes value in R?, and generates
the filtration F = (F)o<i<7. P stands for the Wiener measure associated with this
filtration and FF for the augmented filtration by all P-null sets. The following notations
are used:

X:={p:Q—C(0,T],RY) | ¢(-) isF — adapted, [[¢]lo,2 := E(lit;gdlwk(S)lz) < oo},

s€[0,7]

T P
U= L2(0.7).B) = {p: 0.T) > B [ o)t < o0}
k=1

and for any ¢ € {1,...,n}, the feasible set of controls is defined by:

U= {v:Q2x[0,T] = R,v(-) is F — prog. measurable,

(5.1)
v(w) € U and ve(w) € [—M;, M;]P, for a.a. (t,w) € [0,T] x Q},
and we set M := {max }Mi, where M; > 0.
ie€{l,..., n
Each local agent ¢ = 1,...,n is supposed to control its state variable through the

control process u' € U; and suffers from independent uncertainties. More specifically,
the state process of each agent, X" = (XZ’ul)te[O;T], for i =1,...,n takes values in
R? and follows the dynamics for i € {1,...,n}:

AXP =l (W, XVt + og(t, XPY )W, for t € [0,T],

(5.2) o ,
Xyt = 2heRY
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We assume that for any i there exist five functions o; € L>([0,T],R¥*P), 6;,6; €
L>=([0,T],R™),~; € L>=([0,T],R%) and & € L>¥([0,T],R¥%*4) such that for any
(t,v,x) € [0,T] x [-M, M]P x R%:

(5.3) wi(t,v,x) = a;(t)v + Bi(t)x + v;(t) and oy(x,t) = &(t)x + 0;(t).

Without loss of generality, the initial states xé are supposed to be deterministic.

The process X iu' g F-progressively measurable. For all i, F ' stands for the natural
filtration of the Brownian motion W*.

5.1.1. On the well-posedness of (P;). In this section, the assumptions needed
for (P1) to be well posed are studied.

LEMMA 5.1. Leti € {1,...,n} and v € U; be a control process. The map i XY s
linear continuous from U; to X and there exists a unique process X*° € X satisfying
(5.2) (in the strong sense) such that for any p € [1,00):

(5.4) E( sup X0 ") < C(r,T,z9,K) < o0 .
0<t<T ’
1<k<d

Proof. The proof for the existence and uniqueness of a solution of (5.2) relies on
[14, Theorem 3.6, Chapter 2]. The inequality is a result of [14, Theorem 4.4, Chapter

2. O
Let Fy : U — R be proper, convex and lower semi continuous function, satisfying
Assumptions 2.7 and 4.1.(ii). For any i € {1,...,n}, we assume that there exists F;
such that the local cost G; is of the form:

(5.5) u e Gi(ut (- w ™), wh) = Fi(ul (W, w™), X0 (wh),

where F; : U x C([0,T] x RY) — R is a proper and lower semi continuous function.
Additional assumptions are formulated below.

Assumption 5.2. For any i € {1,...,n}:

(i) F; is jointly convex w.r.t. to both variables and strictly convex w.r.t first
variable.

(ii) there exists a positive integer r such that F; has r-polynomial growth, i.e there
exists K > 0 such that for any z* € C([0,7],R?) and v’ € U: |F;(u’,2")| <
K1+ sup |z} ,[").

0<¢<T
0<k<n

Remark 5.3. 1. Assumption  5.2.(i) is satisfied if there exist
gi : L*((0,T),RP) — R strictly convex and h; : C([0,T],R?) — R convex,
such that F;(v, X) = g;(v) + hi(X).

2. Observe that Assumption 5.2 satisfies Assumptions 2.1.(ii) and 4.1.(i)

From now on, Assumption 5.2 is in force in the sequel. Now the optimization
problems (Pf) and (Py) can be clearly defined:

AR
(5.6) (P n no i
) s =E (Fo(i > u(@) + %ZFM(W), X (wl))>,
i=1 i=1
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and

. f ~C
AR

Jé(u) : ( ZE )+ E(ZF w), X (w Z))),

Using the results of Section 2, we can state the following Corollary.

6.7 ()

COROLLARY 5.4. (i) Problems (Pf) and (Ps) admit both a unique solution.
(i) Any optimal solution of problem (Ps) is an e-optimal solution, where ¢ =
cM?/n, of problem (PY).

Proof. The proof of point (i) is a specific case of Lemma 2.2. Similarly, point (ii)
is a particular case of Theorem 2.8. O

Remark 5.5. This kind of stochastic optimization problem is illustrated in Section
7 with a problem of coordination of a large population of domestic appliances, where
a system operator has to meet the demand while producing at low cost.

5.2. Discrete time setting. The main results of the paper are instantiated to
the discrete time setting in this subsection The following notations are used:

e Let n € N* be the number of agents, d,p € N* the dimension respectively of
their state and control variables at any time step, and 7' € N* the finite time
horizon.

e For any matrix M, M " denotes its transpose

e We consider a global noise process as a sequence of independent random
variables (W7y,...,Wr), where for any ¢t € {1,...,T}, W; is a vector of d-
dimensional centered, reduced and independent Gaussian variables, defined
on the probability space (Q, F,P): W, := (W}, ..., W), with W/ € R For
any i € {1,...,n} and ¢t € {1,...,T} we define F; := o(W{,...,W/) and
]:t = ®;L:1.FZ

e The space X is defined by:

X:= {x=(x0,...,27)|Vk €{0,...,T},R? >} is

(5.8)
Fj, — measurable and E||z||3 < co}.
e For any ¢ € {1,...,n}, X“‘ = (x07...,$5;,1) € X is the state trajectory
of agent ¢ controlled by u' = (ub,...,up_;) € RP*T. Similarly, for any

tefo,..., T} X"

= € Rdxn is the state vector of all the agents
controlled by u; = (uy

(@ % see TE)
uy) € RP*™. We have the following dynamics:

(59) Xi4 = AXMY 4 B+ CTW,, forte{0,..., T —1},
' xi = xoeRd,

where A € R™? B € R¥”? and C' € R
e For any i € {1,...,n}, we define the space of control U" of agent i by:

U = {u=(up,...,ur_1)|Vk €{0,...,T —1},RP 3 uy, is
Fi — measurable and uy(w) € [-M,M]? P-as.},

(5.10)
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n
where M > 0. We finally set ¢/ := [ [ /".

i=1
Let Fy : RP*T — R be proper, lower semi continuous, convex and satisfy Assumptions
2.7 and 4.1.(ii). Similarly to the previous subsection, we assume that there exists for
any i a function F; : RP*T x R™*T — R such that G; and Fj satisfy (5.5), and F}
satisfies Assumption 5.2.(i).

Now for any n € T* the optimization problems (Pj!) and (P{) can be clearly

defined:

nf )
(5.11) (P) 1 & &

Jd(u) < E Zu Z (u Xou ))
and

7w
(5.12) (P

T (u _F0< ZIE >+ E(ZF X“‘)

In the same spirit as in the previous subsection, we have the following results, which
will be useful for the next section.

COROLLARY 5.6. (i) Problems (P{) and (PY) admit both a unique solution.
(ii) Any optimal solution of problem (Pg) is an e-optimal solution, where ¢ =
cM? /n, of problem (PZ).

Proof. The proof of point (i) is analogous to the one of Lemma 2.2. Similarly,
proof of point (ii) is analogous to the one of Theorem 2.8. a0

One can implement the Stochastic Uzawa (Algo 4.1) and the Sampled Stochastic
Uzawa (Algo 4.2) in this discrete time setting withLemma 4.5 and Theorems 4.6
and 4.10 still ensuring the algorithm convergence.

6. A numerical example: the LQG (Linear Quadratic Gaussian) prob-
lem. This sections aims at illustrating numerically the convergence of the Stochastic
Uzawa (Algo 4.1) on a simple example. The algorithm speed of convergence is stud-
ied, depending on the number of dual iterations and of agents. A linear quadratic
formulation is considered, with n agents in a discrete setting problem (Py9%). We
use the notations of Section 5.2.

This framework constitutes a simple test case, since the (deterministic) Uzawa’s
algorithm can be performed, and one can compare the resulting multiplier estimate
with the one provided by the Stochastic Uzawa algorithm. Besides all the assump-
tions required for the convergence of the Stochastic Uzawa (Algo 4.1) are satisfied
for problem (P9¢). In addition the local problems (line 5 of this algorithm) can be
resolved analytically.

Problem (PL9%) is similar to (P§) defined in (5.12), but in this specific case, the
function Fy is a quadratic function of the aggregate strategies of the agents

(6.1) (;Z ) ZT: (iiE(ui) —rt>2,

t:O =1
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where v > 0, {r;} is a deterministic target sequence. Similarly, the cost functions F;
of the agents is expressed in a quadratic form of its state X" and control u’.

iu i d{ iu
(6.2) Fi(ul, X0') = (Zd (X; +qz-(ut)2>+2<X7l )%,

where for any ¢ € {1,...,n}, ¢ > 0 and d; > 0. Defining the matrices D =
diag(dy, ..., d,), Q = diag(qi,...,q,) and Df = diag(d{, .., d)), we get:

r'n

n T
[ it 1 u u 1 u u
(6.3) Z:F(u X = <;xt DX+ u, Qut> + 5XTTDJ‘XT.

Now the optimization problem (PLQG) is clearly defined.

To find the optimal multiplier and control of (PL9Y), the Stochastic Uzawa Al-
gorithm 4.1 is applied where in this specific case the lines 4 and 6 take respectively
the following form at any dual iteration k:

1 ) d! -
(6.4) u'(N\F) —argmln{ < Zdz )2+ qi(uf)? + Nuf) + é(xgu )2>},

ieyt t—

T
(6.5) v(\F) := argmin { Z v(v —r)? — )\fvt} .

veERT —

The optimization problem (6.4) solved by each local agent is also in the LQG frame-
work. One can solve these problems using the results of [24]. The resolution via

Riccati equations of (6.4) shows that u’(A\*) is a linear function of the state X%
and of the price \¥. Therefore, in this specific example, for any ¢ one can explicitly
compute E(ui(A\¥)|Gy), where Gy, is defined in (4.9). Tt allows us to implement the
(deterministic) Uzawa’s algorithm as a reference to evaluate the performances of the
Stochastic Uzawa algorithm.

Different population sizes n are considered, with n ranging between 1 and 10%.
Similarly the algorithm is stopped for different numbers of dual iteration k, ranging
between 1 and 10%. In order to evaluate the bias and variance of the Stochastic Uzawa
algorithm, we have performed J = 1000 runs of the Stochastic Uzawa algorithm.

For any n, given the strong convexity of the dual function associated with (P, LQG),
there exists a unique optimal multiplier \”. For any n, A*™7 denotes the dual price
computed during the j** simulations (j =1,...,J) of the Stochastic Uzawa algorithm,
after k dual iterations.

For any n, the deterministic multiplier A" is obtained by applying Uzawa’s al-
gorithm, after 10* dual iterations. To this end, we applied the Stochastic Uzawa
Algorithm 4.1 where we ignored the line 8 and we replaced the update of \¥ line 9

n

by: X X (S B ()) — o).

At each dual iteration k, the computation of E(u’(\F)) is easy in this specific case,

u*(A\¥) being a linear function of X " and \F as explained in the previous subsection.
The following results compare the multipliers A¥™7 and A\, obtained respectively
by applying the Stochastic Uzawa and Uzawa algorithms.
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—0— n =10 —@— » = 10> —0— k=10 —@— k = 10>
—8— n = 10° —k— n = 10% —®— k= 10° —k— &k = 10?
2 slope >~ —0.8 |

ST

logy (k) logig(n) logy (k)

Figure 6.0.1: log;o(vk,n) func- Figure 6.0.2: logyo(vk,n) func- Figure 6.0.3: 10g10(||bk,n“§)
tion of k, given the number of tion of n, given the number of function of k, given the number

agents n agents k of agents n = 10%

For any k and n, by, v, and ¢, ,, denotes respectively an estimation of the bias,
the variance and the L2 norm of the error, via Monte Carlo method with .J simulations.
1< o 1 o
Thus we have for any k£ and n: by, = — Nomd AP e = = Neomad _ \m
y =7 ; n=7 ; |
bk,n”%; Ek,n = Vk,n + ||bk,n||%

On Figure 6.0.1, we observe a behavior in 1/k% (with o ~ 0.8) of the variance
Vg, W.r.t. the number of iterations k. This rate of convergence is consistent with [6,
Theorem 2.2.12, Chapter 2] for Robbins Monro algorithm where the convergence is
proved to be of order at most in 1/k.

On Figure 6.0.2 we observe a behavior in 1/n” (with 8 ~ 1) of the variance vy,
w.r.t. the number of agents n. This is expected, see [6, Theorem 2.2.12, Chapter 2]
and observing that the variance of Y**1 is of order 1/n for any iteration k.

On Figure 6.0.3 we observe a faster behavior than 1/k of the bias ||by.,,||* w.r.t. the
number of iterations k. Thus for a large number of iterations (k > 0), the dominant
term impacting the error [, is the variance vy .

7. Price-based coordination of a large population of thermostatically
controlled loads. The goal of this section is to demonstrate the applicability of the
presented approach for the coordination of thermostatic loads in a smart grid context.
The problem analyses the daily operation of a power system with a large penetration
of price-responsive demand, adopting a modelling framework similar to [5]. Two dis-
tinct elements are considered: i) a system operator, that must schedule a portfolio
of generation assets in order to satisfy the energy demand at a minimum cost, and
ii) a population of price-responsive loads (TCLs) that individually determine their
ON/OFF power consumption profile in response to energy prices with the objective
of minimizing their operating cost while fulfilling users’ requirements. Note that the
operations of the two elements are interconnected, since the aggregate power consump-
tion of the TCLs will modify the demand profile that needs to be accommodated by
the system operator.

7.1. Formulation of the problem. In the considered problem, the function Fj
represents the minimized power production cost and corresponds to the resolution of
an Unit Commitment (UC) problem. The UC determines generation scheduling deci-
sions (in terms of energy production and frequency response (FR) provision) in order
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to minimize the short term operating cost of the system while matching generation
and demand. The latter is the sum of an inflexible deterministic component (denoted
for any instant ¢ € [0,T] by D(t)) and of a stochastic part, which corresponds to the
total TCL demand profile n Urcy (t).

For simplicity, a Quadratic Programming (QP) formulation in a discrete time
setting is adopted for the UC problem. The central planner disposes of Z genera-
tion technologies (gas, nuclear, wind) and schedules their production and allocated
response by slot of 30 min every day. For any j € {1,...,Z} and ¢ € {1,...,48},
Hj(te), G;(t¢) and R;(t;) are respectively the commitment, the power production
and response [MWh] from unit j during the time interval [ty,t¢11]. The associated
vectors are denoted by H (t;) = [Hy(te),...,Hz(te)], G(te) = [G1(te),...,Gz(te)] and
R(t¢) = [R1(te), ..., Rz(te)]-

The cost sustained at time ¢, by unit j is linear with respect to the commit-
ment H;(t;) and quadratic with respect to generation G;(¢;) and can be expressed
as Cl)jHj(tg)Gé\/Iax(tg) + Cg)jGj(tg) + Cg’jGj(tg)Q, with G?/Iax as the limit of produc-
tion allocated by each generation technology, ¢ ; [€/MWh]| as no-load cost and ¢z ;
[€/MWh] and c3 ; [€/MW?h| as production cost of the generation technology j. The

optimization of Fy must satisfy the following constraints for all £ € {1,...,48} and
tedl,... 48}
4 togpr

(7.1) ZGj(tg) — / (D(t) +nUrcr(t))dt =0,

=1 be
(7.2) 0 < Hj(ty) <1,
(7.3) Rj(te) —rjH;i(te)GT " (tr) <0,
(7.4) Rj(te) — s (H;(te) G (te) — G;(te)) <0,

(7.5) AGr — A (D(tg) + n(UTcL(tg) — RTCL(tg)) A ;;L?T — R(tg) <0,

(7.6) 2AG Ltresta — tho s R(te) — 40 frestaH () <0,
(7.7) q(t) — H()R(:) <0
(7.8) priHj(te) G (te) — Gj(te) <0,

where (7.1) equals production and aggregated demand (i.e. the system inelastic de-

mand D and the TCL flexible demand nUrc r). The quantities R and H denote

the total reserve and inertia of the system, respectively, and are defined for any

te{l,...,48} as:
z

z
R . h -H-(tZ)Gm‘W — h AGy,
R(ty) = ZRj(tz) + 'I”LRTCL(tg) and H(tz) = Z - jf .
; , 0

Jj=1 Jj=1
Assuming that for any generic generation technology j, the size of single plants
included in j is quite smaller than the aggregate installed capacity of j, inequality
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(7.2) sets that commitment decisions can be extended to the fleet and expressed by
continuous variables H;(t¢) € [0, 1].

The amount of response allocated by each generation technology is limited by
the headroom r;H;(t,)G’"""(t¢) in (7.3) and the slope s; linking the FR with the
dispatch level (7.4). Constraints (7.5) to (7.8) deal with frequency response provision
and Rpcp (the mean of FR allocated by TCLs). They guaranty secure frequency
deviations following sudden generation loss AGy. Inequality (7.5) allocates enough
FR (with delivery time ¢4) such that the quasi-steady-state frequency remains above
Af ee®, with A accounting for the damping effect introduced by the loads [12]. Fi-
nally (7.7) constraints the maximum tolerable frequency deviation A f,44, following
the formulation and methodology presented in [23] and [25]. The rate of change of
frequency is taken into account in (7.6) where at t,.s the frequency deviation remains
above Af,.y. Constraint (7.8) prevents trivial unrealistic solutions that may arise
in the proposed formulation, such as high values of committed generation H,(t,) in
correspondence with low (even zero) generation dispatch G;(t;). The reader can refer
to [5] for more details on the UC problem.

The solution of the UC problem, corresponding to the function Fj, can be de-
scribed by the following optimization problem:

48 Z
(7.9) Fo(Urcr, Rrcr) == ;néHRZZCLjHj(tZ)GTw(tZ)+02,jGj(te)+03,jGj(tz)2,
T =1 j=1

subject to equations (7.1)-(7.8).

Note that the formulation of the present problem does not fulfill all the assumption
presented in Section 4. In particular, the function Fj is not strictly convex, as instead
supposed in Theorem 4.6.(ii).(iii). Nevertheless, the numerical simulations of Section
7.2 shows that the proposed approach is still able to achieve convergence.

Regarding the modelling of the individual price-responsive TCLs, each TCL
1 € {1,...,n} is characterized at any time ¢t € [0,T] by its temperature XZ’“Z [°C]
controlled by its power consumption ui [W]. The thermal dynamic XZ " of a single
TCL ¢ is given by:

Xyt = —=(Xp" — Xopp + Guidt+ o, dW,, for t € [0,T],
(7.10) _ i
Xé,ui = l‘% E R,

where:
e ~; is its thermal time constant [s].
e X} pp is the ambient temperature [°C].
e (; is the heat exchange parameter [°C/W].

e 0; is a positive constant [(C’C)s%]7
e W' is a Brownian Motion [s%], independent from W/ for any j # i.
For any i € {1,...,n}, the set of control U; is defined by:

U= {v:Qx][0,T] = R,v(:) is F — prog. measurable,
v(w) € U and v(w) € {0, Pon i}, for a.a. (t,w) € [0,T] x Q},

(7.11)

The TCLs dynamics in (7.10) have been derived according to [11] , with the addition
of the stochastic term o;dW} to account for the influence of the environment (open-
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ing/closing of the fridge, environment temperature etc) on the evolution of the TCL

temperature.

By combining the objective functions of the systems, the system operator has to
solve the following optimization problem:

(7.12)

(PTCL)

inf J(u)

ueU

)

( /fzu X”)dsw(X%“"'—Xi)z)’

where, for any i € {1,...,n} and any s € [0,7]:

(7.15)

o 7;i(u

!, X%%")(s) is the maximum amount of FR allocated by TCL i at time s:

XZ U X’L

(7.13) ri(u’, X)) (s) == u gij%x — XZZZ :

o fi(ul, X;“) is the individual discomfort term of the TCL ¢ at time s:
(7.14) ‘ _
Filul, X2) i= 0 (X0 = X724 By((Xig — X% 4 (X0 = X3,
where:

- ai(Xg’“i — X%? is a discomfort term penalizing temperature deviation

from some comfort target X [°C], with a; a discomfort term parameter

[£ /h(°C)?].

— Bi((XP — XEE + (X — XD “i)z ) is a penalization term to keep

min max

the temperature in the interval [X . X! | with §; a target term pa-

min»

rameter [£/s(° C)?] and for any z € R, (a); = max(0,a).

° Fyi(X X, ;)% is a terminal cost imposing periodic constraints, with v a
target term parameter [£/s(°C)?].
Note that the control set ¢/ is not convex. We can mention a possible relaxation
of the problem by taking the control in the interval [0, Pon 4]-
The modified problem (PJ L) is studied to solve (P{“F).

A

j(u ( ZE ZE(Ti(ui,Xi7ui))>
1
+IE< Z/ Filul, qu)ds—&-vi(X%“i—)_(i)Z).

7.2. Decentralized implementation. The Sampled Stochastic Uzawa Algo-

rithm 4.2 is applied to solve (

PTCL), with m = 317 simulations per iteration. At each

iteration k, the lines 4 and 6 correspond respectively to the solution of a deterministic
UC problem and of an Hamilton Jacobi Bellman (HJB) equation. The time steps
At = 7.6 s and temperature steps AT = 0.15°C are chosen for the discretization of
the HJB equation. Let us note that at line 6, each TCL solves its own local problem
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on the basis of the received price signal \¥ = (p*, p*):

T , _ o
(7.16) it [ il X3 gk = il X (),
utel; Jo

where fl(u;,X;“) is a discomfort term defined in (7.14), u’p® can be interpreted

as consumption cost and r;(u’, X**)(s)p" as fee awarded for FR provision. This
implementation has a practical sense: each TCL uses local information and a price
that is communicated to them to schedule its power consumption on the time interval
[0, T7]. Tt follows that, with the proposed approach, it is possible to optimize the overall
system costs in (PTYL) in a distributed manner, with each TCL acting independently

and pursuing the minimization of its own costs.

7.3. Results. The generation technologies available in the system are nuclear,
combined cycle gas turbines (CCGT), open cycle gas turbines (OCGT) and wind.
The characteristics and parameters of the UC in this simulation are the same as in
[5].

It is assumed that a population of n = 2x 107 fridges with built-in freeze compart-
ment operates in the system according to the proposed price-based control scheme.
For any agent 7 we set the consumption parameter Poy ; = 180W. The values of the
TCL dynamic parameters v; and X pp of (7.10) are equal to the ones taken in [5].
Note that it is possible to take a population of heterogeneous TCLs with different
parameter values. The initial temperature are picked randomly uniformly between
—21°C and —14°C. For any agent i, the parameters of the individual cost function
fi, defined in (7.14), are: a; = 0.2 x 107 £/s(°C)?, B; = 50£/5(°C)?, X = —17.5°C
and X0 = —14°C, X,nin = —21°C. The parameter 3; is taken intentionally very
large to make the temperature stay in the interval [ X!, .., X%..,]. Note that the indi-
vidual problems solved by the TCLs are distinct than the ones in [5] (different terms
and parameters).

Simulations are performed for different values of volatility o; := 0,1,2 (all the
TCLs have the same volatility in the simulations), where o; is defined in (7.10). The
Sampled Stochastic Uzawa Algorithm is stopped after 75 iterations.

The resulting profile of total power consumption n Urcp, and total allocated re-
sponse nRpcr by the TCLs population are reported on figure 7.3.1. in three "flexibil-
ity scenario" each corresponding to a case where TCL flexibility is enabled with three
different volatilities 0 = 0; 0 = 1 and o = 2. The electricity prices p and response
availability prices p are shown in Figure 7.3.2. As observed in [5], the total con-
sumption nUrcy, is higher when the price p is lower and inversely the total allocated
response nRpcy, is higher when the price signal p is also higher. This can be observed
during the first hours of the day, between 0 and 6h. The power Urcy, then oscillates
during the day in order to maintain feasible levels of the internal temperature of the
TCLs. Though the prices seem not to be sensitive to the values taken by o, the
average consumption Uprcr, and response Ry, are highly correlated to the volatility
of the temperature of the TCLs. The less noisy their temperature are, the more price
sensitive and flexible their consumption profiles are. The TCLs impact on system
commitment decisions and consequent energy /FR dispatch levels is also analyzed and
displayed in Figure 7.3.3 and 7.3.4. The production and reserve in the "flexibility sce-
nario" minus the production and reserve in the "no-flexibility scenario" are plotted,
for different volatilities . In the no-flexibility scenario we impose Rrcp(t) = 0 and
we consider that the TCLs operate exclusively according to their internal tempera-

ture X' They switch ON (u’(t) = Poy ;) when they reach their maximum feasible
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Figure 7.3.1: Total power consumption U and Figure 7.3.2: Electricity price p and response avail-
allocated response R (MW) of TCLs after 75 it- ability price p (£/MWh) after 75 iterations of the al-

erations of the algorithm. gorithm.
200
2,000 - | —— CCGTo=o CCGTy=1 —— CCGTs—o CCGTy=1
— CCGTUZZ - - Winda:() E— CCGTg:2
- - W’indazl - = Windazg
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Vi v
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Figure 7.3.3: Deviation of generation profiles Figure 7.3.4: Deviation of Frequency Response (MW)
(MW) from the "no-flexibility scenario" for allocated by CCGT from the "no-flexibility scenario"
three different "flexibility scenario" correspond- for three different "flexibility scenario" corresponding
ing to three temperature volatilities. to three temperature volatilities.

temperature X' . and they switch back OFF again (u’(t) = 0) when they reach the
minimum temperature X ; . In figure 7.3.3, we can clearly observe that TCL’s flexi-
bility allows to increase the contribution of wind generation (reducing curtailment) to
the energy balance of the system while decreasing the contribution of CCGT both in
energy and frequency response. Without TCL support, the optimal solution envisages
a further curtailment of wind output in favor of an increase in CCGT generation, as
wind does not provide FR. As expected, the influence of the TCL on the system is
larger when the temperature volatility is lower.
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c=0 oc=1 o=2
BAU | 2.770 x 107 | 2.770 x 107 | 2.772 x 107
FS | 2.719 x 107 | 2.725 x 107 | 2.740 x 107

Table 1: Minimized system costs in (£)

The system costs (i.e. UC solution) obtained with the flexibility scenario (FS)
are now compared with the Business-as-usual (BAU) framework ones (the TCLs do
not exploit their flexibility and they operate exclusively according to their internal
temperature as previously explained) in Tab. 1. As expected the costs are lower in the
CF where TCLs participate in reducing the system generation costs. The reduction
is higher for o = 0, where the reduction is about 1.9%, than for ¢ = 1 or o = 2, where
the the reduction is respectively about 1.6% and 1.2%. This relies on the tendency of
the TCLs to be more flexible when their volatility is low. The reduction observed in
the CF scenario is due to the smaller use of OCGT and CCGT generation technologies
for the benefit of wind.

Appendix A. Appendix.

LEMMA A.1. Let H be a Hilbert space and f : H — R be l.s.c. and convexr. The
function f has subquadratic growth if and only if its subgradient has linear growth.

Proof. We suppose for all z € H and ¢ € 0f(z) that we have ||¢||g < C(1+|z| a).
For all g € 0f(z), we have that f(0) > f(z)—(q,z)m, so that f(x) < f(0)+|qllz |||z,
and f(x) < C(1+ |z||3). So the subquadratic growth property holds if 9 f has linear
growth, at points where Jf(z) is non empty. Since the subdifferential is nonempty in
the interior of the domain, the subquadratic growth property holds everywhere.

Conversely let the subquadratic growth property holds. Then for all z,y € H
and ¢ € 9f(x):

C+1lylE) = fly) = f(@) + gy —a)g > —C(+ ||=l|F) + (¢, — 2)u-
Take y = = + aq, we get
C+llzlE + o®llallF) = —C + llzl1F) + allgll-
We deduce that:
C2+2|zIH + ®llgllF) > allglF-

Suppose ||z1|| tends to infinity, if we can take g, in df(x*) and ||zg||5/|lqx||m con-
verging to 0, then there exists a = aj converging to 0, such that 2 + 2|z ||% +
o3 larll% < 2ai|lqr |3 so that 1 < 2Cay, and this gives a contradiction. 0
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