K. Ridderinkhof and M. Brass, How kinesthetic motor imagery works: a predictive-processing theory of visualization in sports and motor expertise, J Physiol Paris, vol.109, issue.1, pp.53-63, 2015.

A. Guillot, C. Collet, V. A. Nguyen, F. Malouin, C. Richards et al., Brain activity during visual versus kinesthetic imagery: an fmri study, Hum Brain Mapp, vol.30, issue.7, pp.2157-2172, 2009.

S. Hétu, M. Gregoire, A. Saimpont, M. Coll, F. Eugène et al., The neural network of motor imagery: An ale metaanalysis, Neuroscience and biobehavioral reviews, vol.37, p.2013

G. Pfurtscheller, F. H. Lopes-da, and S. , Event-related EEG/MEG synchronization and desynchronization: basic principles, Clin Neurophysiol, vol.110, issue.11, pp.1842-57, 1999.

G. Pfurtscheller, Functional brain imaging based on ERD/ERS, Vision Research, vol.41, issue.10-11, pp.1257-1260, 2001.

C. Lindig-leon, L. Bougrain, and S. Rimbert, Alpha rebound improves on-line detection of the end of motor imageries, IEEE EMBS Neural engineering conference, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01092284

M. A. Cervera, S. R. Soekadar, J. Ushiba, J. D. Millán, M. Liu et al., Brain-computer interfaces for poststroke motor rehabilitation: a meta-analysis, Annals of Clinical and Translational Neurology, vol.5, issue.5, pp.651-663, 2018.

L. Mcavinue and I. Robertson, Motor imagery: a multidimensional ability, Journal of Mental Imagery, vol.33, p.99, 2010.

M. Ahn, H. Cho, S. Ahn, and S. C. Jun, User's self-prediction of performance in motor imagery brain-computer interface, Frontiers in Human Neuroscience, vol.59, issue.12, 2018.

G. Morone, I. Pisotta, F. Pichiorri, S. Kleih, S. Paolucci et al., Proof of principle of a braincomputer interface approach to support poststroke arm rehabilitation in hospitalized patients: Design, acceptability, and usability, the 5th International BCI Meeting, vol.96, pp.71-78, 2015.

C. Jeunet, E. Jahanpour, and F. Lotte, Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study, Journal of Neural Engineering, vol.13, issue.3, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01302154

F. Lotte, On the need for alternative feedback training approaches for bci, Berlin Brain-Computer Interface Workshop, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00834391

S. Rimbert, L. Bougrain, R. Orhand, J. Nex, S. Gaborit et al., Grasp'it : une interface cerveau-ordinateur pour l'amélioration de l'apprentissage d'une tâche d'imagination motrice kinesthésique, 29ème conférence francophone sur l'IHM, vol.2, 2017.

S. Rimbert, N. Gayraud, L. Bougrain, M. Clerc, and S. Fleck, Can a subjective questionnaire be used as brain-computer interface performance predictor?, Frontiers in Human Neuroscience, vol.12, p.529, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01990935

S. M. Freeman, S. Itthipuripat, and A. R. Aron, High working memory load increases intracortical inhibition in primary motor cortex and diminishes the motor affordance effect, Journal of Neuroscience, vol.36, issue.20, pp.5544-5555, 2016.

A. Vuckovic and B. Osuagwu, Using a motor imagery questionnaire to estimate the performance of a brain-computer interface based on object oriented motor imagery, Clin Neurophysiol, vol.8, issue.124, pp.1586-95, 2013.

S. Kleih, A. Riccio, D. Mattia, V. Kaiser, E. Friedrich et al., Motivation influences performance in smr-bci, Proceedings of the Fifth International Brain-Computer Interface Conference, 2011.

L. Tan, Z. Dienes, A. Jansari, and S. Goh, Effect of mindfulness meditation on brain-computer interface performance, Consciousness and Cognition, vol.23, pp.12-21, 2014.

V. V. Nikulin, F. U. Hohlefeld, A. M. Jacobs, and G. Curio, Quasimovements: A novel motor-cognitive phenomenon, Neuropsychologia, vol.46, issue.2, pp.727-742, 2008.

A. W. Medical, World medical association declaration of helsinki: ethical principles for medical research involving human subjects, J Postgrad Med, vol.48, issue.3, pp.206-208, 2002.

J. Brooke, Sus -a quick and dirty usability scale, 2006.

C. Lallemand, V. Koenig, G. Gronier, and R. Martin, Création et validation d'une version française du questionnaire attrakdiff pour l'évaluation de l'expérience utilisateur des systèmes interactifs, European Review of Applied Psychology, vol.65, pp.239-252, 2015.

C. Jeunet, S. Debener, F. Lotte, J. Mattout, R. Scherer et al., Mind the Traps! Design Guidelines for Rigorous BCI Experiments, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01620186

A. Delorme and S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis, Journal of Neuroscience Methods, vol.134, issue.1, pp.9-21, 2004.

C. Neuper, R. Scherer, S. Wriessnegger, and G. Pfurtscheller, Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain-computer interface, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, vol.120, pp.239-286, 2009.

C. Neuper, M. Wörtz, and G. Pfurtscheller, Erd/ers patterns reflecting sensorimotor activation and deactivation," in Event-Related Dynamics of Brain Oscillations, ser. Progress in Brain, vol.159, pp.211-222, 2006.

M. Jianjun and B. He, Exploring training effect in 42 human subjects using a non-invasive sensorimotor rhythm based online bci, Frontiers in Human Neuroscience, vol.13, p.2019