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Une note complémentaire sur les soft errors dans la
méthode du Gradient Conjugué: le cas des fautes

persistantes

Résumé : Cette note est une étude qui fait suite à [1], où nous avons étudié la résilience
de la méthode du gradient conjugué préconditionné (PCG). Nous complétons le travail initial en
e�ectuant une série similaire d'expériences numériques, mais en utilisant ce que nous avons appelé
des bit-�ips persistants au lieu de transitoires.

Mots-clés : Soft-erreur, bit-�ip, Gradient Conjugué, détection numérique, sensibilité, ro-
bustesse, exascale
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1 Introduction

This note is a complementary study to [1], where we investigated the resilience of the preconditioned
conjugate gradient method (PCG). In the original work we only considered what we referred to as
transient bit-�ips, which only a�ect the output of the calculations but do not de�nitively corrupt
the input data. We looked at the sensitivity of PCGwhen it is a�ected by this type of soft error
and derived 2 criteria that can be used to detect the occurrence of these bit-�ips. In this new
study we perform a similar set of experiments, but using what we called persistent bit-�ips, i.e., a
bit-�ip that permanently corrupts the input data. This will allow us to verify whether or not this
type of soft error a�ects the PCGalgorithm in a di�erent way, and further test the robustness of
the 2 criteria we derived.

In order to keep this note short but self-contained we give a short summary of the original
study in Section 2, but refer to [1] for the motivation of this work, most of the details, and further
references. In Section 3 we perform a new sensitivity study and in Section 4 we look at the
robustness and performance of the 2 detection criteria we proposed in [1].

2 Short summary of the original study

The PCGalgorithm [2] shown in Algorithm 1 is still widely used and a prime candidate for
extreme-scale computations on large computing platforms. Since these platforms will be more
and more prone to errors of di�erent kinds during their calculations, it is of great interest to
know the behavior of PCGunder various errors and to see whether or not we can detect them.
We �rst limited ourselves to soft errors occurring as bit-�ips during the calculations and to the
two main computational kernels of the algorithm: the matrix-vector product (step 3) and the
preconditioning (step 7).

Algorithm 1 Preconditioned conjugate gradient (PCG)

1: r 0 := b� Ax 0; u0 = M � 1r 0; p0 := u0; 
 0 := r T
0 u0

2: for i = 0 ; : : : do
3: si := Api

4: � i := 
 i =sT
i pi

5: x i +1 := x i + � i pi

6: r i +1 := r i � � i si

7: ui +1 := M � 1r i +1

8: 
 i +1 := r T
i +1 ui +1

9: � i +1 := 
 i +1 =
 i

10: pi +1 := ui +1 + � i +1 pi

11: end for

We make the distinction between two types of bit-�ips: transient and persistent. Transient
errors occur inside the computation kernel, but except for the output of the computation, nothing
is corrupted. In a persistent error, the input data will be corrupted as well, a�ecting all further
calculations where it is used. Recalling the example from the original study: if we wish calculate
a+ b = c, then (a; b; c) = (2 ; 2; 10) would be an example of a transient error and(a; b; c) = (2 ; 8; 10)
one of a persistent bit-�ip in b.

In [1] we studied the sensitivity of PCGto transient bit-�ips with respect to the bit in which
the �ip occurred using the standard IEEE 754 format and notation, see Figure 2.1, as well as the
time at which the bit-�ips occurred, i.e., in the �rst few iterations, in the middle or close to the

Inria



On persistent soft errors in the Conjugate Gradient method 5

Figure 2.1: IEEE 754 double-precision binary �oating-point format.

convergence. As could have been expected, we observed thatPCGwas most sensitive to bit-�ips
in the higher bits corresponding to the exponent and the sign. Bit-�ips in the lower bits often
had no e�ect, with a transition area depending on the preconditioner and the targeted accuracy.
The algorithm was also slightly more sensitive to bit-�ips that occurred in the early iterations.

We also derived two criteria that could be used to detect the occurrence of these bit-�ips. The
residual gap-based criterium uses the fact that there is a gap between the recursively calculated
residue in PCGand the true residual. In exact arithmetic

f i = r i � (b� Ax i ) = 0 ;

but in �nite precision calculations, we have the following upper bound:

kf i k � �

 

m kAk
iX

` =0

kx ` k +
iX

` =0

kr ` k

!

; (1)

where � is the machine precision andm the maximum number of non-zero entries in the rows of
A. The second criterium is based on the fact that

8i
1

� max
< � i ; (2)

with � max the largest eigenvalue ofA.

The bounds presented in Equations(1) and (2) are valid in �nite precision arithmetic, so by
monitoring them during the algorithm we can detect it when a bit-�ip results in them being
broken. Algrithm 2 shows has this can be done, with the gap-based criterium on lines 11 to 16 and
the � -based on lines 6 to 8. Note that we only perform the gap-based check everyCheckPeriod
iterations in order to avoid computing the true residual every iteration.

When we tested the capabilities of these criteria, we observed that the residual gap-based
detection was very good at detecting the transient bit-�ips occurring in the matrix vector product,
but less e�cient at detecting those in the preconditioning step. The opposite was, however, true
for the � -based detection, meaning that combined they were able to detect almost all critical
faults. When we injected transient bit-�ips in every step of PCG, and not only in the calculation
of the matrix-vector product or the preconditioning step, we observed that combined both criteria
could again detect almost all critical faults.

Additionally we compared the capacity of these methods to detect a bit-�ip in the matrix-
vector product with that of the well know checksum method. We saw that while it is possible to
get good results applying a checksum to the matrix-vector product, it can be di�cult to determine
a good threshold parameter� , and that the residual gap-based criterium performed much better.

RR n ° 9360



6 Agullo & Cools & Fatih-Yetkin & Giraud & Schenkels & Vanroose

Algorithm 2 PCGenhanced with both residual gap-based and� -based detection
Require: A , b, x0,M , � max , CheckPeriod.

1: r 0 := b� Ax 0; u0 = M � 1r 0; p0 := r 0

2: f 0 = � (jj r 0jj + mjjAjjjj x0jj )
3: for i = 0 ; : : : do
4: si := Api

5: � i := r T
i ui =sT

i pi

6: if � i < 1
� max

then
7: CreateDetectionAlert()
8: end if
9: x i +1 := x i + � i pi

10: r i +1 := r i � � i si

11: f i +1 = f i + � (jj r i +1 jj + mjjAjjjj x i +1 jj )
12: if mod(i; CheckPeriod) == 0 then
13: if jj r i +1 � (b� Ax i +1 )jj > f i +1 then
14: CreateDetectionAlert()
15: end if
16: end if
17: ui +1 = M � 1r i +1

18: � i +1 := r T
i +1 ui +1 =rT

i ui

19: pi +1 := ui +1 + � i +1 pi

20: end for

3 Study of the sensitivity of PCG to soft errors

3.1 Propagation of bit-�ips in PCG

While a bit-�ip can happen at any point in the computational kernel and a�ect for example some
intermediate result, we considered only the two extreme cases of transient bit-�ips in [1] . We
considered early transient bit-�ips, i.e., in pi or r i +1 , or late transient bit-�ips, i.e., in si or ui +1 .

In our new numerical experiments we will consider persistent bit-�ips. This means that we
will inject a bit-�ip in pi or r i +1 , but do not reset it to its original value after si or ui +1 are
calculated. Other than this, the experimental setup is identical to that in [ 1]. This can again be
seen as the most extreme case of a persistent bit �ip as it will also a�ect the other steps ofPCG
that use pi or r i +1 . An overview of this is given in Figure 3.1.

3.2 Soft errors in the matrix-vector product

In Figure 3.2 (Figure 3.3 in the transient case in [1]) we show the ratio of convergent cases per
bit where the error is injected and based on the value of the original bit. We see that bit-�ips
from 0 to 1 are far more critical than those going from 1 to 0, which is in line with the theoretical
analysis we performed in [1]. In Figure 3.3 (for comparison purpose, see Figure 3.4 for the
transient counterpart in [ 1]) we show a more concise presentation of these results by removing
the distinction on the value of the original bit. Finally, in Figure 3.4 (Figure 3.5 for transient
in [1]) we show the e�ect of the fault injection time. Overall, however, we observe behavior that
is similar to that of transient bit-�ips in the preconditioner (see Figure 3.5 and 3.7 for transient
errors in [1]).

Inria



On persistent soft errors in the Conjugate Gradient method 7

Figure 3.1: Propagation of transient errors in the PCG algorithm. Orange, red, and purple
indicate 1, 2, or more than 2 corrupted input variables respectively.
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Figure 3.2: Comparison of the impact on convergence of the bit-�ips at originally zero or one bits.
The 64-bit indices of the IEEE 754 �oating point numbers are displayed between each graph;
from left to right, the sign (blue), exponent (green) and mantissa (red) bits are represented.
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Figure 3.3: Impact of the index of the �ipped bit in the matrix-vector product on PCG convergence
success. The 64-bit indices of the IEEE 754 �oating point numbers are displayed between each
graph; from left to right, the sign (blue), exponent (green) and mantissa (red) bits are represented.
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Figure 3.4: Impact of the bit-�ip injection time (as a proportion of the number of iterations with
respect to the non-faulty execution) in the matrix-vector product on PCG convergence success.

3.3 Soft errors in the preconditioner application

In �gures 3.5 (Figure 3.6 for transient errors in [1]) and 3.6 (Figure 3.7 for transient errors in [1])
we show the ratio of convergent cases when we inject a persistent bit-�ip in the preconditioner
calculation. In this case we see that the convergence ofPCGclosely resembles that of the case of
transient bit-�ips in the matrix-vector product (see Figure 3.4 and 3.5 in [1]).

3.4 Concluding remarks

When we compare the results for transient and persistent bit-�ips, we see that there is a switch
in how they e�ect PCG. A transient bit-�ip in the matrix-vector product has a very similar e�ect
as a persistent bit-�ip in the preconditioner. Similarly, a transient bit-�ip in the preconditioner
has a very similar e�ect as a persistent bit-�ip in the matrix-vector product.
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Figure 3.5: Impact of the index of the �ipped bit in the preconditioner application on PCG
convergence success.
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Figure 3.6: Impact of the bit-�ip injection time in the preconditioner application on PCG
convergence success.
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4 Detecting soft errors in PCG

4.1 Checksum-based detection

The checksum detection mechanism relies on an mathematical equality that is not valid in �nite
precision calculation where a relative threshold� needs to be introduced to make it practical.
The selection of this threshold that comply with two con�icting constraints: be large enough to
reduce the false positives and be small enough to limit the number of false negatives. We follow
the same optimisation procedure as described in [1, Section 4.2.1] to de�ne the threshold used for
the experiments depicted in Figure 4.1a that corresponds to Figure 4.1a in [1] for transient error.
It can be observed that while the optimal threshold is not perfect as some false negatives are
still triggered and only a few true positive are detected. Figure 4.1b corresponds to Figure 4.2a
in [1] for a non-optimal value. Note that due to the di�erent behaviour of the cost function for
persistent faults, the optimal value of � is almost alway 1 in our study, see Appendix A for more
details.
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(b) Non-optimal threshold � = 0 :79.

Figure 4.1: Outcome of the checksum-based detection for the faulty runs for the experiments
with a Jacobi preconditioner and " = 1e-10 (! = 0 :5). Colour note: the large grey component
corresponds to the special negative cases.

4.2 Bit-�ips in the matrix-vector product

When it came to transient bit-�ips, the residual gap-based criterium performed very good, whereas
the � -based criterium did not. In Figures 4.2 (Figure 4.4 for transient errors in [1]) and 4.3 we
can see, however, that for persistent bit-�ips the opposite is true. Similar as with our results from
the sensitivity study we see that the behavior observed in bit-�ips in the matrix-vector product
and the preconditioner is opposite between transient and persistent bit-�ips.

4.3 Bit-�ips in the preconditioner

Where the � -based criterium was very e�cient in detecting transient bit-�ips in the preconditioner,
it is less e�ective at detecting persistent ones as it can be seen in Figure 4.4 (Figure 4.5 for
transient errors in [1]). The residual gap-based criterium, however, is now much more e�ective
at detecting those. This follows the same pattern as we observed in the previous experiments,
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Figure 4.2: Detection performance of residual gap deviation and checksum-based methodologies
for soft errors in the matrix-vector calculation with persistent faults in pi for the matrix-vector
product.
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Figure 4.3: Detection performance of gap deviation and� -based methodologies for soft errors in
the matrix-vector calculation with persistent faults in pi for the matrix-vector product.
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where we see that there is a switch in the behavior ofPCGbetween transient bit-�ips in the
matrix-vector product and persistent bit-�ips preconditioner, and between transient bit-�ips in
the preconditioner and persistent bit-�ips in the matrix vector-product (see �gures 4.4 and 4.5
for transient errors in [1]).
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Figure 4.4: Detection performance of the residual gap and� -based methodologies for soft errors
in the preconditioner calculation with persistent faults in r i +1 in the preconditioner calculation.

4.4 Combined detection

In Figure 4.5 we show what happens when we combine the� and the gap-based detection
methods to detect persistent bit-�ips in the matrix-vector product and preconditioning steps of
PCG. Figure 4.6 expands on these results by looking at what happens when persistent bit-�ips can
occur in every step ofPCG. As was the case for transient bit-�ips (see Figure 4.6 in [1]), we see
that both criteria are very complementary and can successfully be combined to detect almost all
critical faults.

5 Conclusions

In this follow up study to [ 1] we studied the behavior of PCGwhen it is a�ected by persistent
bit-�ips in the matrix-vector product or preconditioner. We observed that there is a switch in
this behavior between the matrix-vector product and the preconditioner when we compare it to
transient bit-�ips.

However, since the 2 detection criteria, i.e., the residual gap-based and the� -based criteria,
where complementary when it came to detecting these transient bit-�ips, they still are able to
detect almost all critical faults caused by persistent bit-�ips.
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Figure 4.5: Comparison of the detection success of the alpha and residual gap based methodologies,
and their combination for persistent bit-�ips in the matrix-vector product or preconditioner ( pi

or r i +1 .) steps of PCG.
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Figure 4.6: Comparison of the detection success of the alpha and residual gap based methodologies,
and their combination for persistent bit-�ips in every step of PCG.

RR n ° 9360



16 Agullo & Cools & Fatih-Yetkin & Giraud & Schenkels & Vanroose

A Checksum cost function

We choose� by minimizing the cost function

cost(� ) = !
n1

n1 + n2
FP(� ) + (1 � ! )

n2

n1 + n2
FN(� ); (3)

for !; � 2 [0; 1]. If more than one value of � minimizes this function, we take the largest value in
order minimize false positive cases (FP). Note that in our numerical experiments we always used
! = 0 :5. In �gures 1.1, 1.2, and 1.3 we show the cost function for di�erent combinations of" ,
preconditioner, and ! . These correspond to �gures B.1, B.2, and B.3 in Appendix B from the
original study [1]. We see that the cost function behaves very di�erently in the case of persistent
errors. In the case of transient faults the cost function always had a convex shape, leading to an
optimal value of � < 1. In the case of persistent faults, the cost function decreases, stabilizes,
but does not increase again � at least for most of the matrices in our study. This results in an
optimal value of � = 1 in almost all cases.

Figure 1.1: Cost function for a given matrix, " , and preconditioner, but with di�erent values of ! .
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Figure 1.2: Cost function for a given matrix, and ! , but with di�erent combinations of " and
preconditioner.

Figure 1.3: Cost function for a given" , preconditioner, and ! , but for di�erent matrices.
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