E. Aguilar-rodriguez, N. Gopalswamy, S. Macdowall, . Yashiro, and . Kaiser, A study of the drift rate of type II radio bursts at different wavelengths, Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, vol.592, p.393, 2005.

J. Bougeret, M. Kaiser, P. J. Kellogg, R. Manning, . Goetz et al., Waves: The radio and plasma wave investigation on the wind spacecraft, Space Science Reviews, vol.71, issue.1-4, pp.231-263, 1995.

E. Carley, . Gallagher, P. Mccauley, and . Murphy, Using supervised machine learning to automatically detect type II and III solar radio bursts, Machine Learning in Heliophysics, 2019.

N. Dalal and . Triggs, Histograms of oriented gradients for human detection, Computer Vision and Pattern Recognition (CVPR), vol.1, pp.886-893, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00548512

N. Gopalswamy, S. Mäkelä, and . Yashiro, A catalog of type II radio bursts observed by wind/waves and their statistical properties, 2019.

K. Klein, P. Cs-matamoros, and . Zucca, Solar radio bursts as a tool for space weather forecasting, Comptes Rendus Physique, vol.19, issue.1-2, pp.36-42, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01744555

. V-lobzin, . Cairns, A. Peter, . Robinson, G. Steward et al., Automatic recognition of coronal type II radio bursts: The automated radio burst identification system method and first observations, The Astrophysical Journal Letters, vol.710, issue.1, p.58, 2010.

J. Redmon, . Divvala, A. Girshick, and . Farhadi, You only look once: Unified, real-time object detection, Computer Vision and Pattern Recognition (CVPR), pp.779-788, 2016.

H. Salmane, . Weber, K. Abed-meraim, X. Klein, and . Bonnin, A method for the automated detection of solar radio bursts in dynamic spectra, Journal of Space Weather and Space Climate, vol.8, p.43, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01902428