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Meta-Learning with Shared Amortized Variational Inference

Ekaterina Iakovleva 1 Jakob Verbeek 2 Karteek Alahari 1

Abstract

We propose a novel amortized variational infer-
ence scheme for an empirical Bayes meta-learning
model, where model parameters are treated as la-
tent variables. We learn the prior distribution over
model parameters conditioned on limited train-
ing data using a variational autoencoder approach.
Our framework proposes sharing the same amor-
tized inference network between the conditional
prior and variational posterior distributions over
the model parameters. While the posterior lever-
ages both the labeled support and query data, the
conditional prior is based only on the labeled sup-
port data. We show that in earlier work, relying on
Monte-Carlo approximation, the conditional prior
collapses to a Dirac delta function. In contrast, our
variational approach prevents this collapse and
preserves uncertainty over the model parameters.
We evaluate our approach on the miniImageNet,
CIFAR-FS and FC100 datasets, and present re-
sults demonstrating its advantages over previous
work.

1. Introduction
While people have an outstanding ability to learn from just
a few examples, generalization from small sample sizes has
been one of the long-standing goals of machine learning.
Meta-learning, or “learning to learn” (Schmidhuber, 1999),
aims to improve generalization in small sample-size settings
by leveraging the experience of having learned to solve
related tasks in the past. The core idea is to learn a meta
model that, for any given task, maps a small set of training
samples for a new task to a model that generalizes well.

A recent surge of interest in meta-learning has explored a
wide spectrum of approaches. This includes nearest neigh-
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bor based methods (Guillaumin et al., 2009; Vinyals et al.,
2016), nearest class-mean approaches (Dvornik et al., 2019;
Mensink et al., 2012; Ren et al., 2018; Snell et al., 2017),
optimization based methods (Finn et al., 2017; Ravi &
Larochelle, 2017), adversarial approaches (Zhang et al.,
2018), and Bayesian models (Gordon et al., 2019; Grant
et al., 2018). The Bayesian approach is particularly interest-
ing, since it provides a coherent framework to reason about
model uncertainty, not only in small sample-size settings,
but also others such as incremental learning (Kochurov et al.,
2018), and ensemble learning (Gal & Ghahramani, 2016).
Despite its attractive properties, intractable integrals over
model parameters or other latent variables, which are at the
heart of the Bayesian framework, make it often necessary to
turn to stochastic Monte Carlo or analytic approximations
for practical implementations.

In our work, we follow the Bayesian latent variable ap-
proach, and learn a prior on the parameters of the classi-
fication model conditioned on a small training sample set
for the task. We use a variational inference framework to
approximate the intractable marginal likelihood function
during training. The variational distribution approximates
the posterior on the parameters of the classification model,
given training and test data. Both the prior and posterior
are parameterized as deep neural networks that take a set of
labeled data points as input. By sharing the inference net-
work across these two distributions, we leverage more data
to learn these conditionals and avoid overfitting. Figure 1
illustrates the overall structure of our model, SAMOVAR.

We compare the variational training approach with the
Monte Carlo approach followed by Gordon et al. (2019)
on synthetic data. We find that when using a small number
of samples for stochastic back-propagation in the Monte
Carlo approach, which results in faster training, the prior
collapses to a Dirac delta, and the model degenerates to
a deterministic parameter generating network. In contrast,
our variational training approach does not suffer from this
deficiency, and leads to an accurate estimation of the vari-
ance. Experiments on few-shot image classification using
the miniImageNet, CIFAR-FS and FC100 datasets confirm
these findings, and we observe improved accuracy using the
variational approach to train the VERSA model (Gordon
et al., 2019). Moreover, we use the same variational frame-
work to train a stochastic version of the TADAM few-shot
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Figure 1. SAMOVAR, our meta-learning model for few-shot image classification. For task t, query data X̃t and support data Xt are put
through a task-agnostic feature extractor fθ(x). The features are then averaged class-wise, and mapped by the shared amortized inference
network into prior and posterior over the task-specific classifier weight vectors. Classifiers wtposterior and wtprior sampled from these
distributions map query features fθ(X̃t) to predictions on the query labels Ỹ t used in training and testing, respectively.

image classification model (Oreshkin et al., 2018), replacing
the deterministic prototype classifier with a scaled cosine
classifier with stochastic weights. Our stochastic formula-
tion significantly improves performance over the base archi-
tecture, and yields results competitive with the state of the
art on the miniImageNet, CIFAR-FS and FC100 datasets.

2. Related Work
Distance-based classifiers. A straightforward approach to
handle small training sets is to use nearest neighbor (Wein-
berger et al., 2006; Guillaumin et al., 2009; Vinyals et al.,
2016), or nearest prototype (Mensink et al., 2012; Snell
et al., 2017; Dvornik et al., 2019; Ren et al., 2018; Oreshkin
et al., 2018) classification methods. In a “meta” training
phase, a metric – or, more generally, a data representation
– is learned using samples from a large number of classes.
At test time, the learned metric can then be used to classify
samples across a set of classes not seen during training, by
relying on distances to individual samples or “prototypes,”
i.e., per-class averages. Alternatively, it is also possible to
learn a network that takes two samples as input and predicts
whether they belong to the same class (Sung et al., 2018).
Other work has explored the use of task-adaptive metrics,
by conditioning the feature extractor on the class prototypes
for the task at hand (Oreshkin et al., 2018). We show that
our latent variable approach is complementary and improves
the effectiveness of the latter task conditioning scheme.

Optimization-based approaches. Deep neural networks
are typically learned from large datasets using SGD. To
adapt to the regime of (very) small training datasets,
optimization-based meta-learning techniques replace the
vanilla SGD approach by a trainable update mechanism
(Bertinetto et al., 2019; Finn et al., 2017; Ravi & Larochelle,
2017), e.g., by learning a parameter initialization, such that
a small number of SGD updates yields good performance

(Finn et al., 2017). In addition to parameter initialization,
the use of an LSTM model to control the influence of the
gradient for updating the current parameters has also been
explored (Ravi & Larochelle, 2017). In our work, the amor-
tized inference network makes a single feed-forward pass
through data to estimate a distribution on the parameters,
instead of multiple passes to update the parameters.

Latent variable models. Gradient-based estimators of the
parameters have a high variance in the case of small sam-
ple sizes. It is natural to explicitly model this variance by
treating the parameters as latent variables in a Bayesian
framework (Garnelo et al., 2018; Gordon et al., 2019; Grant
et al., 2018; Kim et al., 2019; MacKay, 1991; Neal, 1995).
The marginal likelihood of the test labels given the train-
ing set is then obtained by integrating out the latent model
parameters. This typically intractable marginal likelihood,
required for training and prediction, can be approximated us-
ing (amortized) variational inference (Garnelo et al., 2018;
Kim et al., 2019), Monte Carlo sampling (Gordon et al.,
2019), or a Laplace approximation (Grant et al., 2018). Neu-
ral processes (Garnelo et al., 2018; Kim et al., 2019) are also
related to our work in their structure, and the use of shared
inference network between the prior and variational pos-
terior. Where neural processes use the task-specific latent
variable as an additional input to the classifier network, we
explicitly model the parameters of a linear classifier as the
latent variable. This increases interpretability of the latent
space, and allows for a flexible number of classes.

Interestingly, some optimization-based approaches can be
viewed as approximate inference methods in latent vari-
able models (Grant et al., 2018; Rusu et al., 2019). Semi-
amortized inference techniques (Marino et al., 2018; Kim
et al., 2018), which combine feed-forward parameter ini-
tialization and iterative gradient-based refinement of the ap-
proximate posterior, can be seen as a hybrid of optimization-
based and Bayesian approaches. Deterministic approaches
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that generate a single parameter vector for the task model,
given a set of training samples (Bertinetto et al., 2016; Ha
et al., 2017; Qiao et al., 2018), can be seen as a special case
of the latent variable model with Dirac delta conditional
distributions on the parameters.

3. Our Meta-Learning Approach
We follow the common meta-learning setting of episodic
training of K-shot N -way classification on the meta-train
set with C classes (Finn et al., 2017; Gordon et al., 2019;
Ravi & Larochelle, 2017). For each classification task t
sampled from a distribution over tasks p(T ), the training
data Dt = {(xtk,n,ytk,n)}K,Nk,n=1 (support set) consists of K
pairs of samples xtk,n and their labels ytk,n from each of N
classes. The meta-learner takes the KN labeled samples
as input, and outputs a classifier across these N classes
to classify MN unlabeled samples from the testing data
D̃t = {(x̃tm,n, ỹtm,n)}M,N

m,n=1 (query set). During the meta-
train stage, the meta-learner iterates over T episodes where
each episode corresponds to a particular task t. During the
meta-test stage, the model is presented with new tasks where
the support and query sets are sampled from the meta-test
set, which consists of previously unseen classes C ′. The
support set is used as input to the trained meta-learner, and
the classifier produced by meta-learning is used to evaluate
the performance on the query set. Results are averaged over
a large set of meta-test tasks.

In this section, we propose a probabilistic framework for
meta-learning. In Section 3.1, we start with a description
of the multi-task graphical model that we adopt. We then
derive an amortized variational inference with learnable
prior for this generative model in Section 3.2, and propose
to share the amortized networks for prior and approximate
posterior. Finally, in Section 3.3 we describe the design of
our model, SAMOVAR, which is trained with the proposed
shared variational inference method.

3.1. Generative Meta-Learning Model

We employ a hierarchical graphical model shown in Figure 2.
This multi-task model includes latent parameters θ, shared
across all the T tasks, and task-specific latent parameters
{wt}Tt=1. The marginal likelihood of the query labels Ỹ =
{Ỹ t}Tt=1, given the query samples X̃ = {X̃t}Tt=1 and the
support sets D = {Dt}Tt=1, is obtained as

p(Ỹ |X̃,D) =∫
p(θ)

T∏
t=1

∫
p(Ỹ t|X̃t, wt)p(wt|Dt, θ)dwtdθ.

(1)

The first term, p(θ), is the prior over the global task-
independent parameters θ. The second term, p(Ỹ t|X̃t, wt),
is the likelihood of query labels Ỹ t, given query samples X̃t

KN

MN

T

Figure 2. Hierarchical graphical model. The solid lines correspond
to the generative process, while the dashed lines correspond to the
variational inference procedure. Shaded nodes represent observed
variables, non-shaded ones correspond to latent variables.

and task-specific parameters wt. For example, this could be
a linear classifier with weightswt over features computed by
a network with parameters θ. The third term, p(wt|Dt, θ)
is the conditional distribution on the task parameters wt

given the support set Dt and global parameters θ. We pa-
rameterize this distribution with a deep neural network with
parameters φ as pφ (wt|Dt, θ).

Following Gordon et al. (2019); Grant et al. (2018); Hu et al.
(2020), we consider a point estimate for θ to simplify the
model. The per-task marginal likelihood is then

p(Ỹ t|X̃t, Dt, θ)=

∫
p(Ỹ t|X̃t, wt)pφ(wt|Dt, θ)dwt, (2)

p(Ỹ t|X̃t, wt)=

M∏
m=1

p(ỹtm|x̃tm, wt). (3)

To train the model, a Monte Carlo approximation of the
integral in Eq. (2) was used in Gordon et al. (2019):

L(θ, φ) =
1

TM

T∑
t=1

M∑
m=1

log
1

L

L∑
l=1

p(ỹtm|x̃tm, wtl ), (4)

where wtl ∼ pφ(wt|Dt, θ). In our experiments in Sec-
tion 4, we show that training with this approximation tends
to severely underestimate the variance in pφ(wt|Dt, θ), ef-
fectively reducing the model to a deterministic one, and
defying the use of a stochastic latent variable model.

3.2. Shared Amortized Variational Inference

To prevent the conditional prior pφ(wt|Dt, θ) from degen-
erating, we use amortized variational inference (Kingma
& Welling, 2014; Rezende et al., 2014) to approximate the
intractable true posterior p(wt|Ỹ t, X̃t, Dt, θ). Using the ap-
proximate posterior qψ(wt|Ỹ t, X̃t, Dt, θ) parameterized by
ψ, we obtain the variational evidence lower bound (ELBO)
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of Eq. (2) as

logp(Ỹ t|X̃t, Dt, θ) ≥ Eqψ
[
log p(Ỹ t|X̃t, wt)

]
−DKL

(
qψ(wt|Ỹ t, X̃t, Dt, θ)||pφ(wt|Dt, θ)

)
.

(5)

The first term can be interpreted as a reconstruction loss, that
reconstructs the labels of the query set using latent variables
wt sampled from the approximate posterior, and the second
term as a regularizer that encourages the approximate pos-
terior to remain close to the conditional prior pφ(wt|Dt, θ).
We approximate the reconstruction term using L Monte
Carlo samples, and add a regularization coefficient β to
weigh the KL term (Higgins et al., 2017). With this, our
optimization objective is:

L̂(Θ) =
1

T

T∑
t=1

[
M∑
m=1

1

L

L∑
l=1

log p(ỹtm|x̃tm, wtl )

− βDKL

(
qψ(wt|Ỹ t, X̃t, Dt, θ)||pφ(wt|Dt, θ)

)]
,

(6)

where wtl ∼ qψ(w|Ỹ t, X̃t, Dt, θ). We maximize the ELBO
w.r.t. Θ = {θ, φ, ψ} to jointly train the model parameters θ,
φ, and the variational parameters ψ.

We use Monte Carlo sampling from the learned model to
make predictions at test time as:

p(ỹtm|x̃tm, Dt, θ) ≈ 1

L

L∑
l=1

p(ỹtm|x̃tm, wtl ), (7)

where wtl ∼ pφ(wt|Dt, θ). In this manner, we leverage the
stochasticity of our model by averaging predictions over
multiple realizations of wt.

The approach presented above suggests to train separate
networks to parameterize the conditional prior pφ(wt|Dt, θ)

and the approximate posterior qψ(wt|Ỹ t, X̃t, Dt, θ). Since
in both cases the conditioning data consists of labeled sam-
ples, it is possible to share the network for both distributions,
and simply change the input of the network to obtain one
distribution or the other. Sharing has two advantages: (i) It
reduces the number of parameters to train, decreasing the
memory footprint of the model and the risk of overfitting.
(ii) It facilitates the learning of a non-degenerate prior.

Let us elaborate on the second point. Omitting all de-
pendencies for brevity, the KL divergence DKL(q||p) =∫
q(w) [log q(w)− log p(w)] in Eq. (5) compares the pos-

terior q(w) and the prior p(w). Consider the case when the
prior converges to a Dirac delta, while the posterior does
not. Then, there exist points in the support of the posterior
for which p(w) ≈ 0, therefore, the KL divergence tends to
infinity. The only alternative in this case is for the poste-
rior to converge to the same Dirac delta. This would mean

that for different inputs the inference network produces the
same (degenerate) distribution. In particular, the additional
conditioning data available in the posterior would leave the
distribution unchanged, failing to learn from the additional
data. While in theory this is possible, we do not observe it
in practice.

We coin our approach “SAMOVAR”, short for Shared
AMOrtized VARiational inference.

3.3. Implementing SAMOVAR: Architectural Designs

The key properties we expect SAMOVAR to have are: (i)
the ability to perform the inference in a feed-forward way
(unlike gradient-based models), and (ii) the ability to handle
a variable number of classes within the tasks. We build
upon the work of Gordon et al. (2019); Qiao et al. (2018),
to meet both these requirements. We start with VERSA
(Gordon et al., 2019) where the feature extractor is followed
by an amortized inference network, which returns a linear
classifier with stochastic weights. SAMOVAR-base, our
baseline architecture built this way on VERSA, consists of
the following components.

Task-independent feature extractor. We use a deep con-
volutional neural network (CNN), fθ, shared across all tasks,
to embed input images x in IRd. The extracted features are
the only information from the samples used in the rest of the
model. The CNN architectures used for different datasets
are detailed in Section 4.2.

Task-specific linear classifier. Given the features, we use
multi-class logistic discriminant classifier, with task-specific
weight matrix wt ∈ IRN×d. That is, for the query samples
x̃ we obtain a distribution over the labels as:

p(ỹtm|x̃tm, wt) = softmax
(
wtfθ(x̃

t
m)
)
. (8)

Shared amortized inference network. We use a deep per-
mutation invariant network gφ to parameterize the prior over
the task-specific weight matrix wt, given a set of labeled
samples. The distribution on wt is factorized over its rows
wt1, . . . , w

t
N to allow for variable number of classes, and to

simplify the structure of the model. For any class n, the
inference network gφ maps the corresponding set of support
feature embeddings {fθ(xtk,n)}Kk=1 to the parameters of a
distribution over wtn. We use a Gaussian with diagonal co-
variance to model these distributions on the weight vectors,
i.e.,

pφ(wtn|Dt, θ) = N (µtn, diag
(
σtn
)
), (9)

where the mean and the variance are computed by the infer-
ence network as:[

µtn
σtn

]
= gφ

(
1

K

K∑
k=1

fθ(x
t
k,n)

)
. (10)
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To achieve permutation invariance among the samples, we
average the feature vectors within each class before feeding
them into the inference network gφ. The approximate varia-
tional posterior is obtained in the same manner, but in this
case the feature average that is used as input to the inference
network is computed over the union of labeled support and
query samples.

To further improve the model, we employ techniques
commonly used in meta-learning classification models:
scaled cosine similarity, task conditioning, and auxiliary
co-training.

Scaled cosine similarity. Cosine similarity based classi-
fiers have recently been widely adopted in few-shot clas-
sification (Dvornik et al., 2019; Gidaris et al., 2019; Lee
et al., 2019; Oreshkin et al., 2018; Ye et al., 2018). Here,
the linear classifier is replaced with a classifier based on the
cosine similarity with the weight vectors wtn, scaled with a
temperature parameter α:

p(ỹtm|x̃tm, wtn) = softmax
(
α

fθ(x̃
t
m)>wtn

||fθ(x̃tm)|| · ||wtn||

)
(11)

We refer this version of our model as SAMOVAR-SC.

Task conditioning. A limitation of the above models is that
the weight vectorswt

n depend only on the samples of class n.
To leverage the full context of the task, we adopt the task em-
bedding network (TEN) of Oreshkin et al. (2018). For each
feature dimension of fθ, TEN provides an affine transfor-
mation conditioned on the task data, similar to FiLM condi-
tioning layers (Perez et al., 2018) and conditional batch nor-
malization (Munkhdalai et al., 2018; Dumoulin et al., 2017).
In particular, input to TEN is the average c = 1

N

∑
n cn, of

the per-class prototypes, cn = 1
K

∑
k fθ(x

t
kn) in the task t,

and outputs are translation and scale parameters for all fea-
ture channels in the feature extractor layers. In SAMOVAR,
we use TEN to modify both the support and query features
fθ before they enter the inference network gφ. The query
features that enter into the linear/cosine classifiers are left
unchanged.

Auxiliary co-training. Large feature extractors can benefit
from auxiliary co-training to prevent overfitting, stabilize the
training, and boost the performance (Oreshkin et al., 2018).
We leverage this by sharing the feature extractor fθ of the
meta-learner with an auxiliary classification task across all
the classes in the meta-train set, using the cross-entropy loss
for a linear logistic classifier over fθ.

4. Experiments
We analyze the differences between training with Monte
Carlo estimation and variational inference with a controlled
synthetic data experiment in Section 4.1. Then, we present
the few-shot image classification experimental setup in Sec-

tion 4.2, followed by results, and a comparison to related
work in Section 4.3.

4.1. Synthetic Data Experiments

We consider the same hierarchical generative process as
Gordon et al. (2019), which allows for exact inference:

p(ψt) = N (0, 1), p(yt|ψt) = N (ψt, σ2
y). (12)

We sample T = 250 tasks, each with K = 5 support
observations Dt = {ytk}Kk=1, and M = 15 query obser-
vations D̃t = {ỹtm}Mm=1. We use an inference network
qφ(ψ|Dt) = N (µq, σ

2
q ), where[

µq
log σ2

q

]
= W

K∑
k=1

ytk + b, (13)

with trainable parameters W and b. The inference network
is used to define the predictive distribution

p(D̃t|Dt) =

∫
p(D̃t|ψ)qφ(ψ|Dt) dψ. (14)

Since the prior is conjugate to the Gaussian likelihood
p(yt|ψt) in Eq. (12), we can analytically compute the
marginal p(D̃t|Dt) in Eq. (14) and the true posterior
p(ψ|Dt), which are both Gaussian.

We train the inference network by optimizing Eq. (14) in
the following three ways.

1. Exact marginal log-likelihood. For T tasks, with M
query samples each, we obtain

L(φ) = − 1

MT

T∑
t=1

M∑
m=1

logN (ytm;µq(D
t), σ2

q (Dt)+σ2
y).

(15)

2. Monte Carlo estimation. Using L samples ψtl ∼
qφ(ψ|Dt) we obtain

L(φ) = − 1

MT

T∑
t=1

M∑
m=1

log
1

L

L∑
l=1

N (ytm;ψtl , σ
2
y). (16)

3. Variational inference. We use the inference network,
with a second set of parameters φ′, as variational pos-
terior given both D̃t and Dt. Using L samples ψtl ∼
qφ′(ψ|D̃t, Dt), we obtain

L(φ) =− 1

T

T∑
t=1

[
M∑
m=1

1

L

L∑
l=1

logN (ytm;ψtl , σ
2
y)

−DKL(qφ′(ψ|D̃t, Dt)||qφ(ψ|Dt))

]
.

(17)
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(c) σy = 1.0

Figure 3. Ratio between the variance in ψ estimated by the trained inference network qφ(ψ|Dt) and σ2
p in true posterior p(ψ|Dt), for

different number of samples L from the inference network during training.

We trained with these three approaches for σy ∈
{0.1, 0.5, 1.0}. For Monte Carlo and variational methods,
we used the re-parameterization trick to differentiate through
sampling ψ (Kingma & Welling, 2014; Rezende et al., 2014).
We evaluate the quality of the trained inference network by
sampling data Dt for a new task from the data generating
process Eq. (12). For new data, we compare the true pos-
terior p(ψ|Dt) with the distribution qφ(ψ|Dt) produced by
the trained inference network.

Results in Figure 3 show that both the analytic and varia-
tional approaches recover true posterior very well, including
variational training with a single sample. Monte Carlo train-
ing, on the other hand, requires the use of significantly
larger sets of samples to produce results comparable to
other two approaches. Optimization with a small number
of samples leads to significant underestimation of the target
variance. This makes the Monte Carlo training approach
either computationally expensive, or inaccurate in modeling
the uncertainty in the latent variable.

4.2. Experimental Setup for Image Classification

MiniImageNet (Vinyals et al., 2016) consists of 100 classes
selected from ILSVRC-12 (Russakovsky et al., 2015). We
follow the split from Ravi & Larochelle (2017) with 64
meta-train, 16 meta-validation and 20 meta-test classes, and
600 images in each class. Following Oreshkin et al. (2018),
we use a central square crop, and resize it to 84×84 pixels.

FC100 (Oreshkin et al., 2018) was derived from CIFAR-100
(Krizhevsky, 2009), which consists of 100 classes, with 600
32×32 images per class. All classes are grouped into 20
superclasses. The data is split by superclass to minimize the
information overlap. There are 60 meta-train classes from
12 superclasses, 20 meta-validation, and meta-test classes,
each from four corresponding superclasses.

CIFAR-FS (Bertinetto et al., 2019) is another meta-learning
dataset derived from CIFAR-100. It was created by a ran-
dom split into 64 meta-train, 16 meta-validation and 20
meta-test classes. For each class, there are 600 images of

size 32×32.

Network architectures and training specifications. For
a fair comparison with VERSA (Gordon et al., 2019), we
follow the same experimental setup, including the network
architectures, optimization procedure, and episode sam-
pling. In particular, we use the shallow CONV-5 feature
extractor. In other experiments we use ResNet-12 back-
bone feature extractor (Oreshkin et al., 2018; Mishra et al.,
2018). The cosine classifier is scaled by setting α to 25
when data augmentation is not used, and 50 otherwise. The
hyperparameters were chosen through cross-validation. The
TEN network used for task conditioning is the same as
in Oreshkin et al. (2018). The main and auxiliary tasks
are trained concurrently: in episode t out of T , the auxil-
iary task is sampled with probability ρ = 0.9b12t/Tc. The
choice of β, as well as other details about the architec-
ture and training procedure can be found in the supplemen-
tary material. We provide implementaion of our method at:
https://github.com/katafeya/samovar.

Unless explicitly mentioned, we do not use data augmenta-
tion. In cases where we do use augmentation, it is performed
with random horizontal flips, random crops, and color jitter
(brightness, contrast and saturation).

Evaluation. We evaluate classification accuracy by ran-
domly sampling 5,000 episodes, and 15 queries per class in
each test episode. We also report 95% confidence intervals
computed over these 5,000 tasks. We draw d = 1, 000 sam-
ples for each class n from the corresponding prior to make
a prediction, and average the resulting probabilities for the
final classification.

4.3. Few-Shot Image Classification Results

Comparison with VERSA. In our first experiment, we
compare SAMOVAR-base with VERSA (Gordon et al.,
2019). Both use the same model, but differ only in their
training procedure. We used the code provided by Gor-
don et al. (2019) to implement both approaches, making
one important change: we avoid compression artefacts by

https://github.com/katafeya/samovar
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Table 2. Accuracy and 95% confidence intervals of TADAM and SAMOVAR on the 5-way classification task on miniImageNet. The first
columns indicate the use of: cosine scaling (α), auxiliary co-training (AT), and task embedding network (TEN).

5-SHOT 1-SHOT
α AT TEN TADAM SAMOVAR TADAM SAMOVAR

73.5 ± 0.2 75.3 ± 0.2 58.2 ± 0.3 59.3 ± 0.3
X 74.9 ± 0.2 76.9 ± 0.2 57.4 ± 0.3 58.2 ± 0.3

X 74.6 ± 0.2 76.4 ± 0.2 58.7 ± 0.3 59.8 ± 0.3
X 72.9 ± 0.2 74.9 ± 0.2 58.2 ± 0.3 58.8 ± 0.3

X X 75.7 ± 0.2 77.2 ± 0.2 57.3 ± 0.3 60.4 ± 0.3
X X 74.1 ± 0.2 77.3 ± 0.2 57.5 ± 0.3 59.5 ± 0.3

X X 74.9 ± 0.2 76.8 ± 0.2 57.3 ± 0.3 58.5 ± 0.3
X X X 75.9 ± 0.2 77.5 ± 0.2 57.6 ± 0.3 60.7 ± 0.3

Table 1. Accuracy and 95% confidence intervals of VERSA and
SAMOVAR on the 5-way classification task on miniImageNet.
Both approaches train the same meta-learning model.

5-SHOT 1-SHOT

VERSA (OUR IMPLEM.) 68.0 ± 0.2 52.5 ± 0.3
SAMOVAR-BASE 69.8 ± 0.2 52.4 ± 0.3
SAMOVAR-BASE (SEPARATE) 66.6 ± 0.2 50.8 ± 0.3

storing image crops in PNG rather than JPG format, which
improves results noticeably.

In Table 1 we report the accuracy on miniImageNet for both
the models. In the 1-shot setup, both the approaches lead to
similar results, while SAMOVAR yields considerably better
performance in the 5-shot setup. When training VERSA
we keep track of the largest variance predicted for model
parameters, and observe that it quickly deteriorates from the
beginning of training. We do not observe this collapse in
SAMOVAR. This is consistent with the results obtained on
synthetic data. More details about distribution collapse in
VERSA are presented in the supplementary material.

To evaluate the effect of sharing the inference network be-
tween prior and posterior, we run SAMOVAR-base with
separate neural networks for prior and posterior, and with
the reduced number of hidden units to even out the total
number of parameters. From the results in the last two lines
of Table 1, it can be seen that for both 1-shot and 5-shot
classification sharing the inference network has a positive
impact on the performance.

Comparison with TADAM. In our second experiment,
we use SAMOVAR in combination with the architecture
of TADAM (Oreshkin et al., 2018). To fit our framework,
we replace the prototype classifier of TADAM with a linear
classifier with latent weights. We compare TADAM and
SAMOVAR with metric scaling (α), auxiliary co-training
(AT) and the task embedding network (TEN) included or not.
When the metric is not scaled, we use SAMOVAR-base with
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Figure 4. Accuracy on miniImageNet as a function of the number
of samples drawn from the learned prior over the classifier weights,
compared to using the mean of the distribution.

the linear classifier, otherwise we use SAMOVAR-SC with
the scaled cosine classifier. For this ablative study we fix the
random seed to generate the same series of meta train, meta
validation and meta test tasks for both models, and for all
configurations. The results in Table 2 show that SAMOVAR
provides a consistent improvement over TADAM across all
the tested ablations of the TADAM architecture.

Effect of sampling classifier weights. To assess the effect
of the stochasticity of the model, we evaluate the prediction
accuracy obtained with the mean of the distribution on clas-



Meta-Learning with Shared Amortized Variational Inference

Table 3. Accuracy and 95% confidence intervals of state-of-the-art models on the 5-way task on miniImageNet. Versions of the models
that use additional data during training are not included. Exception is made only if this is the sole result provided by the authors. ∗:
Results obtained with data augmentation. †: Transductive methods. ◦: Validation set is included into training. 4: Based on a 1.25×wider
ResNet-12 architecture.

METHOD FEATURES 5-SHOT 1-SHOT TEST PROTOCOL

MATCHING NETS(VINYALS ET AL., 2016) CONV-4 60.0 46.6
META LSTM(RAVI & LAROCHELLE, 2017) CONV-4 60.6 ± 0.7 43.4 ± 0.8 600 EP. / 5×15
MAML (FINN ET AL., 2017) CONV-4 63.1 ± 0.9 48.7 ± 1.8 600 EP. / 5 × SHOT
RELATIONNET (SUNG ET AL., 2018) CONV-4 65.3 ± 0.7 50.4 ± 0.8 600 EP. / 5 × 15
PROTOTYPICAL NETS (SNELL ET AL., 2017) CONV-4 65.8 ± 0.7 46.6 ± 0.8 600 EP. / 5 × 15
VERSA (GORDON ET AL., 2019) CONV-5 67.4 ± 0.9 53.4 ± 1.8 600 EP. / 5 × SHOT

TPN (LIU ET AL., 2019) CONV-4† 69.9 55.5 2000 EP. / 5 × 15
SIB(HU ET AL., 2020) CONV-4† 70.7 ± 0.4 58.0 ± 0.6 2000 EP. / 5 × 15
GIDARIS ET AL. (2019) CONV-4 71.9 ± 0.3 54.8 ± 0.4 2000 EP. / 5 × 15
SAMOVAR-BASE (OURS) CONV-5 69.8 ± 0.2 52.4 ± 0.3 5000 EP. / 5 × 15

QIAO ET AL. (2018) WRN-28-10 73.7 ± 0.2 59.6 ± 0.4 1000 EP. / 5 × 15
MTL HT (SUN ET AL., 2019) RESNET-12 75.5 ± 0.8 61.2 ± 1.8 600 EP. / 5 × SHOT
TADAM (ORESHKIN ET AL., 2018) RESNET-12 76.7 ± 0.3 58.5 ± 0.3 5000 EP. / 100
LEO (RUSU ET AL., 2019) WRN-28-10∗◦ 77.6 ± 0.1 61.8 ± 0.1 10000 EP. / 5 × 15
FINE-TUNING (DHILLON ET AL., 2020) WRN-28-10∗ 78.2 ± 0.5 57.7 ± 0.6 1000 EP. / 5 × 15
TRANSDUCTIVE FINE-TUNING (DHILLON ET AL., 2020) WRN-28-10∗† 78.4 ± 0.5 65.7 ± 0.7 1000 EP. / 5 × 15
METAOPTNET-SVM (LEE ET AL., 2019) RESNET-12∗4 78.6 ± 0.5 62.6 ± 0.6 2000 EP. / 5 × 15
SIB (HU ET AL., 2020) WRN-28-10∗† 79.2 ± 0.4 70.0 ± 0.6 2000 EP. / 5 × 15
GIDARIS ET AL. (2019) WRN-28-10∗ 79.9 ± 0.3 62.9 ± 0.5 2000 EP. / 5 × 15
CTM (LI ET AL., 2019) RESNET-18∗† 80.5 ± 0.1 64.1 ± 0.8 600 EP. / 5 × 15
DVORNIK ET AL. (2019) WRN-28-10∗ 80.6 ± 0.4 63.1 ± 0.6 1000 EP. / 5 × 15
SAMOVAR-SC-AT-TEN (OURS) RESNET-12 77.5 ± 0.2 60.7 ± 0.3 5000 EP. / 100
SAMOVAR-SC-AT-TEN (OURS) RESNET-12∗ 79.5 ± 0.2 63.3 ± 0.3 5000 EP. / 5 × 15

sifier weights, and approximating the predictive distribution
of Eq. (7) with a varying number of samples of the classifier
weights. For both the 5-shot and 1-shot setups, we fix the
random seed and evaluate SAMOVAR-SC-AT-TEN on the
same 1,000 random 5-way tasks. We compute accuracy 10
times for each number of samples.

Results of these experiments for 5-shot and 1-shot tasks are
shown in Figure 4. It can be seen that for both setups the
mean classification accuracy is positively correlated with
the number of samples. This is expected as a larger sample
size corresponds to a better estimation of the predictive
posterior distribution. The dispersion of accuracy for a
fixed n is slightly bigger for the 1-shot setup compared
to the 5-shot setup, and in both cases it decreases as we
use more samples. This difference is also expected, as
the 1-shot task is much harder than the 5-shot task, so the
model retains more uncertainty in the inference in the former
case. The results also show that the predicted classifier
mean demonstrates good results on both classification tasks,
and it can be used instead of classifier samples in cases
where computational budget is critical. At the same time
we can see that sampling of a large number of classifiers
leads to a better performance compared to the classifier
mean. While on the 5-shot setup the gain from classifier
sampling over using the mean is small, around 0.1% with

10K samples, on the 1-shot setup the model benefits more
from the stochasticity yielding additional 0.4% accuracy
with 10K samples.

Comparison to the state of the art. In Table 3, we com-
pare SAMOVAR to the state of the art on miniImageNet. For
a fair comparison, we report results with and without data
augmentation. SAMOVAR yields competitive results, no-
tably outperforming other approaches using ResNet-12 fea-
tures. The only approaches reporting better results explore
techniques that are complementary to ours. Self-supervised
co-training was used by Gidaris et al. (2019), which can be
used as an alternative to the auxiliary 64-class classification
task we used. CTM (Li et al., 2019) is a recent transduc-
tive extension to distance-based models, it identifies task-
relevant features using inter- and intra-class relations. This
module can also be used in conjunction with SAMOVAR, in
particular, as an input to the inference network instead of the
prototypes. Finally, knowledge distillation on an ensemble
of 20 metric-based classifiers was used by Dvornik et al.
(2019), which can be used as an alternative feature extractor
in our work.

In Table 4, we compare to the state of the art on the
FC100 dataset. We train our model using data augmen-
tation. SAMOVAR yields the best results on the 5-shot
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Table 4. Accuracy and 95% confidence intervals of state-of-the-art models on the 5-way task on FC100. Versions of the models that
use additional data during training are not included. ∗: Results obtained with data augmentation. �: Results from Lee et al. (2019). †:
Transductive methods. 4: Based on a 1.25×wider ResNet-12 architecture.

METHOD FEATURES 5-SHOT 1-SHOT TEST PROTOCOL

PROTOTYPICAL NETS (SNELL ET AL., 2017) RESNET-12∗�4 52.5 ± 0.6 37.5 ± 0.6 2000 EP. / 5 × 15
TADAM (ORESHKIN ET AL., 2018) RESNET-12 56.1 ± 0.4 40.1 ± 0.4 5000 EP. / 100
METAOPTNET-SVM (LEE ET AL., 2019) RESNET-12∗4 55.5 ± 0.6 41.1 ± 0.6 2000 EP. / 5 × 15
FINE-TUNING (DHILLON ET AL., 2020) WRN-28-10∗ 57.2 ± 0.6 38.3 ± 0.5 1000 EP. / 5 × 15
TRANSDUCTIVE FINE-TUNING (DHILLON ET AL., 2020) WRN-28-10∗† 57.6 ± 0.6 43.2 ± 0.6 1000 EP. / 5 × 15
MTL HT (SUN ET AL., 2019) RESNET-12∗ 57.6 ± 0.9 45.1 ± 1.8 600 EP. / 5 × SHOT

SAMOVAR-SC-AT-TEN (OURS) RESNET-12∗ 57.9 ± 0.3 42.1 ± 0.3 5000 EP. / 5 × 15

Table 5. Accuracy and 95% confidence intervals of state-of-the-art models on the 5-way task on CIFAR-FS. Versions of the models that
use additional data during training are not included. All models use data augmentation. �: Results from Lee et al. (2019). †: Transductive
methods. 4: Based on a 1.25×wider ResNet-12 architecture.

METHOD FEATURES 5-SHOT 1-SHOT TEST PROTOCOL

PROTOTYPICAL NETS (SNELL ET AL., 2017) RESNET-12�4 83.5 ± 0.5 72.2 ± 0.7 2000 EP. / 5 × 15
METAOPTNET-SVM (LEE ET AL., 2019) RESNET-124 84.2 ± 0.5 72.0 ± 0.7 2000 EP. / 5 × 15
FINE-TUNING (DHILLON ET AL., 2020) WRN-28-10 86.1 ± 0.5 68.7 ± 0.7 1000 EP. / 5 × 15
TRANSDUCTIVE FINE-TUNING (DHILLON ET AL., 2020) WRN-28-10† 85.8 ± 0.6 76.6 ± 0.7 1000 EP. / 5 × 15
SIB (HU ET AL., 2020) WRN-28-10† 85.3 ± 0.4 80.0 ± 0.6 2000 EP. / 5 × 15
GIDARIS ET AL. (2019) WRN-28-10 86.1 ± 0.2 73.6 ± 0.3 2000 EP. / 5 × 15

SAMOVAR-SC-AT-TEN (OURS) RESNET-12 85.3 ± 0.2 72.5 ± 0.3 5000 EP. / 5 × 15

classification task. Transductive fine-tuning (Dhillon et al.,
2020) reports a higher accuracy for the 1-shot setting, but
is not directly comparable due to the transductive nature of
their approach. MTL HT (Sun et al., 2019) reports the best
results (with large 95% confidence intervals due to the small
amount of data used in their evaluation) in the 1-shot setting.
It samples hard tasks after each meta-batch update by taking
its m hardest classes, and makes additional updates of the
optimizer on these tasks. This is complementary, and can be
used in combination with our approach to further improve
the results.

In Table 5, we compare our model to the state of the art
on CIFAR-FS. Data augmentation is used during training.
Similar to the aforementioned datasets, SAMOVAR yields
competitive results on both tasks. On the 5-shot task, higher
accuracy is reported by Dhillon et al. (2020) and Gidaris
et al. (2019), while transductive SIB (Hu et al., 2020) is
comparable to SAMOVAR. On the 1-shot task, SIB (Hu
et al., 2020), transductive version by Dhillon et al. (2020)
and Gidaris et al. (2019) report better results. Overall, the
observations are consistent with those on miniImageNet.

5. Conclusion
We proposed SAMOVAR, a meta-learning model for few-
shot image classification that treats classifier weight vectors
as latent variables, and uses a shared amortized variational
inference network for the prior and variational posterior.
Through experiments on synthetic data and few-shot image
classification, we show that our variational approach avoids
the severe under-estimation of the variance in the classifier
weights observed for training with direct Monte Carlo ap-
proximation (Gordon et al., 2019). We integrate SAMOVAR
with the deterministic TADAM architecture (Oreshkin et al.,
2018), and find that our stochastic formulation leads to
significantly improved performance, competitive with the
state of the art on the miniImageNet, CIFAR-FS and FC100
datasets.
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Oreshkin, B., López, P. R., and Lacoste, A. TADAM: Task
dependent adaptive metric for improved few-shot learn-
ing. In NeurIPS, 2018.



Meta-Learning with Shared Amortized Variational Inference

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and
Courville, A. C. Film: Visual reasoning with a general
conditioning layer. In AAAI, 2018.

Qiao, S., Liu, C., Shen, W., and Yuille, A. L. Few-shot im-
age recognition by predicting parameters from activations.
In CVPR, 2018.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for
activation functions. arXiv preprint arXiv:1710.05941,
2017.

Ravi, S. and Larochelle, H. Optimization as a model for
few-shot learning. In ICLR, 2017.

Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K.,
Tenenbaum, J. B., Larochelle, H., and Zemel, R. S. Meta-
learning for semi-supervised few-shot classification. In
ICLR, 2018.

Rezende, D., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In ICML, 2014.

Russakovsky, O., Deng, J., Su, H., J.Krause, Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., and Bern-
stein, M. Imagenet large scale visual recognition chal-
lenge. IJCV, 115(3):211–252, 2015.

Rusu, A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R.,
Osindero, S., and Hadsell, R. Meta-learning with latent
embedding optimization. In ICLR, 2019.

Schmidhuber, J. Evolutionary Computation: Theory and
Applications, chapter A general method for incremental
self-improvement and multiagent learning, pp. 81–123.
1999.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In NeurIPS, 2017.

Sun, Q., Liu, Y., Chua, T., and Schiele, B. Meta-transfer
learning for few-shot learning. In CVPR, 2019.

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P., and
Hospedales, T. Learning to compare: Relation network
for few-shot learning. In CVPR, 2018.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, k., and
Wierstra, D. Matching networks for one shot learning. In
NeurIPS, 2016.

Weinberger, K., Blitzer, J., and Saul, L. Distance metric
learning for large margin nearest neighbor classification.
In NeurIPS, 2006.

Ye, H.-J., Hu, H., Zhan, D.-C., and Sha, F. Learning embed-
ding adaptation for few-shot learning. CoRR, 2018.

Zhang, R., Che, T., Ghahramani, Z., Bengio, Y., and Song, Y.
Metagan: An adversarial approach to few-shot learning.
In NeurIPS, 2018.



Meta-Learning with Shared Amortized Variational Inference

A. Network Architectures
We learn separate amortized inference networks to predict
the mean µ and log-variance lnσ2 of the latent classification
weight vectors wt. Both networks have the same architec-
ture, which depends on the feature extractor that is used.
The inference networks are shared between the prior and
approximate posterior distributions.

A.1. CONV-5 Feature Extractor

The embedding of the image returned by the CONV-5 fea-
ture extractor is a 256-dimensional vector. Each of the
inference networks for the mean and log variance of the
classifier weights wt consists of three fully connected layers
with 256 input and output features, and ELU non-linearity
(Clevert et al., 2016) between the layers. There are two
additional inference networks that predict the mean and log
variance of the classifier biases bt. Both of them consist
of two fully connected layers with 256 input and output
features followed by ELU non-linearity, and a fully con-
nected layer with 256 input and a single output feature. The
design is the same as used by Gordon et al. (2019) to ensure
comparability.

A.2. ResNet-12 Feature Extractor

With the ResNet-12 feature extractor, every image is em-
bedded into a 512-dimensional feature vector. Each of the
two inference networks consists of three fully connected
layers with 512 input and output features, with skip connec-
tions and swish-1 non-linearity (Ramachandran et al., 2017)
applied before addition in the first two dense layers.

B. Training Details for ResNet-12
For comparison with TADAM (Oreshkin et al., 2018) we
use the same optimization procedure, number of SGD up-
dates, and weight decay parameters for common parts of the
architecture as in the paper. For experiments with data aug-
mentation on miniImageNet we use 40k SGD updates with
momentum 0.9, and early stopping based on meta-validation
performance. We set the initial learning rate to 0.1, and de-
crease it by a factor ten after 20k, 25k and 30k updates. On
FC100 and CIFAR-FS, we use 30k SGD updates with the
same momentum and initial learning rate, and the latter is
decreased after 15k, 20k and 25k updates. We clip gradients
at 0.1, and set separate weight decay rates for the feature ex-
tractor, TEN, fully connected layer in the auxiliary task, and
inference networks. For the feature extractor and TEN the
weight decay is 0.0005. For the fully connected layer in the
auxiliary task the weight decay is 0.00001 on miniImageNet,
and 0.0005 on FC100 and CIFAR-FS. In the 1-shot setup,
the inference networks are regularized with the weight de-
cay equal to 0.0005, regardless of the dataset. In the 5-shot
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Figure 5. Mean accuracy of the SAMOVAR-base classifiers sam-
pled from the prior and posterior as a function of β. While training,
we fix the random seed of the data to generate the same series
of miniImageNet tasks. The evaluation is performed over 5000
random tasks.

setup, the weight decay parameter in the inference networks
is 0.00001 on miniImageNet, and 0.00005 on FC100 and
CIFAR-FS. We empirically find that the regularization co-
efficient β = K

Nd produces good results, and it can be used
as a starting point for further parameter tuning. Here d is
the dimensionality of the feature vector fθ, N is the number
of classes in the task, and K is the total number of query
samples in the task. On CONV-5, we set β to 0.0586 for the
5-shot setup, and we multiply it by two for the 1-shot setup.
On ResNet-12, we set β to 0.0125 for both setups, and we
use a value of β twice as large for the 1-shot setup without
auxiliary co-training.

For the 5-shot setup, mini-batches consist of two episodes,
each with 32 query images. For the 1-shot setup, we sample
5 episodes per mini-batch, and 12 query images per episode.
In both cases query images are sampled uniformly across
classes, without any restriction on the number per class. The
auxiliary 64-way classification task is trained with the batch
size 64.

C. Impact of β-scaling
Typically, in autoencoders the dimensionality of the latent
space is smaller than of the observed. This is not the case
in the meta learning classification task where the output is
merely a one-hot-encoded label of the class, while the latent
space is of the same size as the output of the feature extrac-
tor. In our experiments we observe that the large KL term
suppresses the reconstruction term resulting in a weaker
performance. In particular, there is a trade off between these
parts of the objective function L̂(Θ) which can be regulated
by β-scaling of the KL term. Figure 5 shows the accuracy
of SAMOVAR-base with CONV-5 feature extractor as a
function of β. Even though in both setups there is a clear
maximum, overall, the model is relatively robust to the set-
ting of β. Let’s denote the optimum β as βopt. Then for
the 5-shot setup the range at least from 0.83βopt to 2βopt
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(a) 5-shot setup.
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(b) 5-shot setup zoomed in.
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(c) 1-shot setup.
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(d) 1-shot setup zoomed in.

Figure 6. Largest variance in VERSA as a function of the opti-
mization step. Results for optimization steps from Figure 6a and
Figure 6c that follow the first encounter of variance below 0.001
are zoomed in Figure 6b Figure 6d respectively.

produces results that are within the 1% interval from the
maximum accuracy at βopt. For the 1-shot setup, the same
holds true for the range at least from 0.66βopt to 2βopt.

D. Posterior Collapse in VERSA
While training VERSA, every 250 optimization steps we
keep track of the largest variance of the weights and biases
of the predicted classifier. Figure 6 shows how this variance
decreases with time. For example, the largest variance of
the weights first falls below 0.001 at the step 4000 in the
5-shot setup, and at the step 3000 in the 1-shot setup.


