
HAL Id: hal-02930872
https://inria.hal.science/hal-02930872

Submitted on 4 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of a Failure Management Protocol for
Stateful IoT Applications

Umar Ozeer, Gwen Salaün, Loic Letondeur, François-Gaël Ottogalli,
Jean-Marc Vincent

To cite this version:
Umar Ozeer, Gwen Salaün, Loic Letondeur, François-Gaël Ottogalli, Jean-Marc Vincent. Verification
of a Failure Management Protocol for Stateful IoT Applications. Proc. of FMICS’20, Sep 2020,
Vienne, Austria. �10.1007/978-3-030-58298-2_12�. �hal-02930872�

https://inria.hal.science/hal-02930872
https://hal.archives-ouvertes.fr

Verification of a Failure Management Protocol for
Stateful IoT Applications

Umar Ozeer1, Gwen Salaün2, Loïc Letondeur1, François-Gaël Ottogalli1, and
Jean-Marc Vincent2

1 Orange Labs, Meylan, France
2 University of Grenoble Alpes, LIG, CNRS, Inria, France

Abstract. Fog computing provides computing, storage and communication re-
sources at the edge of the network, near the physical world. Devices deployed
in the Fog have interesting properties such as short delays, responsiveness, op-
timised communications and privacy. However, these devices have low stability
and are prone to failures. Thus, there is a need for management protocols to tol-
erate failures of IoT applications in the Fog. We propose a failure management
protocol which recovers from failures of devices and software elements involved
in an IoT application. Designing such highly distributed management protocols
is a difficult and error-prone task. Therefore, the main contribution of this paper
is the formal specification and verification of this failure management protocol.
Formal specification is achieved using a process algebraic language. The corre-
sponding formal model was used to carry out extensive analysis of the protocol to
ensure that it preserves important architectural invariants and functional proper-
ties. The verification step was performed using model checking techniques. The
analysis of the protocol was a success because it allowed us to detect and correct
several issues in the protocol.

1 Introduction

Fog Computing provides computing, storage and communication resources at the edge
of the network, in proximity to the physical world. The Fog thus meets the latencies,
privacy, QoS and geographical requirements of IoT applications that the cloud fails to
resolve. For this reason, the deployment of IoT applications in the Fog has become
increasingly popular and finds application in a wide range of sectors such as smart
cities, agriculture, mining, healthcare or transportation.

There is a need of resilient IoT applications because devices in the Fog are unstable
and prone to many types of failures like power failure (accidental unplugging, battery
drain), hardware failures (due to external environmental conditions or wear-out), or
software failures. These devices are also often connected through wireless networks
which can be volatile and unstable because of connectivity issues. However, the design
of a failure management protocols for IoT applications in the Fog is difficult because
of the main characteristics of this environment, which is dynamic with entities joining
and leaving the application, and heterogeneous in terms of hardware, software, net-
work and communication models. Moreover, since IoT applications are geographically
distributed and large-scale, a distributed management protocol is required.

2 Umar Ozeer et al.

This paper first introduces a failure management protocol for IoT applications. An
IoT application consists of interacting appliances (i.e., sensors and actuators) and soft-
ware elements hosted on Fog Nodes. This protocol provides a software solution to
monitor the application and react to occurring failures in order to repair and restore
a consistent pre-failure state of the application. It is worth noting that we focus on state-
ful IoT applications here, that is, applications involving devices and software that have
internal states characterised by execution conditions, input parameters, environment
variables and stored data resulting from computations and external interactions. These
must be taken into account to restore the state of the application. Several managers are
required to implement this protocol: a Stable Storage that keeps track of the state of the
distributed elements of the application, a Global Manager which is notified in case of
failure and that guides the recovery process, and Fog agents associated to Fog Nodes
and appliances that are locally in charge of detecting and propagating failures as well
as applying local recovery strategy to repair a failed entity.

Designing this protocol is very difficult particularly due to its distributed nature.
Moreover, this protocol must respect important correctness properties (e.g., a failed
software entity must eventually be restarted and restored, when a failure occurs every
dependent entity must be paused until the failed entity has recovered, the state of a
failed entity after restoration should be identical to its pre-failure state, etc). Thus, we
decided to use formal techniques and tools to ensure that the protocol works as expected
and respects the aforementioned properties. We chose to use LNT [5], a modern lan-
guage for formally specifying concurrent systems, and model checking techniques [12]
for analysing the specification with respect to the temporal properties to be preserved.
These specification and verification steps were very useful for clarifying several ques-
tions as well as identifying and correcting some issues in the protocol. The main con-
tribution of this paper is to report on the specification and analysis of the protocol using
formal modelling languages and model checking techniques. The verification of the
protocol allowed us to detect several issues and correct them in its implementation de-
veloped by Orange Labs.

The rest of this paper is organised as follows. Section 2 introduces the failure man-
agement protocol with a focus on the recovery phase. Section 3 presents the LNT spec-
ification of the protocol, the properties to be satisfied by the protocol, and the results
of the verification including the detected issues. Section 4 compares our approach to
related work and Section 5 concludes the paper.

2 Failure Management Protocol

This section presents successively the model for describing an IoT application, the man-
agers implementing the failure management protocol, the four phases of the protocol in
a nutshell, and the recovery phase in more details. Since the recovery phase is the most
important and complex phase of the protocol, we decided to focus the specification and
verification effort (Section 3) on that phase. The whole framework is called F3ARIoT,
and has been developed as a research prototype at Orange Labs. More details about the
description of the protocol can be found in [20].

Verification of a Failure Management Protocol for Stateful IoT Applications 3

2.1 Application Model

An IoT application (application for short) is composed of the following constituents:

– Software Elements (SEs) are units of software to be executed. They participate in
the execution of the application through their corresponding functions. A software
element has an internal state and exposes a set of functional interfaces as well as
non-functional interfaces for its administration.

– Appliances correspond to physical objects (e.g., switch, light, sensor, etc.) with no
hosting capabilities. They are only accessible through their exposed API.

– Fog Nodes host the software elements, that is, they give access to physical resources
and provide the runtime environment for the execution of software elements. Phys-
ical resources are usually restrained (e.g., Raspberry Pi or Arduino).

– Logical Bindings are abstractions of the communication models, which allow a
couple of software elements or a software element and an appliance to interact
together (two appliances cannot depend one of another).

An Application is modelled as a directed acyclic graph where each vertex represents
a software element or an appliance, and each edge represents a binding. The direction
of an edge gives the functional dependency between two vertices. If a vertex v1 depends
on a vertex v2, then v1 requires v2 to be functional.

Note that we assume that all elements are uniquely identified and that applicative
entities (software elements and appliances) are described using a behavioural model.
Such a model defines the operations possible on that software or device as well as the
order in which these operations must be triggered. As an example, a light can be turned
on and off infinitely. In this work, we use Labelled Transition System for describing
behavioural models. An LTS is a tuple (S , A,T, s0), where S is a set of states, A is a set
of operations associated to transitions, T ⊆ S × A×D× S is the transition relation, and
s0 ∈ S is the initial state. A transition is defined by a tuple (ss, op, dir, st) ∈ T where ss

is the source state, op is the operation name, dir is the direction (either send operation
with "!" or receive operation with "?"), and st is the target state.

Failures. As far as failures of the application are concerned, we consider in this work
crash failures of software elements, appliances, and Fog Nodes. Therefore, a software
element and an appliance can be in three different states in its lifecycle:

– Running: It executes its behaviour according to its behavioural model.
– Failed: It deviates from its correct behaviour and crashes. It stops sending and re-

ceiving messages as well as performing computations.
– Paused: The execution of its behaviour is temporarily stopped by the management

protocol. It can later resume its activities when indicated.

The failure of a software element is different from that of an appliance in the sense that
the former can always be restarted which is not the case for the latter. If the appliance
has permanently failed and cannot be rebooted, it should be replaced by a functionally
equivalent one. If no such appliance exists, the application can work in degraded mode,
providing only a partial service. Note that the failure of a Fog Node induces the failure
of all software elements hosted on the Fog Node.

4 Umar Ozeer et al.

HueActuate

HueSense

WemotionSense

AwoxActuate

Orchestrator

fgn1 fgn2

fgn3

Hue Lamp

Hue
Buttons

Wemo Motion
Sensor

Awox Striimlight
Lamp/Audio

Fig. 1. Smart Home Application

s0

button1Pressed!, button2Pressed!,
button3Pressed!, button4Pressed!

Hue Buttons

s0 s1

motion!

idle!

s0 s1

motion?

Wemo Motion Sensor

s2 s3

idle?

motionStopped!

motionDetected!

WemotionSense

Fig. 2. Behavioural Models

Application example. Figure 1 introduces a simplified version of a smart home appli-
cation for light automation and physical intrusion detection developed at Orange Labs.
It is composed of four appliances, three Fog Nodes (fgn1, fgn2, fgn3) on which the
software elements are executed, and eight bindings. The appliance Hue Buttons con-
trols the Hue Lamp. The Hue Buttons are also used to set an alarm for intrusion de-
tection. If a motion is detected by the Wemo Motion Sensor after setting the alarm, a
warning sound is triggered on the Awox Striimlight and all the lamps are turned on. The
Orchestrator triggers these scenarios based on the sensed events from the software ele-
ments HueSense and WemotionSense. Events are then pushed to the software elements
AwoxActuate and HueActuate according to the defined scenarios.

Figure 2 shows the behavioural models of two appliances, Hue Buttons and Wemo
Motion Sensor, and of the software element WemotionSense. The Hue Buttons device
sends an event corresponding to the button pressed (four possible buttons). There is
no specific state for that appliance and all four events are possible at any time. This
explains why the behavioural model consists of a single state. In contrast, the Wemo
Motion Sensor has two states to distinguish when motion is detected and then stopped.
The software element WemotionSense has four states: It receives motion events and
forwards them to the Orchestrator. Software elements may exhibit more complex be-
haviours. The behavioural model of the Orchestrator for instance consists of ten states
and fifteen transitions as it synchronises with all the other software elements.

2.2 Protocol Managers

This section describes the managers that compose the failure management protocol. A
Stable Storage (SS) is used for persisting data of all entities involved in an application.
We assume that this storage is unaffected by applicative failures and its implementa-
tion can take various forms such as replicated or redundant file systems [17]. A Global
Manager (GM) is a control and decision making entity that has a global view on the

Verification of a Failure Management Protocol for Stateful IoT Applications 5

application. It is notified when failures occur and it keeps a record of failed entities. It
also guides the Fog Agents (see below) during the recovery process. The GM can also
request available appliances from a device/object registry in order to replace a failed ap-
pliance. Each Fog Node and each appliance is managed by a Fog Agent (FA). This local
manager provides an entry point for managing the lifecycle of the locally hosted soft-
ware elements and appliances. A Fog Agent is in charge of local failure management.
In particular, a Fog Agent detects failures, interacts with the GM for failure recovery
and with the Stable Storage to retrieve the data necessary for the recovery phase.

Figure 3 gives an overview of the aforementioned managers and the way they in-
teract together. We use a different syntax for distinguishing communication channels
between Fog Agents and Global Manager / Stable Storage. In the rest of this paper, we
assume all managers interact using synchronous communication.

Fig. 3. Overview of Protocol Managers

2.3 Failure Management Protocol

The failure management protocol consists of four functional steps, which are carried out
by the managers presented in the previous section: (i) state saving, (ii) monitoring and
failure detection, (iii) failure notification, and (iv) decision and recovery. The first step
aims at saving the local data that represents the state of execution of each entity of the
application on the Stable Storage. The state saving step is policy-based to cope with the
heterogeneous nature of the environment. A state saving policy defines for each applica-
tive entity the data to be saved as well as the technique of saving. The techniques are
based on checkpoint, message logging and function call record [8]. These techniques
are chosen depending on the local storage and reliability assumptions made at the local
Fog Node. The second step involves the monitoring of the application for failure de-
tection. Monitoring can be achieved by Fog Agents through the following techniques:
heartbeat, ping-acks, applicative message observation and local system observation. A
failure detection triggers the third step in which failure notifications are propagated to
Fog Agents of dependent entities so as to functionally pause the part of the applica-
tion impacted by the failure. Concretely, when a failure occurs, the GM notifies the
Fog Agents of the direct dependent entities of this failure. These Fog Agents pause the
functional behaviour of these applicative entities and propagate the failure notification
by sending similar messages to the Fog Agents of the entities depending on them. In

6 Umar Ozeer et al.

the worst case, all entities are paused. The final recovery phase aims at repairing and
restoring the state of the application in order to bring back the application to a consistent
state. In the case of a failed software element, it is restarted before restoring its state. If
a Fog Node fails, a new placement for the hosted software elements is computed before
redeploying them onto failure-free Fog Nodes and restoring their states. When an appli-
ance fails, it is replaced by another functionally equivalent appliance. When recovery
is completed, the GM initiates the sending of recovery notifications that are propagated
by the Fog Agents to all dependent entities.

2.4 Recovery Phase

In this subsection, we present the final phase of the failure management protocol with
more details. This recovery phase aims at repairing and restoring the application into a
consistent state upon occurrence of a failure.

Global manager. When a failure occurs, the GM is notified by the Fog Agent that
monitors the failed entity. The notification includes the identifier of the failed entity.
The GM warns the Fog Agents of the entities having dependencies on the failed one
that this failure has occurred. To do so, the GM relies on the architectural description of
the application and sends a message to all Fog Agents of depending entities to let them
know of the failure. We will see how Fog Agents react to those messages later on in this
section. The GM then decides the steps for recovery depending on the type of entity that
has failed. In the case of a software element or a Fog Node, it is assumed that there are
enough resources to restart a software element or to find another Fog Node. If the failed
entity is an appliance, the GM checks in the set of available appliances if there is an ap-
pliance that can replace the failed one. An appliance can act as a replacement if it has a
similar behaviour to the failed one (checked using strong behavioural equivalence [19]).
If there is one functionally equivalent appliance, the state of the failed appliance is re-
stored on the replacement one. If this is not the case, the application cannot be restored
and continues its execution with less features in a degraded mode.

The GM awaits for a notification from the Fog Agent confirming that the restora-
tion has been completed (this notification is not necessary in degraded mode). Upon
reception of this message, the GM sends a message to all Fog Agents of the depend-
ing entities (that have been previously warned of the failure) to let them know that the
corresponding entities can resume their activity. The GM finally starts over and can han-
dle a second failure. Note that in the current version of the protocol, the GM handles
failures in sequence. In practice, the simultaneous occurrence of two failures hardly
ever happens. Moreover, the recovery time is very low, less than a second according to
the experiments we made with the protocol implementation. Figure 4 summarises the
behaviour of the Global Manager.

Fog agent. A Fog Agent (FA) is in charge of handling software element failures on
the local Fog Node and neighbouring appliances. When a failure occurs the FA first
notifies the GM and waits for its decision with respect to that failure. If the failure is
confirmed and restoration initiated, the FA retrieves the former state of the failed entity
from the Stable Storage. It restores the state of the entity and resumes the execution of
its functional behaviour from that state.

Verification of a Failure Management Protocol for Stateful IoT Applications 7

Fig. 4. Global Manager Behaviour

Another role of the FA is to propagate start / pause messages when a failure occurs
in one of the neighbouring entities. In that case, the FA can receive a message directly
from the GM or from one of the FAs of the neighbouring entities. Upon reception of this
message, the FA interrupts the functional behaviour of its entities and propagates the
message to all FAs of depending entities. In this way, all the entities that are impacted
by the failure pause their functional behaviour. When the failure has been handled and
the failed entity restored, each FA receives a message indicating it to start the paused
entities again. This decision is propagated in the same way that failure notifications are
propagated so that the application becomes fully functional again.

3 Model Checking

In this section, we first introduce the LNT specification for the failure notification and
recovery phases of the failure management protocol (phases (iii) and (iv) in Section 2.3).
Then, we present the properties of interest that must be preserved by the protocol. Fi-
nally, verification is described with some experimental results and a presentation of the
issues detected and corrected in the protocol.

3.1 Specification

We chose LNT [5] as specification language because it is expressive enough and ade-
quate for formally describing communication protocols as the failure management pro-
tocol presented beforehand in this paper. Moreover, it is equipped with CADP [12], a
rich toolbox for analysing LNT specifications using model checking techniques.

LNT is an extension of LOTOS [14], an ISO standardised process algebra, which
allows the definition of data types, functions, and processes. Table 1 provides an ex-
cerpt of the behavioural fragment of LNT syntax. B stands for a LNT term, A for an
action, E for a Boolean expression, x for a variable, T for a type, and P for a process
name. The syntax fragment presented in this table contains the termination construct
(stop) and actions (A). LNT processes are then built using several operators: sequential
composition (;), conditional statement (if), non-deterministic choice (select), parallel
composition (par) where the communication between the involved processes is carried

8 Umar Ozeer et al.

out by rendezvous on a list of synchronised actions, looping behaviours described us-
ing process calls or explicit operators (while), and assignment (:=) where the variable
should be defined beforehand (var). LNT is formally defined using operational seman-
tics based on Labelled Transition Systems.

B ::= stop | A (!E, ?x) | B1; B2

| if E then B1 else B2 end if | select B1[]...[]Bn end select
| par A1, ..., Am in B1||...||Bn end par | P[A1, ..., Am](E1, ..., En)
| while E loop B end loop | var x:T in x := E; B end var

Table 1. Excerpt of LNT Syntax (Behaviour Part)

The specification for the failure management protocol consists of three parts: data
types (∼100 lines), functions (∼600 lines), and processes (> 800 lines). A large part of
the specification depends on the input application model (involved applicative entities
and their dependencies), and is therefore automatically generated from a Python pro-
gram (∼1,500 lines) we implemented. For instance, the application used as example in
Section 2.1 (consisting of nine software elements / appliances) results in about 2,500
lines of LNT specification that are generated automatically from the Python program.

Data types are used to describe mainly the application model (Fog Nodes, software
elements, appliances, dependencies, behavioural models). As an example, an applica-
tion consists of a set of Fog Nodes, a set of appliances and a set of logical bindings.
Functions apply to data expressions and are necessary for several kinds of computa-
tion: extracting information from the application such as dependent entities, checking if
two appliances have equivalent behavioural models, checking whether the application
respects some specific invariants (absence of cycles, no disconnected entity, etc.), com-
puting the target state in case of recovery of an entity, etc. Processes are used to specify
the different managers of the failure management approach, namely the behaviour of
the Stable Storage, of the Global Manager and of the Fog Agents. Note that we also
use Fog Agents in this specification to model the functional part of the application, that
is, the operations executed and exchanged among applicative entities. Another process,
called simulator, is used to make the application execute functional operations and in-
ject failures to the system. This simulator process is parameterised by the length of the
execution (the max number of functional operations) and the max number of failures.

Figure 5 shows the four LNT modules used to specify the protocol where boxes cor-
respond to LNT modules (generated code with dashed boxes). When a module is inside
another one, it means that the external one includes the inner one. The DATATYPES
module defines data types and functions. The APPLI module describes the application
model. The GM module defines the behaviour of the Global Manager, which is indepen-
dent of the application, so written once and for all. The MAIN module defines all other
processes for the Stable Storage, Fog Agents and the main behaviour of the protocol.

For illustration purposes, we give in Figure 6 one instance of the simulator process,
which is an example of processes. One can see that this process can either make the
application evolved (top part) illustrating by the way why a part of the specification
depends on the application, or can inject different types of failures to the application.

Verification of a Failure Management Protocol for Stateful IoT Applications 9

Fig. 5. Overview of the Specification Structure

The process keeps track of the number of occurred operations (functional or failure)
in order to terminate (correctly) when the simulation has reached the max number of
execution steps. As illustrated in Figure 6, we use actions for modelling functional
operations (e.g., initiate, on, off) or for identifying the occurrence of specific events in
the prococol (e.g., failureSE, failureAppliance, failureFogNode).

1 p r o c e s s simulator [initiate : any , on : any , off : any , failureSE : any ,
failureAppliance : any , failureFogNode : any , finish : any]
(nbFuncOperationsMax : Nat , nbFailureMax : Nat) i s

2 var x , y : ID , sender : ID , receiver : ID , nbFuncOperations : Nat , senderTargetState :
ID , receiverTargetState : ID , nbFailure : Nat in

3 nbFuncOperations := nbFuncOperationsMax ; -- to count the size of the trace
4 nbFailure := 0 ; -- to count the number of effective failures
5 whi le (nbFuncOperations > 0) loop
6 s e l e c t -- functional behaviour
7 initiate (?sender of ID , ?receiver of ID , ?senderTargetState of ID ,

?receiverTargetState of ID)
8 []
9 on (?sender of ID , ?receiver of ID , ?senderTargetState of ID ,

?receiverTargetState of ID)
10 []
11 off (?sender of ID , ?receiver of ID , ?senderTargetState of ID ,

?receiverTargetState of ID)
12 [] -- failure injector (3 kinds of failures)
13 i f (nbFailure < nbFailureMax) then
14 s e l e c t
15 failureSE (?x of ID , ?y of ID)
16 []
17 failureAppliance (?x of ID , ?y of ID)
18 []
19 failureFogNode (?x of ID)
20 end s e l e c t ;
21 nbFailure := nbFailure + 1 -- updating the number of failures
22 end i f
23 end s e l e c t ;
24 nbFuncOperations := nbFuncOperations − 1 -- updating the number of operations
25 end loop ;
26 finish -- correct termination
27 end var
28 end p r o c e s s

Fig. 6. Example of Simulator Process

10 Umar Ozeer et al.

Finally, the main process is generated and represents all processes (simulator, Stable
Storage, Global Manager, Fog Agents for SEs and appliances) in parallel as well as the
way they interact together as depicted previously in Figure 3.

3.2 Properties

We identified 12 properties that must be respected by the protocol. These properties can
be organised in three different groups: (i) architectural invariants (prop. 1, 2, 3 below),
(ii) final objective of the protocol (prop. 4 below), and (iii) additional functional prop-
erties (prop. 5-12 below). For some of these properties, we also give their formulation
in the MCL language [18], the temporal logic used in CADP. MCL is an extension of
alternation-free µ-calculus with regular expressions, data-based constructs, and fairness
operators. Note that, since some of these properties depend on the functional actions
used in the application (prop. 6, 7, 9), they are generated automatically using our Python
program at the same time as the LNT specification. Note that we could verify additional
properties, but the following 12 properties are the most important ones.

(i) Architectural invariants:
1. There are no cycles in the application through dependencies.
2. There are no disconnected entities in the application.
3. Appliances have no dependencies on other appliances.

(ii) Final Objective:
4. The state of a failed SE (or appliance if there is an equivalent appliance avail-

able) after restoration is identical to its state before the failure.
(iii) Functional properties:

5. When a failure occurs, the failed entity eventually recovers. This is true for
appliance only if there is an equivalent one available.

library actl.mcl end library

[true* . ’{FAILURESE ?se:String ?state:String}’]
AU_A_A(true, not ’{FAILURESE !se !.*}’,

’{RESTORESECOMPLETED !se !.*}’, true)

This property is formalised making use of action CTL patterns [7].
6. When a SE / Fog Node is paused, it eventually starts again. This is not always

true for appliances because they cannot always be replaced.
7. When a failure occurs, every dependent SE/appliance is paused.
8. A sequence exists resulting in the application execution with no failure.
9. A SE/appliance cannot execute its functional behaviour when paused or failed.

10. The managers implementing the protocol (Global Manager, Stable Storage and
Fog Agents) can always terminate correctly.

mu X . (< true > true and [not FINISH] X)

11. The application is fully operational except when operating in degraded mode.

Verification of a Failure Management Protocol for Stateful IoT Applications 11

12. There is no sequence of two failures without a restore in between (illustrated
on SEs below).

(
[true* . ’ FAILURESE ?se:String ?state:String ’ .

not (’ RESTORESECOMPLETED !se !.* ’) .
’ FAILURESE !se !.* ’

] false
)

All the properties verified on the example introduced in Section 2.1 consists of
about 600 lines of MCL. Half of the code corresponds to property 9, since in that case
we generate one property for each possible functional operation for each entity in the
application. Property 9 consists of the conjunction of all these atomic properties.

3.3 Experiments

To verify the protocol, we use as input a set of applications. For each application, we
generate the part of the LNT specification depending on the application, and then we
call CADP exploration tools for generating an LTS describing all the possible execu-
tions of the protocol for that application. In this LTS, transitions are labelled with the
actions introduced previously in the specification, and we use these actions in the prop-
erties to check that the protocol works as expected.

The analysis of the protocol was run on a macOS Mojave machine with a 2.8 GHz
Intel Core i7 processor, 16GB of DDR3 RAM and 256GB PCIe-based flash storage.
In these experiments, we rely on a set of realistic smart home applications exhibiting
various architectures, and involving different entities (Fog Node, SE, appliance) and
logical dependencies. The two other parameters of these experiments are the length of
the execution, that is, the max number of functional operations executed by the applica-
tion, and the max number of failures. It is worth noting that since we use enumerative
techniques here, there is no need to experiment with large applications, long executions
or a high number of failures in order to find issues in the protocol. In contrast, most
problems are usually detected on small applications and scenarios.

Table 2 summarises some of the experiments we carried out during the verification
phase. The first column identifies the example. The next four columns characterise the
size of the application (number of Fog Nodes, of software elements, of appliances and of
dependencies). The following columns characterise the scenario in terms of execution
length and number of failures, the size of the raw LTS (number of states and transi-
tions), and the time in seconds for generating the LTS and for verifying all temporal
properties. Those properties are analysed on a minimised version of the LTS (reduced
wrt. strong bisimulation). It takes a few seconds to obtain that minimised version, which
is computed using CADP reduction tools. The minimised version is about the half in
average in terms of states and transitions compared to the raw version.

We now comment on the results presented in this table. Example 4 corresponds to
the application introduced in Figure 1. These results show that the larger the application
is (in terms of entities), the longer it takes to generate the corresponding LTS model (see

12 Umar Ozeer et al.

Ident
Appli. model Simul. LTS (raw) Time (sec.)

|FG| |SE| |APP| |DEP| |E| |F| |S| |T| Gen. Verif.
1a 3 3 2 4 10 1 56,416 193,025 11 179
1b 3 3 2 4 10 2 156,432 517,758 12 535
1c 3 3 2 4 10 3 236,871 713,535 12 783
1d 3 3 2 4 10 4 281,549 756,433 12 1,285
1e 3 3 2 4 10 5 296,946 716,387 12 4,469

2a 3 4 3 7 5 1 3,815 13,045 15 64
2b 3 4 3 7 5 2 16,081 52,582 16 163
2c 3 4 3 7 7 2 52,207 198,247 16 338
2d 3 4 3 7 7 3 105,550 358,924 17 397
2e 3 4 3 7 10 3 489,778 2,096,701 25 1,012

3a 4 5 3 11 5 2 29,779 112,377 102 365
3b 4 5 3 11 10 3 314,349 2,077,252 109 992

4 3 5 4 8 5 2 22,709 58,177 2,403 111

5 5 6 4 11 5 2 33,444 121,254 327 371

6 5 8 4 15 5 2 53,973 212,742 9,392 16,764
Table 2. Experimental Results

row 6 for example). Second, the main factor impacting the size of the LTS is the simu-
lation parameters. Since we rely on enumerative techniques, one more functional action
or one more failure generates many more executions since this action/failure may occur
at any moment during the application execution and this results in additional interleav-
ings of actions (see rows 1a-e and 2a-e in the table). The time for model checking all
properties is much longer than the generation time for applications with up to 8 entities,
but becomes smaller for larger applications (see rows 4 and 6). More generally, the ver-
ification time linearly increases with the size of the LTS whereas the generation time
tends to explode when the application size increases. We use rather small applications
for verification purposes (up to 12 entities for example 6 in the table) because this is not
necessary to use large applications for finding issues, and contrarily, most problems are
usually found on small yet pathological applications.

3.4 Detected Issues

The specification and verification helped to refine our understanding of the finer points
of the procotol. In this section, we focus on three points of interest, which were identi-
fied or confirmed using model checking.

First, it is worth reminding that, although the protocol is always able to work and
terminate correctly, this is not the case of the application. Indeed, in case of appliance
failure, if there is no functionally equivalent appliance available, the application cannot
be restored and the application keeps working in degraded mode. This was confirmed
using verification techniques. During our experiments, when there were no additional
equivalent appliance for replacing failed ones, the first part of property 11 in Section 3.2

Verification of a Failure Management Protocol for Stateful IoT Applications 13

"the application is fully operational" was violated because, in that case, an appliance
has failed and cannot be replaced.

Another problem comes from the propagation of notifications in case of failure in
an application with multiple dependencies. Suppose there is an application with four
entities and dependencies among them looking like a diamond (for instance e2 depends
on e1, e3 depends on e1 and e4 depends on both e2 and e3). If e1 fails, the Fog Agents of
e2 and e3 are notified of that failure and send a notification to all Fog Agents depending
on them. In that case, both e2 and e3 Fog Agents actually send a notification to e4 Fog
Agent, so the Fog Agent of e4 is supposed to receive two notifications in that case. If
those messages are not consumed, this can induce a deadlock (correct termination of the
protocol is not possible, prop. 10) because one of the Fog Agents of e2 and e3 is not able
to propagate its notification, resulting in an erroneous situation in the protocol. This can
be corrected by either receiving as many notifications as supposed with respect to the
failed entity and the structure of the application, or by accepting the first notification
message and discarding the forthcoming similar ones.

Another interesting issue concerns multiple simultaneous failures. The protocol was
originally supposed to support such failures, but the design of the protocol was more
complicated and several properties were violated. This is due to the fact than when
trying to handle several failures at the same time, some contradictory messages can be
exchanged among Fog Agents (e.g., one message saying to restart an entity whereas an-
other failure has occurred so a contradictory message asking to pause is also received).
As a consequence, in the first version of the protocol, we decided to treat failures one
after the other, which is reasonable since the occurrence of multiple failures is scarce
and the implementation of the failure management protocol on a realistic testbed shows
that the time taken to recover from failures is less than one second.

To conclude, it is worth saying that all properties were satified for all the examples
of our dataset of applications used for verification purposes. In addition, the existing
implementation of this industrial protocol developed by Orange Labs was modified
in order to integrate all the feedback and issues discovered during the analysis of the
protocol.

4 Related Work

In this section, we first compare the protocol presented in this paper with respect to sim-
ilar protocols for failure management proposed in cloud computing or Fog computing
/ IoT. In a second step, we have a specific focus on similar protocols, which also make
use of formal methods for verification purposes.

Failure management. [11] proposes a self-healing approach to handle exceptions in
service-based processes and to repair the faulty activities with a model-based approach.
More precisely, a set of repair actions is defined in the process model, and repairability
of the process is assessed by analysing the process structure and the available repair
actions. When an exception arises during execution, repair plans are generated by tak-
ing into account constraints coming from the process structure, dependencies among
data, and available repair actions. In [4], the authors present fault-aware management

14 Umar Ozeer et al.

protocols, which permit to model the management behaviour of composite cloud appli-
cations, by taking into account the possible occurrence of faults suddenly occurring and
misbehaving components. This approach also proposes to generate plans for changing
the actual configuration of an application for, e.g., recovering an application that is stuck
because of a faulted node. A few recent papers have focused on fault tolerance of IoT ap-
plications. [23] provides a fault tolerant approach through virtual service composition.
Single service and single device failures are supported by using IoT devices of differ-
ent modalities as fault tolerant backups for each other. [22] discusses the challenges of
fault tolerance in IoT and proposes some potential solutions to consider. It suggests that
natural redundancy of functionality across devices within the home, as well as usage
scenarios, should be exploited to provide fault tolerance and also discusses the issues
of this approach, like incorrect context sensing and actuating of devices. [1] proposes a
fault tolerant platform for smart home applications. It provides fault tolerant delivery of
sensor events and actuation commands in the presence of link loss and network parti-
tions. [13] proposes an IoT-based architecture supporting fault tolerance for healthcare
environment. The approach focuses on network fault tolerance which is achieved by
backup routing between nodes and advanced service mechanisms to maintain connec-
tivity in case of failing connections. Compared to these approaches, the main difference
is that our approach focuses on stateful applications and allows the end-to-end manage-
ment of a failure from detection to recovery of a consistent state of the application. The
proposed protocol also takes into account the specificities of the environment such as
heterogeneity and dynamicity.

Protocol verification. In [3,2], the authors present a reconfiguration protocol applying
changes to a set of connected components for transforming a current assembly to a tar-
get one given as input. Reconfiguration steps aim at (dis)connecting ports and changing
component states (stopped or started). This protocol supports failures and preserves a
number of architectural invariants. This was proved using the Coq theorem prover. We
preferred model checking techniques here, because they are convenient at design time
in order to detect possible issues. Theorem proving is interesting when the developers
have already at their disposal a stable version of a protocol, and they ultimately want
to prove its correctness. In [21,9,10], the authors present a self-deployment protocol
that was designed to automatically configure cloud applications consisting of a set of
software elements to be deployed on different virtual machines. This protocol works
in a decentralized way, i.e., there is no need for a centralized server. It also starts the
software elements in a certain order, respecting important architectural invariants. This
protocol supports virtual machine and network failures, and always succeeds in deploy-
ing an application when faced with a finite number of failures. A formal specification
of the protocol allowed the successful verification of important properties to be pre-
served. [16,15] propose verification of IoT applications before deployment using model
checking techniques. [6] applies infinite-state model checking to formally verify IoT
protocols such as the Pub/Sub consistency protocol adopted by the REDIS distributed
file system. The verification method is based on a combination of SMT solvers and
overapproximations as those implemented in the Cubicle verification tool. Since these
protocols involve infinite data structures, the authors chose to use analysis techniques
capable of reasoning on infinite state spaces.

Verification of a Failure Management Protocol for Stateful IoT Applications 15

5 Concluding Remarks

In this paper, we focus on a failure management protocol, which allows the supervi-
sion of IoT applications and the management of failures. This protocol targets stateful
IoT applications in the sense that those applications handle and store data during their
execution. When a failure occurs, the protocol detects the failure and restores a con-
sistent pre-failure state of the application to make it functional again. Since designing
such distributed protocol is error-prone, we decided to rely on formal specification tech-
niques and verification tools in order to ensure that the protocol respects some impor-
tant properties. We used a process algebraic specification language and model checking
techniques for verifying these properties. These analysis steps helped to detect several
issues and clarify some subtle parts of the protocol. This information was used to correct
and revise the implementation of the protocol developed by Orange Labs.

As for future work, the first perspective is to extend the protocol specification to
support asynchronous communication (communication via message buffers). Another
perspective is to revise the protocol in order to support simultaneous failures. An idea
in that direction is to distribute the behaviour of the Global Manager locally on Fog
Agents in order to have a fully decentralised version of the protocol, which will make
it more amenable to support multiple failures.

References

1. M. S. Ardekani, R. P. Singh, N. Agrawal, D. B. Terry, and R. O. Suminto. Rivulet: A Fault-
tolerant Platform for Smart-home Applications. In Proc. of Middleware’17, pages 41–54.
ACM, 2017.

2. F. Boyer, O. Gruber, and D. Pous. Robust Reconfigurations of Component Assemblies. In
Proc. of ICSE’13, pages 13–22. IEEE Press, 2013.

3. F. Boyer, O. Gruber, and G. Salaün. Specifying and Verifying the Synergy Reconfiguration
Protocol with LOTOS NT and CADP. In Proc. of FM’11, volume 6664 of LNCS, pages
103–117. Springer-Verlag, 2011.

4. A. Brogi, A. Canciani, and J. Soldani. Fault-Aware Management Protocols for Multi-
Component Applications. Journal of Systems and Software, 139:189–210, 2018.

5. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, C. McKinty, V. Powazny,
W. Serwe, and G. Smeding. Reference Manual of the LNT to LOTOS Translator, Version
6.7. Inria, 2018.

6. G. Delzanno. Formal Verification of Internet of Things Protocols. In Proc. of FRIDA’18,
2018.

7. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in Property Specifications for Finite-
State Verification. In Proc. of ICSE’99, pages 411–420. ACM, 1999.

8. E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408, 2002.

9. X. Etchevers, G. Salaün, F. Boyer, T. Coupaye, and N. D. Palma. Reliable Self-deployment
of Cloud Applications. In Proc. of SAC’14, pages 1331–1338. ACM, 2014.

10. X. Etchevers, G. Salaün, F. Boyer, T. Coupaye, and N. D. Palma. Reliable Self-deployment
of Distributed Cloud Applications. Softw., Pract. Exper., 47(1):3–20, 2017.

11. G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni. Exception Handling for Repair
in Service-Based Processes. IEEE Trans. Software Eng., 36(2):198–215, 2010.

16 Umar Ozeer et al.

12. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A Toolbox for the Construc-
tion and Analysis of Distributed Processes. STTT, 2(15):89–107, 2013.

13. T. N. Gia, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and H. Tenhunen. Fault Tolerant and
Scalable IoT-Based Architecture for Health Monitoring. In Proc. of SAS’15. IEEE, 2015.

14. ISO. LOTOS — A Formal Description Technique Based on the Temporal Ordering of Ob-
servational Behaviour. Technical Report 8807, ISO, 1989.

15. A. Krishna, M. L. Pallec, R. Mateescu, L. Noirie, and G. Salaün. IoT Composer: Composi-
tion and Deployment of IoT Applications. In Proc. of ICSE’19, pages 19–22. IEEE / ACM,
2019.

16. A. Krishna, M. L. Pallec, R. Mateescu, L. Noirie, and G. Salaün. Rigorous Design and
Deployment of IoT Applications. In Proc. of FormaliSE’19, pages 21–30, 2019.

17. B. Lampson and H. E. Sturgis. Crash Recovery in a Distributed Data Storage System. Tech-
nical report, Xerox Palo Alto Research Center, 1979.

18. R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-Passing
Systems. In Proc. of FM’08, volume 5014 of LNCS, pages 148–164. Springer, 2008.

19. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
20. U. Ozeer, X. Etchevers, L. Letondeur, F.-G. Ottogalli, G. Salaün, and J.-M. Vincent. Re-

silience of Stateful IoT Applications in a Dynamic Fog Environment. In Proc. of MobiQui-
tous’18, pages 332–341. ACM, 2018.

21. G. Salaün, X. Etchevers, N. D. Palma, F. Boyer, and T. Coupaye. Verification of a Self-
configuration Protocol for Distributed Applications in the Cloud. In Assurances for Self-
Adaptive Systems - Principles, Models, and Techniques, volume 7740 of LNCS, pages 60–79.
Springer, 2013.

22. D. Terry. Toward a New Approach to IoT Fault Tolerance. Computer, 49(8):80–83, 2016.
23. S. Zhou, K.-J. Lin, J. Na, C.-C. Chuang, and C.-S. Shih. Supporting Service Adaptation in

Fault Tolerant Internet of Things. In Proc. of SOCA’15, pages 65–72. IEEE, 2015.

