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Abstract—Slicing has been introduced in 5G networks in order
to deliver the higher degree of flexility and scalability required by
future services. Slice tenants such as virtual wireless operators,
service providers or smart-city services will be able to book a
share of the infrastructure, possibly including storage, computing
capacity and link bandwidth. However, 5G slicing is attractive
for infrastructure providers as long as they are able to generate
revenues, while at once satisfying the tenants’ competing and
variable demands and coping with resources availability.

This work proposes a flexible mechanism based on a multi-
bidding scheme for 5G slice allocation. It is able to attain
desirable fairness and efficiency figures in order to serve slice
tenants and associated mobile users. Built on the notion of
normalised Nash equilibrium, it is also provably overbooking-
free even though the players’ bids are oblivious to infrastructure
resources constraints. Also, it is compatible with standard radio
access schedulers used in modern mobile networks.

Finally, a practical algorithm is proposed to drive the system
to the socially-optimal operating point via an online procedure
rooted on a primal-dual distributed algorithm. Numerical simula-
tions confirm the viability of the mechanism in terms of efficiency
and fairness.

Index Terms—Game theory, Kelly mechanism, normalised
equilibrium, primal-dual algorithms, wireless Network slicing,
ressource allocation.

I. INTRODUCTION

In the emerging 5G technology, slicing allows mobile
network operators (MNO) to offer differentiated services to
their customers using shared resource pools. A slice, in this
context, is a share of the mobile network operator infras-
tructure obtained via Software-Defined Networking (SDN)
and Network Function Virtualization (NFV) technologies. A
slice forms a logical network on top of the physical one
[1], [2]. Evolving from previous mobile technology, the 5G
core network architecture integrates data-centers into their
architectures to support network function virtualisation and
computation offloading. Thus, a slice will typically encompass
different resource types, such as radio access capacity, edge
storage memory and computing power available within the
MNO infrastructure [1].

Slicing techniques entered the standardisation phase re-
cently [3] so that specifications 5G system’s slicing archi-
tecture and requirements are now available. Some technical
aspects such as slice insulation and fair slice allocation are
still is a key challenge to upgrade LTE technology towards 5G,
with large effort by the research community to overcome such
technical issues [4], [5], [6], [7], [8]. Using slice insulation,

virtual private networks will be shipped on top of the existing
mobile network infrastructure with dedicated customer sup-
port. Thus, new emerging service providers will demand a
slice to offer dedicated services to their customers on top of the
MNO?’s infrastructure, e.g., for real time gaming, multimedia
applications, social networks, etc.

Ultimately, slicing will deeply change the business model
in the mobile communication industry [9], [10] and a crucial
aspect is how to jointly price and share resources assigned
simultaneously across slices. Mechanisms to price and share
resources have appeared in literature [11], [12], [13], [14],
assuming customers would demand several resources at once
using vectors of bids and so specify their demands.

However, compared to standard settings, e.g., in cloud
computing [11], [12], slicing in 5G networks has key dif-
ferences. First, in cloud computing the pool of resources is
often overprovisioned, whereas in 5G scarce radio resources
are critical for QoE and requires careful resources allocation.
Second, mobile networks are traditionally designed for fair
resource sharing, since near far effects and fading induce very
different conditions across a deployment in the same cell and
across cells. Third, load conditions across a 5G deployment
may be at once dynamic and heterogeneous. Finally, joint
slice allocation and pricing schemes need to adhere to Service
Level Agreement (SLA), which are de facto mandatory in
the telecommunication industry [15]. This heavily discourages
overbooking as a viable option for MNOs willing to increase
their revenues by adopting new slicing technology.

In this paper, we propose a new theoretical framework for
pricing slices of resources, based on the Kelly mechanism
and the concept of the normalized Nash equilibrium. The
basic Kelly mechanism is a bidding mechanism where slice
tenants submit an individual bid to the resource owner to
obtain an amount of resource. They receive a fraction of
the whole resource proportionally to the received bids, and
they pay depending on how much they bid. Thus, tenants
bid strategically to obtain a share of a single resources [16],
[17], [18]. We shall consider a multi-bid version of the Kelly
mechanism, where the MNO exposes to tenants a vector of
prices per resource. Multi-bid auctions are a main line of re-
search in cloud computing, where clients compete to purchase
bundles of cloud resources [11], [12]. The case for using the
Kelly mechanism in 5G networks comes from the fact that
it offers high flexibility: it applies to bundled resources, i.e.,
pre-defined blocks of computing and communication resources



TABLE I
MAIN NOTATIONS USED THROUGHOUT THE PAPER
Symbol Meaning

c:={1,...,C} set of base stations
S:={1,...,5} set of slices (tenants)
NS number of active users on slice s at base station c
v unitary price for bids of slice s at base station ¢
Be total available bandwidth at base station ¢
g bid of slice s for bandwidth at base station c
x® = (z3...23%) vector of bids of player s across base stations
xc® =355 | bid of all other players but s on base station c
b resource allocated to slice s at base station ¢
Bn step size for the learning algorithm

in the form of virtual machines or containers. But it also
applies well to elastic radio resources, where it is customary
to use utility-based schedulers such as the Proportional Fair
Scheduler (PFS) [19].

It is important to notice that, while bidding serves very well
the purpose to generate resources demands at the tenants’ side,
from the MNO'’s point of view, overbooking may represent the
major risk when using a competitive bidding mechanism. In
fact, the aggregate behaviour of tenants in general will not
comply to the MNO’s system capacity constraints.

Main contribution. We part from standard propositions of
joint pricing and resources allocation in mobile networks in lit-
erature. We provide an explicit theoretical connection between
price definition, bidding mechanism and coupled constraints
across slices. Such fundamental problem can be solved by
rooting the pricing scheme in the theory of normalised Nash
equilibria, according to the seminal work of Rosen [20]. We
solve the problem by cascading two coupled games, namely,
the Shadow Pricing Game and the Allocation Game. In a
fashion which echoes the original ideas of Kelly on shadow
prices for multicomodity flow optimisation [21], the Shadow
Pricing Game let the MNO settle the price vector via a
uniquely determined normalised Nash equilibrium. The result-
ing price vector induces a Nash equilibrium in the Allocation
Game respecting the resources constraint and thus provably
overbooking free. Finally, we show that the price vector can
be designed to attain the social optimum for the game. In order
to render the mechanism practically viable, we provide an
online learning procedure based on a primal-dual distributed
algorithm able to drive the system to the target socially optimal
equilibrium and requiring at each step to disclose solely the
price and the bid vectors generated at each step.

II. OPTIMISATION FRAMEWORK

Let a single MNO having a set of base stations C shared
by a set S of tenants that need physical network resources in
order to serve their users. This can be the case of an applica-
tion provider serving several customers in mobility. The 15G
paradigm envisions for MNO resources to be heterogeneous
and include not only standard radio resources such as PRBs,
but also storage, CPU and backhauling. The MNO assigns
to each tenant a slice of resources, and we assume that each
tenant proposes a service covered by all base stations in C.
Each tenant’s users generate demands, and such demands will

inevitably depend on their specific location, thus inducing
different slice-dependent demand at each base station.

In this section, we confine the discussion to a RAN ver-
sion of the the slicing problem, where the MNO schedules
wireless resources, namely downlink PRBs among multiple
tenants. While the RAN resources allocation problem is a
known and well studied one, heterogeneity of traffic demands
across tenants and cells captures the main features of slice
resources allocation, including fairness issues. The case of
multi-resources allocation, spanning other type of infrastruc-
ture resources beyond PRBs is an immediate extension of the
scheme presented for RAN resources.

Let each slice tenant s be associated with users presence
vector N® = (N7, N5..,N&) where C is the total number
of cells and N/ is the number of active users on slice s at
base station ¢ € C. Here a base station is modelled as a finite
resource shared by its associated users. We observe that the
number of active users associated to the same base station vary
across slices, and vary across base stations also for same slice.

First let us consider some fixed channel condition at all
users and at all slices, and let r, be the rate attained by a
tagged user in slice s at cell c¢. The slice benefit function

NZ
VEE) =) folra), (1)
u=1

where b7 is the amount of resources (bandwidth) allocated to
slice s at base station ¢ and under a-fair scheduling it holds

(Tu)l—ozs
(1—ay)

log(ry,)

if p # 1

ifa, =1

fs (ru) = (2)

The meaning of (2) is that, when slice ¢ has received capacity
bZ, user u of slice s associated to base station c receives a rate
which is the a-fair share attained with his peer users on the
same slice. The average rate r,, of tagged user u is determined
by the scheduling policy and by all the specific techniques used
at physical layer and MAC layer, such as modulation, coding,
scheduling, etc.

In the case when the channel per user varies over time, let
b3 log(1 + %) the instantaneous rate when tenant’s user u
is scheduled, at transmission power p,,, noise power Ny and
under channel state h,, where #,, is the finite set of possible
channel states of user u. Vector h = (hy, ..., hys) is thus the
channel state vector for all users in cell s. Users of slice s are
served under some scheduling policy II(:|-) at cell ¢, which
depends on the past and present users’ channel state; at each
time-slot, the slice scheduler then allocates the channel to a
tagged user u in cell ¢ with probability TI(u|h). The average
rate achieved by user u under policy II is

Ty = gu(bz7 H(u|h)) = Ep bz log(l + hu%)n(u|h) 3)
where and the expectation is taken with respect to the chan-
nel distribution. We observe that, irrespective of the actual
scheduling policy, the average rate for a tagged user u is
linear in the slice bandwidth b7 at cell c. Once we fixed
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Fig. 1. Resource Slicing in 5G Networks: slices are assigned radio resources
on a per-cell basis.

k¥ = (Ep [log(1 + hyAo)TI(ulh)]), the total benefit function
for slice s writes as

Ne
V=) f (kb
u=1

which is again an increasing concave function of the allocated
bandwidth per slice.

The classical optimisation framework for the MNO pre-
scribes to provide efficient yet fair allocation for all users
belonging to the same slice according to slices’ load. Since
scheduling is performed per cell, however, it is necessary for
the resources allocation to be fair — within the same slice —
also across users associated to different base stations. Such a
trade-off between efficiency and fairness can be captured by
formulating the utility of a given slice as:

VE(be) = 3V )) @

For the sake of discussion, we shall assume that the number
of users is fixed. Applied at the cell level, utility (4), is
able to express the customary trade-off between efficiency
and fairness among users associated to a tagged slice service.
However, it also allows to achieve such a trade-off horizontally,
that is across cells. For a = 1, for instance, the customary log-
based proportional-fair utility will severely penalise serving
high throughput in a lightly loaded cell while starving slice
users in another hot-spot cell.

The main objective of the MNO is to maximise the total
utility of slices, leading to the following 5G resource allocation
problem

_ . s /18
P maximize Z:V (b®%)

subject to b2 >0
> b <B., VeecC

where B, is the total bandwidth available at base station c.
This optimisation problem can be solved by well-known

convex optimisation methods. However, such a centralised

resource allocation scheme, while addressing properly the
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Fig. 2. The MNO uses the Shadow Pricing Game (top) to generate the price
vector, whereas the result of the Allocation Game (bottom) decides the actual
resource slicing based on the tenants bids.

MNO constraints on the resources allocation, lacks of scal-
ability, and may lead to excessive communication overhead
when the number of slices increases. Furthermore, it is known
that such solutions are rarely viable when under dynamic
network conditions. Thus, while (P) still provides reference
performance figure for our slicing problem, we shall focus
on a decentralised scheme where the resources allocation
decision is mediated by a pricing scheme pivoting on the Kelly
mechanism.

III. KELLY MECHANISM BASED RESOURCE ALLOCATION

In this section, we design a bidding scheme solving problem
(P). The curse of bidding-based schemes is that typically
they cannot rule out the possibility of resources overbooking.
Indeed, it is unrealistic to assume that, under a competitive
pricing scheme, tenants would jointly account for the per-cell
coupled constraint )~ b3 < B., appearing in (P).

The scheme we propose, conversely, is provably
overbooking-free even though the slice bids are oblivious to
infrastructure resources constraints. Our design is based on
two coupled games, entangled by the same Nash equilibrium:
first, a virtual game, namely the Shadow Pricing Game, which
generates the vector of resource prices, and for which there
exist a unique normalised Nash equilibrium, and second the
Allocation Game where — based on the so-determined prices
— the MNO rules a multi- dimensional Kelly mechanism
where each tenant acquires a slice of resource in each cell
c € C at a price.

Overall, the proposed mechanism can be seen as the cascade
of the following two items (see Fig. 2).

o The MNO settles the price obtained by Shadow Game
such in a way to respect the coupled constrains of
resources;

e The prices are announced to tenants in the Allocation
game to obtain the Nash equilibrium that respects the
resource constraints on resources.

o A specific price will be designed by the MNO to attain
the social optimum for the game.

We observe that the proposed scheme requires indeed full
information at the MNO side on the tenants’ valuations. Thus,



by itself, it does not represent a feasible scheme. We shall
relax such demanding request with a learning procedure able
to drive the system to the Nash equilibrium resulting from the
aforementioned cascade.

A. Shadow Pricing Game

The Shadow Pricing Game is a virtual game where the
tenants compete for resource access and do not share infor-
mation on the amount of resource they ask for. The result of
this virtual game which matters to the MNO is the resulting
price vector. In fact, the seminal work of Rosen [20] ensures
the existence of a unique equilibrium vector of this game in
the form of a normalised Nash equilibrium, a concept which
is pivotal in this paper. Such equilibrium is given by the
concatenation of a bid vector and a vector of multipliers. The
latter are actually the price vector we are interested in.

This price definition has indeed an algorithmic flavour,
reflected in the scheme in Fig. 2: before posting the unit
prices for resources, the MNO determines the price vector as
the solution of the virtual game. In other words, the Shadow
Pricing Game is a virtual game which solves for the optimal
price as the signal by which the MNO can drive the Allocation
Game to a feasible equilibrium with respect to the capacity
constraints in (P).

In the virtual game, each tenant tries to maximise her benefit
while obeying the coupled constraints

> b < B, Veed. (5)
sES
Thus, the decision problem for a tagged tenant s writes as
s s AVAl bs7b—s
Q malzglg(l)lze ( )

subject to Z b; < B., VYceC.
seS

The system {Q1,...,Qs} represents the formalisation of the
Shadow Pricing Game: the notion of an equilibrium for such
a continuous game requires to account for the presence of
constraints, that is

Definition 1. A strategy b* = (b'", ... 7bs*) is called Nash
Equilibrium for game {Q1,...,Qs} if

VE(B*,b™7) > VE(b®, b ™) (©)
forall s €S, b5 >0and ) sb: < B.,VceC.

C

Here, with standard notation, (b, b_s*) refers to the multi-
strategy vector whose s-th element equals b® and all other
strategy vectors equal b=s",

We should observe that in game with coupled constraints,
the equilibrium is, in general, non unique. Actually, by in-
spection we note that the Shadow Pricing Game has an
infinite number of equilibria. Conversely, it is the normalized
Nash equilibrium that, under specific assumptions, results to
be unique. Its definition requires to introduce some further
notation.

Because of concavity in players’ own strategy [20], a
multistrategy vector b* is a Nash Equilibrium for the Shadow
Pricing Game if and only if it satisfies simultaneously the

Karush—Kuhn-Tucker (KKT) conditions, which are:
Vee(C,VseS

ovE(b*) o s
Tl)g—Ac+§c_0 (7a)
S (Z by — Bc> =0 (7b)
s'eS
A2 >0, 6 >0. (7e)

Definition 2. A r-normalized equilibrium point is such that
there exists A, > 0 associated to each base station so that for
all customers N5 = \./r%, for a suitable vector of nonnegative
vector of coefficients r.

The important property of normalised Nash equilibria we
are leveraging in the rest of the discussion is in the following

Theorem 1 ([20], Thm. 3). There exists a unique r-normalized
equilibrium point for the Shadow Pricing Game for every
specified r > 0

While the Pricing Game in practice may not be practically
viable (indeed it is not reasonable to expect players to respect
the aggregate constraint in calculating their best response), the
development in this section has showed how to map the Pricing
Game onto the Allocation Game

B. Allocation Game

Once the MNO obtained the vector prices, the actual game
is an auction-based bandwidth allocation mechanism, in which
each slice tenant s submits bid vector z° = («§,..., %), one
bid for each one of the C base stations. Bid x? represents the
amount of bandwidth demanded for slice s at base station c.

The MNO collects all bids for each base station and assigns
to each slice s, a fraction of each base station corresponding
to the ratio he attained given the bids received for that base
station, namely the quantity

b = Bcﬁ7 (®)
s'eS e
where B, represents the total bandwidth available at base sta-
tion c. As the valuation of each slice is function of bandwidth
received by it, from (1) we write the valuation of slice s as

\ACOED % (Z:”B> . ©)

ceC seste

For each slice s, V* is an increasing function in b: without
any payment slice tenants will always bid as much as possible
in order to increase their own benefit. However, after submit-
ting the bids, each customer pays to the MNO the cumulative
sum of prices for the bids she made. More precisely, let v¢
be the unit cost for bidding for one resource unit (e.g., one
PRB) at base station ¢ for slice s. Then, each slice tenant s
pays yix; for the resources obtained at base station c.

In turn, the utility of a MNO customer is defined as the
difference between the overall benefit obtained by using the



portion of bandwidth at different base station and the total cost
to pay for using them:

—S8 S (Ei S ,..8
Us(x,x %) = Y Vi (HBC>—%:¢C. (10)
ceC s’eS e

The tenants are rational players and bid for PRBs so as to
optimise their utility (10). Thus, the decision problem of each
slice s € S is to find the optimal z° optimizing its own utility:

P : maximize U®(x®, x7°, )
xS
subject to  z > 0, Ve, Vs.

Then, the slicing allocation problem can be interpreted as a
competitive game where players, i.e. the customers compete to
acquire bandwidth for their own slice in order to increase their
utility. The standard notation {P; ... Pg} describes formally
the bandwidth allocation game.

For this game we can consider the standard notion of a Nash
equilibrium, where we do not have coupled constraints, that is
a multistrategy z* = (2'”,...,2°") where for all players s €
S, Ug(x**,27°7) > Uy(2®,27°") with 2° € X,. In particular,
it is known that in the single resource case

Theorem 2 ([16]). The Kelly mechanism has a unique Nash
equilibrium.

Clearly, the uniqueness result extends immediately to the
Allocation Game since the resources are orthogonal'.

The next result is the central result of this paper, since
it provides the connection between the equilibria of the two
games:

Theorem 3. Every r-normalised Nash equilibrium of the
Shadow Pricing Game with shadow prices A, is a Nash
equilibrium for the corresponding Allocation Game with v; =

b % \s
iR AL

Proof. Let us consider a normalised Nash equilibrium b of the
Shadow Pricing Game. From (7c), we have that necessarily

Vse S, Veel, mé(b):)\ﬁ—fs

obg <
If we replace \J = ﬁz vs and 1l = bfiz & for all c € C we
get ‘ ‘
oVs(T) b ® _ U, s m
0xs B oxg Ve =i
Thus
Uez) <0ifzi=0
() =0ifas>0

Thus 7 satisfies the KKT conditions of the optimization
problem associated to the Allocation Game. Since function U;
is concave with respect to variable x; and the constraints are
linear, they are also sufficient and thus 7 is a Nash equilibrium
of the Allocation Game. O

'The important case when tenants have a total bidding budget is left as part
of future works.

IV. SocIAL OPTIMAL PRICING

In this section we will that the proposed mechanism is able
to attain the social optimum. This mechanism is based on
a simple pricing can force slices to choose an equilibrium
(respecting the resources coupled constraint) that coincide with
the optimal solution of (P). Using the cascade of both the
Shadow Pricing game and the Allocation game, the pricing
and allocation are performed in a distributed manner with no
need to exchange per-bandwidth allocation information.

Let us recall the original problem introduced in Sec. (III),
where the MNO’s goal is to solve problem (P). Concavity
of the objective function ensures that there exists a unique
allocation b* which maximizes the objective function. Let now
consider the Lagrangian associated to problem (P): it writes
L(b,pv) = 3, (V(6%) = X, e (b5 — Bo) — 30, v3b2).

Since the problem is feasible and constraints are affine, KKT
conditions for (P) are necessary and sufficient for optimality
of a solution (b*, u*, v*) such that

V(™) o us
267 — e+, =0 (11a)
T (Z by —Bc> =0 (11b)
s'eS
A" >0, 07, >0, (11c)

Where p = (p1, ..., pe) are the C' Lagrange multipliers for
the cells capacity constraints.

Now, if we consider the r-normalized Nash equilibrium for
shadow pricing game with r{ = 1, for Vs € S and Vc € C,
we obtain Al = .- = A\J = ), for all ¢ € C in the KKT
conditions (7c). For u. = A, the conditions (7c) and (11)
are equivalent and as we have already proved uniqueness of
r-normalized Nash equilibrium in Thm. 1, it holds p* = \*.

But then, from Thm. 3 we obtain also that the relation
between the Allocation Game and the Shadow Pricing game

s be”
’YC7BC

settles the Allocation Game on the social optimum.

A (12)

Theorem 4. The normalised Nash equilibrium attained for
ri=1141=1,..., N by the Shadow Pricing Game attains the
social optimum for problem (P), and so does the Allocation
Game under prices 73 as in (12).

V. LEARNING AND SYSTEM STABILITY

We have already seen in the previous section that the
proposed mechanism has a unique equilibrium for any price
vector decided by the infrastructure owner. However, while the
MNO can use the price vector as a signal to drive the system
to a socially optimum operating point, the game formulation
of the mechanism has scarce practical relevance. In fact, since
the tenants’ valuation of resources is typically unknown to
the MNO. To this respect, we propose a learning algorithm to
converge iteratively to the target equilibrium in a distributed
fashion. In the proposed solution, the only signal exchanged
between the MNO and the tenants at each step are the bid
vector and the price vector.



We use the dual averaging or mirror—descent method dis-
cussed in [22], [23]. However, those works only considered
orthogonal constraints. Thus, we have adapted the original
algorithm to tackle the coupled constrained setting. The idea
behind the mirror descent is each player estimates his gradient
and takes steps along the gradient in dual space (where the
gradient lives). The aggregated of the i-th player’s gradient
steps is updated according to equation

ys(n+1) = [ys(n) + Bn Vu, Ui(zs(n),z—s5(n),v(n))] (A1)

In the above equation ys is an auxiliary variable which
accumulates the discounted gradient and «,, is a standard step
size, where Y a, = +oo and Y a2 < +oo. Every player
s uses his own updated output value ys to take next action.
The technique takes the name mirror—descent because each
player s “mirrors back™ the variable y, to his action space X
according to the mapping

zs(n + 1) = argmax {(ys(n), xs(n)) — hs(zs(n))}

T €Xs

(A2)

Here, hs(x) is regularizer, according to definition 3.1 in [22],
or rather a penalty function over the feasible action set Xj.
Penalty hs(x) permits convergence within the interior of the
domain set, that is, the feasible multistrategy set. In our case
we use entropic regularization, also known as Gibbs entropy
function; it takes the form

hs(xs)zz xy log(z$) + (1 - Z x§> log (1 - Zwﬁ)

ceC meM ceC

over domain & = {x ERY: Zil zg < 1}. The advantage

of this formulation 1s that it can be easily scaled to original
constraints. Furthermore, by applying KKT conditions to max-
imization problem (A2), after some calculations it produces
the exponential mapping for all s € S and ¢ € C:

pr(s 1) — BeepluEn)

1+ exp(yg(n)))
The one above is similar to well-know Logit map, where
player gives the weights to different resources depending on
exponential of aggregated gradients. The players take the
actions (in our case the bids) independently of each other,
which could results in violation of the resource capacity
constraints. In order to handle this problem, the MNO updates
the prices in such a way that, the players are forced to obey
coupled constraints. The prices appear as Lagrange multipliers
for coupled constraints (capacity constraints). As similar to
the players, she takes the step along the negative gradient of
Lagrangian and updates the price per resource:

13)

A(n+1) = max (o, Xe(n) + By ( > al - BC)> (14)
ceC
This updated value of Lagrangian multipliers act as new prices
for all tenants and resources, that is

-

1) = 5N (m),

If all the players and MNO simultaneously take action as
per the designed algorithm, the proposed algorithm converges

Algorithm 1 On-line Distributed Learning Algorithm

Require: Y 3, = 00,3, — 0 as n — oo
1: repeat at time step n =1,2,...,

2: for each player s € S

3: Observe gradient of utility and update
4: Yy + BV Us(az®, 275, 7)

5: end for

6: for each player s € S

7: for each resource ¢ € C

8: Play 2/} «+ ﬁ%&(gg)}

9: end for

10: end for

11: for each resource ¢ € C update the price
12: N, < max [O, Ae + %’” (ZiEN xs — BC)}

13: end for
14: until |[(2/, ) — (2,7)]| < e

to the unique Normalized Nash equilibrium (z*,\*) of the
Pricing Game. Moreover, if we fixed the prices v and players
are allowed to play only according to the algorithm, the
designed algorithm converges to unique Nash equilibrium of
the Allocation Game. Note that the update rule of the MNO
corresponds to the choice of vector r such that r. = 1 for
all ¢ € C. To this respect, we provided a formulation where
the r-normalised Nash equilibrium corresponds to the social
optimum. In general, it is possible to set the coefficients of
vector r at will. Clearly, the corresponding solution will not
be converging to the social optimum, but this provides some
space for tenants’ prioritisation, which we leave as part of
future works.

Theorem 5. If algorithm satisfies the required conditions for
step size sequence, ZZOZO ap = 00,y — 0 as n — oo then
for sufficiently large K Algorithm 1 converges to the unique
Normalized Nash equilibrium of the Shadow Pricing Game.

Proof. In [24] authors had already proved convergence of
algorithm as similar to ours for the single resource Allocation
Game. We will use the same technique as discussed in
Theorem 2 [24] to prove convergence of the Algorithm 1 to
Normalized Nash equilibrium of the Pricing Game. Now to
show convergence of the Algorithm we will first show the
asymptotic stability of mean dynamics of the algorithm. We
write the continuous-time equivalent from steps 4, 8 and 12
of the algorithm. For simplicity of exposition, we consider
here the single user case, since the general case follows
immediately:

s OVs(z
Ye = 8(5) A (15)
IC
s expyg
L 1
¢ l+expys (16)
Ao = (Z z — Bc> (17)



Taking derivative of (16) and replacing in (15) gives
: V()
S —p5(1 — 28 A8
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Now to show stability of dynamics, let consider Lyapunov
function
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If the pseudo gradient is diagonally
strict concave (DSC) (see[20]), then £ is negative. But in our
case DSC doesn’t hold in general. However it holds for some
neighborhood around the Nash equilibrium x*, therefore (21)
is negative for some B. = B, which is in neighborhood of
ZS, z®. In order to overcome this problem, we scale down
the step length for Lagrange multiplier update rule by some
sufficiently large constant K which makes (21) negative, thus
rendering the dynamics asymptotically stable. The rest of proof
follows from the Theorem 2 [24]. O

VI. NUMERICAL EXPERIMENTS

In this section we will provide numerical results to demon-
strate the behaviour of the proposed mechanism. For the
numerical experiment we considered a system with three slices

= {1,2,3} and two base stations C = {1,2}. Tenants of
shces 1,2 and 3 have N{ = 3, N2 =5 and N = 2 users,
respectlvely, associated at base station 1. At base station 2 they
have N21 =2, N22 = 4 and N3 = 6 users, respectively. The
available bandwidth at each base station is 30 MHz and we
assume that the SNR of each user lies in the range between
30 and 75 dBs. Every slice uses some scheduling policy to
assign the acquired bandwidth among its users: for the purpose
of numerical illustration we assume that each slice is served
using per-slice proportional fair scheduling.

The distributed learning Algorithm-1 is employed in order to
determine the socially optimal Nash Equilibrium. Plots (a) and
(b) in Fig. 3 show the converging dynamics of the bandwidth
bids vector. As seen there, it stabilises at the target Nash
equilibrium for both base stations 1 and 2. The distribution
of bandwidth allocation at Nash equilibrium is shown in bar
graph (g). As it can be clearly seen, the allocation of bandwidth
at both base stations is consistent with the number of user
per slices. In fact, at base station 2, slice 2 has more users
compared to the other two slices; as expected, it attains hence
a larger share of the available bandwidth. The target allocation
has been achieved by using the pricing vector which is shown

in the plot (c) and (d) of Fig.3. In those graphs we observe the
convergence of prices per slice and per base station. The prices
charged by MNO for each slice are inversely proportional to
number of the users. Finally, bar graphs (e) and (f) illustrate
the throughput achieved per user under the resulting bandwidth
allocation; the graphs indicate a mild throughput variation
across the users within a slice, a result consistent with the
use of PFS at slice level.

VII. CONCLUSIONS

In this paper, we have considered a scenario where cus-
tomers compete to obtain a slice of resource in 5G net-
works. We employ a mechanism based on a multi-bid Kelly
mechanism, using as price vector the one resulting from the
normalised Nash equilibrium which solves a dual game under
coupled constraints. The solution of the game is obtained via
an online learning mechanism which ultimately converges to
the social optimum. The key technical challenge overcome by
the proposed bidding mechanism is to account for the coupled
constraints dictated by the available infrastructure resources.
This renders the proposed one an interesting candidate mech-
anism for pricing slicing in 5G networks. In fact, to the best
of the authors’ knowledge, no suitable learning mechanism
is known for Nash equilibria under the coupled resources
constraints which are central in 5G resources slicing.
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