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ABSTRACT

Network-traffic data usually arrives in the form of a data stream.
Online monitoring systems need to handle the incoming samples
sequentially and quickly. These systems regularly need to get ac-
cess to ground-truth data to understand the current state of the
application they are monitoring, as well as to adapt the monitoring
application itself. However, with in-the-wild network-monitoring
scenarios, we often face the challenge of limited availability of
such data. We introduce RAL, a novel stream-based, active-learning
approach, which improves the ground-truth gathering process by
dynamically selecting the most beneficial measurements, in partic-
ular for model-learning purposes.
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1 INTRODUCTION

One of the main challenges associated with supervised learning
for network monitoring and analysis under dynamic scenarios is
that of periodically getting access to labels of fresh, previously
unseen samples. Labeling new data is usually an expensive and
cumbersome process, while not all measurements/data samples are
equally valuable. Active learning aims at labeling only the most
informative samples to reduce cost. In this paradigm, a learner
can choose from which new samples it wants to learn, and can
obtain the ground truth by asking an oracle for the corresponding
labels. We introduce RAL - Reinforced stream-based Active Learn-
ing, a new active-learning approach, coupling stream-based active
learning with reinforcement-learning concepts. RAL dynamically
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Figure 1: Attack-detection accuracy for RAL/RVU/RS.

decides at which specific times it is better to query the oracle for
samples coming as an online, non-periodic, sequential stream. In
particular, we model active learning as a contextual-bandit prob-
lem, in which rewards are based on the usefulness of the system’s
querying behavior. In this paper, we apply RAL on the specific case
of network-attack detection.

2 THE RAL APPROACH

RAL relies on prediction uncertainty and reinforcement-learning
principles, using rewards and bandit algorithms. The intuition be-
hind the different reward values is that we attribute a high (pos-
itive) reward in case the system behaves as expected, and a low
(negative) one otherwise, to penalize it. Our technique obtains re-
wards/penalties as soon as it is asking for ground truth. In a nutshell,
it earns a positive reward in case it queries the oracle and the under-
lying model would have predicted the wrong label (i.e. the system
made the right decision to ask for the ground truth) and a penalty
when it asks the oracle even though the underlying classification
model would have predicted the correct label (i.e. querying was
unnecessary). The rationale for using reinforcement learning is
that the system learns not only based on the queried samples them-
selves, but also from the usefulness of its decisions. Also inspired
by the bandit literature and to better deal with concept drifts in
the data, we implement an e-greedy policy, which improves the
data-space exploration. This ensures that we have a good chance
of detecting potential concept drifts. The proposed approach relies
on a committee of experts (i.e. different machine-learning models).
Each expert gives its advice for the sample to consider: should the
system ask the oracle for feedback or is the expert confident enough
about its label prediction? The query decision of the committee
takes into account the opinions of the experts, but also their de-
cision power: if the weighted majority of the experts is certain
enough, our algorithm will rely on the label prediction provided by
the committee, used in the form of a voting classifier. The decision
power of each expert gets updated such that the experts which
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Figure 2: Percentage of queries issued by RAL. Queries indi-
cate the underlying origin — either due to model uncertainty,
or by exploration.

agree with the entire committee are obtaining more power in case
that particular decision is rewarding, i.e. informative (otherwise,
these experts get penalized). These weights are updated through
EXP4 [1]. In case the system decides not to query, the committee is
used as a voting classifier to perform the predictions. With RAL,
we propose a system built on reinforcement-learning principles in
the challenging setting of stream-based learning, while previous
work [2, 3] relied on reinforcement learning only in pool-based
settings.

3 EVALUATION

We benchmark RAL against a state-of-the-art active-learning algo-
rithm (RVU) [4], using prediction uncertainty for querying deci-
sions and randomizing the certainty threshold for concept drifts,
as well as against random sampling (RS), on the MAWI dataset [5],
a public cyber-security dataset. We focus on two different types of
attacks, namely flooding and netscan intrusions. For each bench-
marked algorithm, we proceed as follows: first, we subdivide the
considered datasets into three consecutive, disjoint parts, namely
the initial training set, the streaming data, and the validation set. The
validation set consists of the last 30% of the data, the initial training
set is a variable fraction of the first samples, and the streaming
part includes all the remaining samples. We then train a model
on the initial training set and check its accuracy on the validation
part (initial accuracy). Next, we run the specific algorithm on the
streaming part and let it pick the samples it decides to learn from.
We retrain the models after a new queried label. Finally, we evaluate
the final model, trained on the initial training set plus the selected
samples, again on the validation set, and analyze its prediction
accuracy (final accuracy). In the context of this evaluation, RAL’s
committee is a voting classifier composed of a k-NN model with
k = 5, a decision tree, and a random forest with 10 trees. We use
the same model for RVU and RS. We use the following parameter
values for RAL: p* =1, p” = -1,0 = 0.9, ¢ = 2.5%, and = 0.01.
We test RVU with the parameters recommended in [4].

Figure 1 shows that RAL outperforms both RVU and RS on
average. Furthermore, when it comes to the number of queried
samples, we observe in Figure 2 that RAL queries, on average, a
small share of samples — less than 4%, which is significantly less
often than RVU (not shown here for space limitations), which asks
about 17 percentage points more with respect to RAL.
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Figure 3: RAL temporal convergence.

We also study the convergence of RAL’s attack-detection per-
formance with respect to the evolution of the streaming samples
(i.e., time), for the two MAWI attack datasets. More precisely, we
evaluate RAL on the validation set every time a new sample is
queried. We set the initial training-set size to the first 0.5% of the
data; according to Figure 1, such a small initial training-set provides
the best results. In Figure 3, we plot the accuracy convergence for
the ping-flood and netscan detection. We observe that the detection
accuracy is not clearly converging in the two scenarios: the ping-
flood-detection performance seems to converge to 90%, while there
does not seem to be any convergence for the netscan case. This
is not surprising, considering the fact that these datasets present
multiple concepts drifts and are very dynamic.

We investigated the reasons behind the sharp accuracy increases
and found that they are most of the time highly correlated with
queries issued by the committee (and not the e-greedy scenario),
as the models had a low confidence in their prediction. Acquiring
the labels for those samples proves to be very beneficial for RAL.
The degradation of the detection performance is likely due to the
noise in the dataset and to the concept drifts. Significant decreases
in accuracy are mostly caused by samples queried by random ex-
ploration (e-greedy) and not RAL’s committee, even though this
mechanism also often provides performance boost by forcing our
system to explore the data space.

As an overall conclusion for RAL, the presented initial results
show that RAL is a promising approach for stream-based network-
monitoring applications, making the most out of the information
which can be extracted from a stream of measurements, while re-
ducing the need for costly labeled, ground-truth data. RAL provides
a completely different exploration-exploitation trade-off than exist-
ing algorithms, as it queries fewer samples of higher relevance.
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