E. H. Reynolds, Introduction: epilepsy in the world, Epilepsia, vol.43, pp.1-3, 2002.

P. Jiruska, Synchronization and desynchronization in epilepsy: controversies and hypotheses, The J. physiology, vol.591, pp.787-797, 2013.

V. Salanova, Deep brain stimulation for epilepsy, Epilepsy & Behav, vol.88, pp.21-24, 2018.

N. Klinger and S. Mittal, Deep brain stimulation for seizure control in drug-resistant epilepsy, Neurosurg. focus, vol.45, p.4, 2018.

D. San-juan, Neuromodulation techniques for status epilepticus: A review, Brain stimulation, 2019.

C. Chiang, T. P. Ladas, L. E. Gonzalez-reyes, and D. M. Durand, Seizure suppression by high frequency optogenetic stimulation using in vitro and in vivo animal models of epilepsy, Brain stimulation, vol.7, pp.890-899, 2014.

S. A. Desai, J. D. Rolston, C. E. Mccracken, S. M. Potter, and R. E. Gross, Asynchronous distributed multielectrode microstimulation reduces seizures in the dorsal tetanus toxin model of temporal lobe epilepsy, Brain stimulation, vol.9, pp.86-100, 2016.

R. S. Fisher and A. L. Velasco, Electrical brain stimulation for epilepsy, Nat. Rev. Neurol, vol.10, p.261, 2014.

S. N. Kalitzin, D. N. Velis, and F. L. Da-silva, Autonomous state transitions in the epileptic brain, Epilepsy: The Intersection of Neurosciences, pp.175-203, 2016.

R. S. Mclachlan, Vagus nerve stimulation for intractable epilepsy: a review, J. clinical neurophysiology, vol.14, pp.358-368, 1997.

A. Berényi, M. Belluscio, D. Mao, and G. Buzsáki, Closed-loop control of epilepsy by transcranial electrical stimulation, Science, vol.337, pp.735-737, 2012.

T. L. Skarpaas, B. Jarosiewicz, and M. J. Morrell, Brain-responsive neurostimulation for epilepsy (rns R system), Epilepsy Res, vol.153, pp.68-70, 2019.

F. T. Sun and M. J. Morrell, The rns system: responsive cortical stimulation for the treatment of refractory partial epilepsy, Expert. review medical devices, vol.11, pp.563-572, 2014.

T. L. Skarpaas and M. J. Morrell, Intracranial stimulation therapy for epilepsy, Neurotherapeutics, vol.6, pp.238-243, 2009.

F. Rosenow, Personalized translational epilepsy research-novel approaches and future perspectives: Part i: Clinical and network analysis approaches, Epilepsy & Behav, vol.76, pp.13-18, 2017.

C. C. Mcintyre, M. Savasta, . Kerkerian-le, L. Goff, and J. L. Vitek, Uncovering the mechanism (s) of action of deep brain stimulation: activation, inhibition, or both, Clin. neurophysiology, vol.115, pp.1239-1248, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00306742

C. Cakan and K. Obermayer, Biophysically grounded mean-field models of neural populations under electrical stimulation, PLOS Comput. Biol, vol.16, p.1007822, 2020.

M. Koppert, S. Kalitzin, D. Velis, F. Lopes-da-silva, and M. A. Viergever, Preventive and abortive strategies for stimulation based control of epilepsy: A computational model study, Int. journal neural systems, vol.26, p.1650028, 2016.

W. M. Grill, A. N. Snyder, and S. Miocinovic, Deep brain stimulation creates an informational lesion of the stimulated nucleus, Neuroreport, vol.15, pp.1137-1140, 2004.

F. Weaver, K. Follett, K. Hur, D. Ippolito, and M. Stern, Deep brain stimulation in parkinson disease: a metaanalysis of patient outcomes, J. neurosurgery, vol.103, pp.956-967, 2005.

K. D. Graber and R. S. Fisher, Deep brain stimulation for epilepsy: animal models, National Center for Biotechnology, 2012.

J. G. Milton, J. Gotman, G. M. Remillard, and F. Andermann, Timing of seizure recurrence in adult epileptic patients: a statistical analysis, Epilepsia, vol.28, pp.471-478, 1987.

M. A. Kramer, H. E. Kirsch, and A. J. Szeri, Pathological pattern formation and cortical propagation of epileptic seizures, J. Royal Soc. Interface, vol.2, pp.113-127, 2005.

M. Breakspear, A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis, Cereb. Cortex, vol.16, pp.1296-1313, 2006.

S. Kalitzin, M. Koppert, G. Petkov, D. Velis, and F. L. Da-silva, Computational model prospective on the observation of proictal states in epileptic neuronal systems, Epilepsy & Behav, vol.22, pp.102-109, 2011.

V. K. Jirsa, W. C. Stacey, P. P. Quilichini, A. I. Ivanov, and C. Bernard, On the nature of seizure dynamics, Brain, vol.137, pp.2210-2230, 2014.

J. S. Farrell, Q. Nguyen, and I. Soltesz, Resolving the micro-macro disconnect to address core features of seizure networks, Neuron, vol.101, pp.1016-1028, 2019.

S. Olmi, S. Petkoski, M. Guye, F. Bartolomei, and V. Jirsa, Controlling seizure propagation in large-scale brain networks, PLoS computational biology, vol.15, p.1006805, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02146511

Z. Zhang, T. Valiante, and P. Carlen, Transition to seizure: from "macro"-to "micro"-mysteries, Epilepsy research, vol.97, pp.290-299, 2011.

S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, 1994.

J. Milton and P. Jung, Epilepsy as a dynamic disease, 2013.

W. Horsthemke, Noise induced transitions, Non-Equilibrium Dynamics in Chemical Systems, pp.150-160, 1984.

A. Hutt, J. Lefebvre, D. Hight, and J. Sleigh, Suppression of underlying neuronal fluctuations mediates EEG slowing during general anaesthesia, Neuroimage, vol.179, pp.414-428, 2018.

A. N. Pisarchik, Coherent resonance in the distributed cortical network during sensory information processing, Sci. Reports, vol.9, pp.1-9, 2019.

F. Moss, L. M. Ward, and W. G. Sannita, Stochastic resonance and sensory information processing: a tutorial and review of application, Clin. neurophysiology, vol.115, pp.267-281, 2004.

S. F. Muldoon, Gabaergic inhibition shapes interictal dynamics in awake epileptic mice, Brain, vol.138, pp.2875-2890, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01848203

K. P. Lillis, M. A. Kramer, J. Mertz, K. J. Staley, and J. A. White, Pyramidal cells accumulate chloride at seizure onset, Neurobiol. disease, vol.47, pp.358-366, 2012.

A. Klaassen, Seizures and enhanced cortical gabaergic inhibition in two mouse models of human autosomal dominant nocturnal frontal lobe epilepsy, Proc. Natl. Acad. Sci, vol.103, pp.19152-19157, 2006.

M. Avoli and M. De-curtis, Gabaergic synchronization in the limbic system and its role in the generation of epileptiform activity, Prog. neurobiology, vol.95, pp.104-132, 2011.

M. Avoli, Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy, J. neurophysiology, vol.115, pp.3229-3237, 2016.

L. Librizzi, Interneuronal network activity at the onset of seizure-like events in entorhinal cortex slices, J. Neurosci, vol.37, pp.10398-10407, 2017.

M. Chang, Brief activation of gabaergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation, Neurobiol. disease, vol.109, pp.102-116, 2018.

M. L. Miri, M. Vinck, R. Pant, and J. A. Cardin, Altered hippocampal interneuron activity precedes ictal onset, Elife, vol.7, p.40750, 2018.

B. Elahian, Low-voltage fast seizures in humans begin with increased interneuron firing, Annals neurology, vol.84, pp.588-600, 2018.

S. Rich, Inhibitory network bistability explains increased interneuronal activity prior to seizure onset, Front. Neural Circuits, vol.13, p.81, 2020.

V. Magloire, M. S. Mercier, D. M. Kullmann, and I. Pavlov, Gabaergic interneurons in seizures: investigating causality with optogenetics. The Neurosci, vol.25, pp.344-358, 2019.

T. Blauwblomme, P. Jiruska, and G. Huberfeld, Mechanisms of ictogenesis, International review of neurobiology, vol.114, pp.155-185, 2014.

J. ?iburkus, J. R. Cressman, and S. J. Schiff, Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events, J. neurophysiology, vol.109, pp.1296-1306, 2013.

K. Chen, Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability, Nat. medicine, vol.7, pp.331-337, 2001.

D. E. Naylor, Glutamate and gaba in the balance: convergent pathways sustain seizures during status epilepticus, Epilepsia, vol.51, pp.106-109, 2010.

A. V. Chizhov, A. V. Zefirov, D. V. Amakhin, E. Y. Smirnova, and A. V. Zaitsev, Minimal model of interictal and ictal discharges "epileptor-2, PLoS computational biology, vol.14, p.1006186, 2018.

E. Negahbani, D. A. Steyn-ross, M. L. Steyn-ross, M. T. Wilson, and J. W. Sleigh, Noise-induced precursors of state transitions in the stochastic wilson-cowan model, The J. Math. Neurosci. (JMN), vol.5, p.9, 2015.

H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. journal, vol.12, pp.1-24, 1972.

W. Gerstner and W. M. Kistler, Spiking Neuron Models -Single Neurons, Populations, Plasticity, 2002.

R. A. Stefanescu, R. Shivakeshavan, and S. S. Talathi, Computational models of epilepsy, Seizure, vol.21, pp.748-759, 2012.

A. Hutt, A. Mierau, and J. Lefebvre, Dynamic control of synchronous activity in networks of spiking neurons, PloS one, p.11, 2016.

A. Hutt, J. Lefebvre, D. Hight, and H. Kaiser, Phase coherence induced by additive gaussian and non-gaussian noise in excitable networks with application to burst suppression-like brain signals, Front. Appl. Math. Stat, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02428175

A. Hutt, J. D. Griffiths, C. S. Herrmann, and J. Lefebvre, Effect of stimulation waveform on the non-linear entrainment of cortical alpha oscillations, Front. neuroscience, vol.12, p.376, 2018.

M. P. Jadi and T. J. Sejnowski, Cortical oscillations arise from contextual interactions that regulate sparse coding, Proc. Natl. Acad. Sci, vol.111, pp.6780-6785, 2014.

M. P. Jadi and T. J. Sejnowski, Regulating cortical oscillations in an inhibition-stabilized network, Proc. IEEE, vol.102, pp.830-842, 2014.

G. T. Neske, S. L. Patrick, and B. W. Connors, Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex, J. Neurosci, vol.35, pp.1089-1105, 2015.

D. Silva and F. L. , Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity, Epilepsia, vol.44, pp.72-83, 2003.

J. G. Milton, Epilepsy as a dynamic disease: a tutorial of the past with an eye to the future, Epilepsy & behavior, vol.18, pp.33-44, 2010.

K. Trenité and D. , Methodology of photic stimulation revisited: updated european algorithm for visual stimulation in the eeg laboratory, Epilepsia, vol.53, pp.16-24, 2012.

D. Hermes, D. G. Trenité, K. Winawer, and J. , Gamma oscillations and photosensitive epilepsy, Curr. Biol, vol.27, pp.336-338, 2017.

C. J. Honey and T. Valiante, Neuroscience: when a single image can cause a seizure, Curr. Biol, vol.27, pp.394-397, 2017.

B. Gluss, A model for neuron firing with exponential decay of potential resulting in diffusion equations for probability density, Bull. Math. Biophys, vol.29, pp.233-243, 1967.

F. Gabbiani and C. Koch, Principles of spike train analysis, Methods neuronal modeling, vol.12, pp.313-360, 1998.

J. Thewlis, Concise dictionary of physics and related subjects, 1973.

S. Rich, M. Zochowski, and V. Booth, Dichotomous dynamics in ei networks with strongly and weakly intra-connected inhibitory neurons, Front. neural circuits, vol.11, p.104, 2017.

S. Rich, M. Zochowski, and V. Booth, Effects of neuromodulation on excitatory-inhibitory neural network dynamics depend on network connectivity structure, J. Nonlinear Sci. 1, p.24, 2018.

K. A. Ferguson, Network models provide insights into how oriens-lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal ca1 theta oscillations, Front. systems neuroscience, vol.9, p.110, 2015.

C. Börgers and N. Kopell, Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons, Neural computation, vol.17, pp.557-608, 2005.

C. Börgers and N. Kopell, Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity, Neural computation, vol.15, pp.509-538, 2003.

N. Kopell, C. Börgers, D. Pervouchine, P. Malerba, and A. Tort, Gamma and theta rhythms in biophysical models of hippocampal circuits, Hippocampal microcircuits, pp.423-457, 2010.

N. Brunel and X. Wang, What determines the frequency of fast network oscillations with irregular neural discharges? i. synaptic dynamics and excitation-inhibition balance, J. neurophysiology, vol.90, pp.415-430, 2003.

W. Chang, Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations, Nat. neuroscience, vol.21, p.1742, 2018.

F. Fröhlich, T. J. Sejnowski, and M. Bazhenov, Network bistability mediates spontaneous transitions between normal and pathological brain states, J Neurosci, vol.30, pp.10734-10743, 2010.

J. Lefebvre, A. Hutt, J. Knebel, K. Whittingstall, and M. M. Murray, Stimulus statistics shape oscillations in nonlinear recurrent neural networks, J. Neurosci, vol.35, pp.2895-2903, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01091816

M. O. Cunningham, Glissandi: transient fast electrocorticographic oscillations of steadily increasing frequency, explained by temporally increasing gap junction conductance, Epilepsia, vol.53, pp.1205-1214, 2012.

X. Li, J. G. Jefferys, J. Fox, and X. Yao, Neuronal population oscillations of rat hippocampus during epileptic seizures, Neural Networks, vol.21, pp.1105-1111, 2008.

S. Lee, D. D. Spencer, and S. S. Spencer, Intracranial eeg seizure-onset patterns in neocortical epilepsy, Epilepsia, vol.41, pp.297-307, 2000.

Z. Shiri, F. Manseau, M. Lévesque, S. Williams, and M. Avoli, Interneuron activity leads to initiation of low-voltage fast-onset seizures, Annals neurology, vol.77, pp.541-546, 2015.

L. Perko, Differential equations and dynamical systems, vol.7, 2013.

S. Ostojic and N. Brunel, From spiking neuron models to linear-nonlinear models, PLoS Comput. Biol, vol.7, 2011.

M. J. Chacron, Nonlinear information processing in a model sensory system, J. Neurophysiol, vol.95, pp.2933-2946, 2006.

D. R. Chialvo, A. Longtin, and J. Müller-gerking, Stochastic resonance in models of neuronal ensembles, Phys. review E, vol.55, p.1798, 1997.

D. Terney, L. Chaieb, V. Moliadze, A. Antal, and W. Paulus, Increasing human brain excitability by transcranial high-frequency random noise stimulation, J. Neurosci, vol.28, pp.14147-14155, 2008.

G. Salemi, Application of trns to improve multiple sclerosis fatigue: a pilot, single-blind, sham-controlled study, J. Neural Transm, vol.126, pp.795-799, 2019.

J. Peña, A. Sampedro, N. Ibarretxe-bilbao, L. Zubiaurre-elorza, and N. Ojeda, Improvement in creativity after transcranial random noise stimulation (trns) over the left dorsolateral prefrontal cortex, Sci. reports, vol.9, pp.1-9, 2019.

K. Joos, D. De-ridder, and S. Vanneste, The differential effect of low-versus high-frequency random noise stimulation in the treatment of tinnitus, Exp. brain research, vol.233, pp.1433-1440, 2015.

Y. Mosbacher, Toward neuroprosthetic real-time communication from in silico to biological neuronal network via patterned optogenetic stimulation, Sci. reports, vol.10, pp.1-16, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02568187

S. Buccelli, A neuromorphic prosthesis to restore communication in neuronal networks, IScience, vol.19, pp.402-414, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02482383

H. Keren, J. Partzsch, S. Marom, and C. G. Mayr, A biohybrid setup for coupling biological and neuromorphic neural networks, Front. neuroscience, vol.13, p.432, 2019.

A. Serb, Memristive synapses connect brain and silicon spiking neurons, Sci. reports, vol.10, pp.1-7, 2020.

C. A. Schevon, Evidence of an inhibitory restraint of seizure activity in humans, Nat. communications, vol.3, pp.1-11, 2012.

P. Perucca, F. Dubeau, and J. Gotman, Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology, Brain, vol.137, pp.183-196, 2014.

J. D. Cowan, J. Neuman, and W. Van-drongelen, Wilson-cowan equations for neocortical dynamics, The J. Math. Neurosci, vol.6, pp.1-24, 2016.

G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. Friston, The dynamic brain: from spiking neurons to neural masses and cortical fields, PLoS Comput. Biol, vol.4, p.1000092, 2008.

A. J. Trevelyan and C. A. Schevon, How inhibition influences seizure propagation, Neuropharmacology, vol.69, pp.45-54, 2013.

L. J. Greenfield, Molecular mechanisms of antiseizure drug activity at gabaa receptors, Seizure, vol.22, pp.589-600, 2013.

P. Yogeeswari, J. V. Ragavendran, and D. Sriram, An update on gaba analogs for cns drug discovery, Recent patents on CNS drug discovery, vol.1, pp.113-118, 2006.

A. C?lin, Chemogenetic recruitment of specific interneurons suppresses seizure activity, Front. cellular neuroscience, vol.12, p.293, 2018.

J. Y. Sebe and S. C. Baraban, The promise of an interneuron-based cell therapy for epilepsy, Dev. neurobiology, vol.71, pp.107-117, 2011.

M. Avoli and M. De-curtis, GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity, Prog Neurobiol, vol.95, pp.104-132, 2011.

M. Avoli, Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy, J Neurophysiol, vol.115, pp.3229-3237, 2016.

L. Librizzi, Interneuronal Network Activity at the Onset of Seizure-Like Events in Entorhinal Cortex Slices, J Neurosci, vol.37, pp.10398-10407, 2017.

M. Chang, Brief activation of GABAergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation, Neurobiol Dis, vol.109, pp.102-116, 2018.

H. Alfonsa, The contribution of raised intraneuronal chloride to epileptic network activity, J. Neurosci, vol.35, pp.7715-7726, 2015.

J. A. Wada and M. Sata, Generalized convulsive seizures induced by daily electrical stimulation of the amygdala in cats: correlative electrographic and behavioral features, Neurology, vol.24, pp.565-565, 1974.

K. El-houssaini, C. Bernard, and V. K. Jirsa, The epileptor model: a systematic mathematical analysis linked to the dynamics of seizures, refractory status epilepticus and depolarization block, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02562239

R. W. Floyd and L. Steinberg, An adaptive algorithm for spatial grey scale, Proc. Soc. Inf. Disp, vol.17, pp.75-77, 1976.

H. C. Tuckwell and J. Jost, Weak noise in neurons may powerfully inhibit the generation of repetitive spiking but not its propagation, PLOS Comput. Biol, vol.6, 2010.

A. N. Pisarchik, Coherent resonance in the distributed cortical network during sensory information processing, Sci. Reports, vol.9, p.18325, 2019.

P. Rajna and C. Lona, Sensory stimulation for inhibition of epileptic seizures, Epilepsia, vol.30, pp.168-174, 1989.