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Abstract—As resources in geo-distributed environments are
typically located in remote sites characterized by high latency and
intermittent network connectivity, delays and transient network
failures are common between the management layer and the
remote resources. In this paper, we show that delays and transient
network failures coupled with static configuration, including the
default configuration parameter values, can lead to instability
of application deployments in Kubernetes Federation, making
applications unavailable for long periods of time. Leveraging
on the benefits of configuration tuning, we propose a feedback
controller to dynamically adjust the concerned configuration
parameter to improve the stability of application deployments
without slowing down the detection of hard failures. We show
the effectiveness of our approach in a geo-distributed setup across
five sites of Grid’5000, bringing system stability from 83–92%
with no controller to 99.5–100% using the controller.

Index Terms—Self-configuration, self-adaptation, Kubernetes
Federation, Fog Computing, automatic configuration tuning.

I. INTRODUCTION

Fog computing extends cloud computing by harnessing
geographically-distributed computing resources for moving
computation closer to where data are generated (e.g., IoT
devices). One of the main challenges in fog computing is the
autonomous management of tens of thousands of remote nodes
and clusters found in diverse locations. Several approaches
based on modified container orchestration frameworks such
as Kubernetes have been proposed [1]–[3]. More recently, Ku-
bernetes introduced the notion of Federation (KubeFed) which
provides abstractions to manage multiple geo-distributed Ku-
bernetes clusters from a single control plane.

Since Kubernetes was designed for managing local clusters
in public and private cloud settings, it assumes reliable net-
work connectivity between the nodes with low latency, high
bandwidth, and low packet loss. KubeFed makes a similar
assumption: while it is designed to manage Kubernetes clusters
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located in different regions of the same cloud provider or
multiple cloud providers, KubeFed assumes high reliability
of the network connectivity between the control plane and
the managed clusters. However, such assumptions are not
met in many fog computing environments [4]. As a result,
static configurations, including the default values of the con-
figuration parameters for both Kubernetes and KubeFed are
not necessarily well-suited to the case of geo-distributed fog
computing infrastructures.

It is well known that configuration parameters may have a
strong influence on the performance and availability of sys-
tems [5]. However, finding the optimal configuration settings
that result in the best performance of the system is not easy
because of the large parameter space and the complex interac-
tion of multiple parameters. This is the case of Kubernetes and
KubeFed which are composed of several embedded control
loops [6] with numerous configuration parameters.

In this paper, we demonstrate that federated applications
deployed on a geo-distributed KubeFed infrastructure with
static configuration, including the default settings, may suffer
from important instability where containers get repeatedly
created and deleted before being able to provide a useful
service. To our best knowledge, we are the first to report this
undesirable behavior of KubeFed.

Our contribution is two-fold. First, we demonstrate the ex-
istence of the instability problem in a realistic geo-distributed
fog computing infrastructure based on KubeFed and identify
one configuration parameter (Cluster Health Check Timeout),
whose value influences stability the most. We show that, for
obtaining the best system behavior, the value of this parameter
should be adjusted according to the characteristics of the
execution environment. Second, we propose, implement, and
experimentally evaluate a feedback controller that improves
the stability of the system by dynamically adjusting this con-
figuration parameter at runtime. We show that this controller
is very effective for improving the system’s stability across a
wide range of inter-cluster network latencies and packet loss
rates, without losing the ability to detect actual cluster failures.
In our evaluations, the system stability improves from 83–
92% with no controller to 99.5–100% using the controller. By
enabling self-configuration and self-adaptation, our solution
helps make KubeFed more autonomous.



II. BACKGROUND

Kubernetes is a container orchestration platform which
automates the deployment, scaling, and management of con-
tainerized applications in large-scale computing infrastructures
such as a cluster and a datacenter [6]. To extend it to multi-
site deployments, Kubernetes Federation (KubeFed) supports
resource management and application deployment on multiple
Kubernetes clusters from a single control plane, thus making
it suitable for managing geo-distributed resources [7].

KubeFed’s implementation builds upon the concept of cus-
tom resource definitions (CRDs) from Kubernetes. In KubeFed
terminology, a single host cluster runs the federation control
plane which controls any number of member clusters where
applications may be deployed. The host cluster is also the
central point where the federation’s configuration parameters
are defined. The KubeFed controller manager is itself a
Kubernetes deployment resource deployed on the host cluster.
It runs several controllers to manage the member clusters,
scheduling, deployments, services, and other resources.

KubeFed introduces three concepts for each resource:
• Template defines the specification of a resource common

across all member clusters;
• Placement specifies which member cluster(s) will get the

resource;
• Override defines per-cluster variations of the template.
Using these concepts, users can define their deployments and
services and decide how many application containers of a
deployment should appear in which cluster. Figure 1 shows
the KubeFed architecture with a host cluster and three member
clusters where an “nginx” federated service is configured to
be deployed on only two of the three member clusters.

KubeFed also offers ReplicaSchedulingPreference (RSP)
which is an automated mechanism to distribute and rebalance
federated deployments across the member clusters. This is
useful when scaling an application across several clusters.
As shown in Figure 2, users only need to specify the target
resource to be controlled by RSP and the total number of
replicas to be distributed in the federation. By default, RSP
distributes the replicas evenly across all member clusters if
they have sufficient resources. RSP does this in multiple
iterations proportional to the number of total replicas. After
calculating how many replicas should go to each member
cluster, RSP modifies the Federated Deployment object to
update the number of replicas on each cluster, which in turn
pushes or reconciles the changes to the member clusters via
the sync controller. The sync controller is responsible for
propagating changes from the Federation Control Plane on
the host cluster to the member clusters and maintaining the
desired state of resources across member clusters.

There are several configuration parameters that control the
behavior of the Sync Controller. The most important for our
work is the Cluster Health Check Timeout (CHCT), which
has a default value of 3 seconds. This parameter determines
the duration after which sync requests and cluster health
check time out. In a geo-distributed deployment where large

Host Cluster

NameSpace
kube-federation-system

NameSpace
nginx

Federation control plane

CONFIG CONFIG CONFIG
Cluster 1 Cluster 2 Cluster 3

Federated Namespace
nginx

Federated Deployment
nginx

Federated Service
nginx

Cluster 1

NameSpace
nginx

Deployment
nginx

Service
nginx

Cluster 2

NameSpace
nginx

Deployment
nginx

Service
nginx

Cluster 3

NameSpace
nginx

Fig. 1. A simplified view of KubeFed architecture with a host cluster and
three member clusters and propagation of federated resources.
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Fig. 2. Automatic distribution of deployment replicas using ReplicaSchedul-
ingPreference on a Federation with a host cluster and three member clusters.
RSP evenly distributes a total of 15 replicas across the three member clusters,
5 replicas per cluster.

network latencies and packet losses are commonplace, it is
important to choose the right value for this parameter to
ensure the correct functioning of the Sync Controller and
RSP. A low CHCT value ensures fast detection of cluster
failures, allowing RSP to rebalance the deployment away from
failed clusters onto healthy clusters. However, fast detection
increases the probability of false positives due to delays and
transient network failures. Therefore, it may be necessary
to increase the value of CHCT to minimize false positives.
However, increasing the CHCT value may lead to delayed
cluster failure detection. It is, therefore, important to consider
the trade-off between fast and slow detection of cluster failures
when choosing the CHCT parameter value. Manually selecting
an optimal value for CHCT is challenging as the choice may
depend on the computing and networking environment as well
as application workload dynamics.

III. RELATED WORK

Modern distributed systems are increasingly complex and
difficult to manage manually. As a result, autonomic comput-
ing approaches have been proposed to simplify the difficult
task of managing these systems by way of self-configuration,
self-adaptation, self-tuning, and self-healing [8], [9].

One aspect of the complexity of modern distributed systems
is the large number of configuration parameters with complex
interactions that affect the performance and availability of
systems. Even though good configuration settings can improve
the performance of systems, finding these settings among
hundreds of parameters is often far from being trivial [5].



In the past decades, several works have proposed to leverage
the concepts from autonomic computing. Many of the works
focus on optimizing the performance of systems by finding
the best combination of configuration settings from all the
possible combinations [5], [10], [11]. Some other works focus
on specific type of distributed systems or frameworks such
as Enterprise Java (J2EE) [12], big data management systems
such as Apache Hadoop [13] and Apache Spark [14], database
management systems [15], distributed message systems such
as Apache Kafka [16], web servers such as Apache web
server [17]–[19], Docker [20], or Kubernetes [21].

Selecting appropriate values for timeout parameters, which
is the specific topic of this paper, has proven particularly chal-
lenging in a number of related works. Typically, large values
result in slow failure detection whereas small values reduce
the reliability of the failure detector. To address this challenge,
some works have proposed delay predictors which determine
at runtime values for detection timeout for fast detection while
not reducing the reliability of detection [22]–[25]. In [26],
the authors propose an autonomic failure detector based on
feedback control theory that re-configures its timeout and mon-
itoring period parameters at runtime in response to changes
in the computing environment or application according to
user-defined QoS requirements. Similarly, we show that small
values for the CHCT timeout parameter of KubeFed lead to
instability whereas large values lead to slow failure detection.

The focus of most of these works is to find the right trade-
off between accuracy and responsiveness of failure detectors,
whereas our main focus is to improve the stability of ap-
plication deployments without impairing the responsiveness
of failure detection. Moreover, unlike these works, our work
addresses a problem in a geo-distributed fog computing envi-
ronment. To the best of our knowledge, the problem of failure
detection and dynamic adjustment of configuration parameters
have not been widely studied in the context of geo-distributed
computing environments such as fog computing.

IV. PROBLEM ANALYSIS

When a replicated application is deployed in a Kubernetes
federation, in certain settings, the application incurs significant
instability where containers are repeatedly created and deleted,
which in turn causes application unavailability and unaccept-
ably long application response times. In this section we first
experimentally demonstrate the existence of this undesirable
behavior, and then analyze its causes.

A. Experimental setup

To highlight the unstable deployment problem, we set up
an experimental testbed as close as possible to a realistic
Fog computing environment, depicted in Figure 3. We deploy
six Kubernetes 1.14 clusters in five sites of the Grid’5000
experimental testbed [27]: two in Rennes, and the other four
clusters in Nantes, Lille, Grenoble, and Luxembourg. Every
cluster has one master node and five worker nodes. KubeFed
v0.1.0-rc6 is deployed on the first cluster as the host cluster,
and the remaining five member clusters are then joined to

Master 
node

Worker nodes

Fig. 3. Experimental setup in Grid’5000 consisting of one host cluster in
Rennes, and five member clusters in Rennes, Nantes, Lille, Grenoble (France),
and Luxembourg. Distances between sites range from 100 km to 850 km. Each
cluster has a master node and five worker nodes. Image adapted from the
Grid’5000 website.

TABLE I
PARAMETERS OF THE NETWORK ENVIRONMENT BETWEEN THE HOST

CLUSTER AND THE MEMBER CLUSTERS.

Network
setting

Bandwidth
(Mbps)

Packet
loss (%)

RTT (msec) from host to member clusters
Rennes Nantes Lille Grenoble Luxembourg

1 15 5 100 102 123 117 127
2 10 10 200 202 223 217 227

the federation. Each node in the host cluster has 4 CPU
cores and 16 GB of memory allocated to it, whereas each
node in the member clusters has 4 CPUs and 4 GB of RAM.
This configuration emulates typical fog computing resources
which are often composed of single-board machines such as
Raspberry Pis [28], [29]. We control the network performance
inside each cluster and between the host and member clusters
using the “traffic control” (tc) tool available in Linux systems.
The internal network of each cluster has 1 Gbps bandwidth,
whereas the network characteristics between the host cluster
and the member clusters are defined in Table I. These values
are based on a recent study [4] which highlights the char-
acteristics of today’s networking technologies used in edge
computing settings.

The application used for our tests is a simple federated
deployment of nginx web server that scales progressively. We
scale the total number of replicas from 75, 100, 500, 1500,
2500, to 3500 to be distributed equally among the five member
clusters of the federation. The task of automatically balancing
the pod replicas across the member clusters is handled by
KubeFed’s Replica Scheduling Preference (RSP) controller.

We define three scenarios for our experiments:

• Stationary scenario: a federation with Network Set-
ting 1, with no variation in the networking environment
and no cluster failure;

• Network variability scenario: a federation where the
networking environment varies between Network Set-
ting 1 and Network Setting 2, with no cluster failure;

• Cluster failure scenario: a federation with Network
Setting 1, with no change in the networking environment
but with a failure and a recovery of one member cluster.



B. The instability problem

As the total number of replicas of the pods of the fed-
erated deployment increase, RSP calculates the number of
replicas to be distributed to each member cluster. Unless other
requirements such as the minimum number of replicas or
weights per cluster are specified by the user, RSP opts for
an even distribution across all member clusters. As per the
source code of KubeFed, clusterCount × log10(replicas)
iterations are required to distribute all replicas among the
member clusters. The time complexity of this algorithm is
O(clusterCount2 × log10(replicas)), where clusterCount
is the number of member clusters and replicas the re-
quested number of containers. After determining the number
of replicas per cluster, RSP updates the Federated Deployment
Object’s override field. The changes are then automatically
pushed to each cluster by the Sync Controller as depicted in
Figure 2.

In a geo-distributed federation setup, there are two ways in
which instability may arise due to network delays or transient
network failures:
1) Reconciliation failure: Push reconciliation requests to one

or more member clusters may time out prematurely at
the time of scheduling by RSP, in which case the sync
controller tries to re-sync the resources until the desired
state is achieved. If transient network failures continue to
happen, it may take a long time for the reconciliation to
terminate.

2) Health check failure: One or more member clusters may
be declared unhealthy by the kube-controller-manager if
health check requests time out, in which case RSP re-
calculates the distribution of replicas and rebalances them
by moving replicas away from the now-unhealthy clusters
to healthy ones. RSP re-syncs the resources to the unhealthy
clusters, if they become healthy again. These actions may
repeat over and over in network environments with a large
number of transient failures.

The unstable behavior is manifested by the number of replicas
on the affected member clusters being significantly fewer than
the desired numbers, sometimes even reaching zero. Figure 4
shows the number of deployment replicas, which is the number
of replicas pushed by the kubefed-controller-manager, and the
actual number of running pods in one of the member clusters in
our setup during a period of instability. As shown in the figure,
the number of replicas that the kubefed-controller-manager
pushes to the member cluster fluctuates widely over time,
in turn affecting the number of pods actually running on the
cluster.

To quantify the unstable behavior we introduce the stability
metric υ as follows:

υ[%] :=
1

n
·

n∑
i=1

(
100− 100

T
·

T∑
t=1

di − pi,t
di

)
(1)

where n is the total number of member clusters and i ∈ [1, n];
T is the full experiment duration and time t ∈ [0, T ]; di is the
desired number of pods in cluster i; pi,t is the number of
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Fig. 4. The number of updated replicas of the deployment and the number
of actual running pods on one of the member clusters of the federation.

running pods in cluster i at time t. Stability is a measure of
how much and for how long the number of replicas in the
member clusters is close to the desired number of replicas:
a system which fails to deploy any replica during the entire
experiment will have υ = 0% whereas a perfectly working
and stable system will have υ = 100%.

C. The influence of configuration parameters

To identify which of KubeFed’s configuration parameters
has the greatest influence on the stability of the deployments in
the member clusters, we conduct principal component analysis
on the data obtained from the measurement of stability by
varying the values of several parameters. We identified eight
configuration parameters which might influence the behavior
and stability of the system: timeout durations, health check
periods, numbers of retries, etc. We then measured the stability
derived from 705 randomly-chosen sets of parameter values.

Our results show that the first source of stability variations
between different configurations can be attributed to a single
parameter. Specifically, we observe instability mainly when
the Cluster Health Check Timeout (CHCT) parameter has too
low values. Even the default value of 3 s for this parameter
leads to significant instability. We also notice that increasing
the value of the CHCT parameter significantly improves the
stability of the system.

D. Trade-off between instability and failure detection delay

Although the stability of the system improves when the
value of the CHCT parameter is increased, setting very large
values to the CHCT parameter leads to slower failure detection
as the system needs to wait until the CHCT timeout expiration
before it updates the status of the failed cluster as “Offline.” As
shown in Figure 5, increasing CHCT leads to greater system
stability; however, it also increases the failure detection delay.
The goal of our controller is to identify a sweet spot which
implements the necessary trade-off between these two effects.

E. The influence of the networking environment

The last important factor which influences the occurrence
of instability is the network performance between the clusters.
Figure 6 depicts the stability of the system for the three
scenarios. We see that the system is very unstable for the
Stationary scenario. Moreover, stability gets worse as the
network latency and packet loss is increased or one of the
clusters fails in the Network variability and Cluster failure
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scenarios, respectively. Table II shows the system stability
measures of the uncontrolled system under the three evaluation
scenarios.

V. A CONTROL-BASED APPROACH FOR TUNING CHCT

Since the CHCT parameter value is the cause of most
instability problems, a natural solution would consist of finding
a better value for this parameter. Generally speaking, the
CHCT value should be set as low as possible (to reduce the
delay in detecting actual cluster failures), but not too low either
(because this would generate instability). However, no single
“best” value can be found, as the choice of a good value largely
depends on the operational conditions such as the inter-cluster
network characteristics and the application workload.

Instead, we propose to dynamically adjust the CHCT value
at runtime using a feedback controller which reacts to changes
in operational conditions. Unlike other configuration tuning
methods, this adaptive approach does not require prior knowl-
edge of the infrastructure and it is simple to implement. In this
section, we present the details of our solution including our
design decisions, controller design, and tuning of the controller
parameters.

A. Feedback controller design

Feedback controllers are widely used in mechanical and
electrical systems, and they have also gained widespread
use in computer systems [30]. A controller implements a
feedback loop which monitors the system to be controlled, and
implements automatic changes and then manipulates the input
as needed to drive the system’s variable toward the desired
setpoint.

Figure 7 shows the design of our proposed solution.
The controller continuously monitors the measured output
(called Process Variable, PV, in control theory terminology) of
the kubefed-controller-manager to detect indications that the
CHCT value is either too high or too low. It then produces
a signal called control output (CO) that reduces the error (e)
that indicates the deviation of the measured output from the

TABLE II
AVERAGE NO. OF TIMEOUT ERRORS PER MINUTE (N ) AND STABILITY (υ)

OF THE UNCONTROLLED SYSTEM FOR THE THREE EVALUATION
SCENARIOS.

Experiment Scenario Avg. N Avg. υ (%)
Stationary 4 92
Network variability 3 87
Cluster failure 3 83

Controller
kubefed-
controller-
manager

Actuator Logs

Sensor

SP
e CO

PV

CHCT
-1

-e

Fig. 7. System design of our controller.

reference value. Finally, the controller decides whether CHCT
must be adjusted, and the actuator implements the change.

a) Choosing the Process Variable: A naı̈ve approach
would consist of periodically evaluating the KubeFed stability
metric, and of incrementing the CHCT value whenever the
measured stability differs from the desired setpoint of 100%
(e > 0). However, this would mean that the system must enter
a period of instability before the CHCT value is updated. This
reaction would be too late for our purpose which is precisely
to prevent instabilities from occurring.

It is, therefore, necessary to base the controller reactions on
other metrics which show early indications that instability is
about to occur. For this we use the timeout errors written by
the kubefed-controller-manager in its logfile whenever it fails
to reach one of its member clusters. KubeFed starts deleting
containers in the “failed” cluster and restarting them in other
clusters when these timeout errors accumulate, thereby poten-
tially triggering instability. We can thus use the occurrence of
the first timeout errors in the log file as early indications that
instability may soon take place.

Another motivation for selecting the number of timeout er-
rors as the process variable PV is because this metric is readily
available in the host cluster where we deploy our controller,
unlike stability which needs to be computed after collecting
metrics from each individual member cluster. Frequently col-
lecting metrics from the member clusters may be very difficult,
especially in periods of bad network performance when the
CHCT value needs to be quickly adjusted.

b) Controlling the CHCT value: If no timeout errors
are reported, then we know that the system should achieve
100% stability. We, therefore, define the setpoint SP to 0
timeout error. As a result, the controller increments the CHCT
parameter value until the number of timeout errors found in
the log files during the control interval reaches zero.

However, setting SP to zero creates a new problem. In
the standard feedback control theory, one should allow both
positive and negative errors so that the controller can automat-
ically increase or decrease CO proportional to the error. In our
case, since we define SP as zero, it is impossible to observe
a number of timeout errors lower than the setpoint, and the
controller cannot decrease the CHCT value as a result of such



Algorithm 1: Feedback controller algorithm.
Data: Positive Gain Kp, Negative Gain Kn

Result: CO
initialization;
SP := 0;
decrement period := 3;
t := decrement period;
while true do

PV = number of timeout errors;
e = -(SP - PV);
CHCT = current value of the CHCT parameter;
if e > 0 then

CO = CHCT + Kp * e;
t = decrement period;

else
Do nothing;

t = t - 1;
if t == 0 then

CO = (1 - Kn) * CHCT;
t = decrement period;

negative errors. As a result, even though we can increase CO
proportionally to the error, for the decreasing part we need to
deviate from the standard approach of feedback control design
and come up with a different approach. For simplicity, we
decided to decrease CHCT periodically if no timeout error
has been identified, independently from any indication that
the CHCT value may be too high. The controller ensures
the trade-off between improving stability and fast detection of
failures by preventing CHCT from reaching very large values
that could lead to increase in the failure detection delay.

We choose a sampling interval of 1 minute for practical
reasons. To change the CHCT value of a running KubeFed, it
is necessary to stop and restart the containers which execute
the kubefed-controller-manager. This operation takes a few
dozen seconds. A sampling interval of 1 minute, therefore,
gives enough time for the system to change the CHCT value
before starting the next iteration of the control algorithm.

c) Control algorithm: Our control algorithm is presented
in Algorithm 1. The controller periodically measures the
number of timeout errors which occurred in the previous
period, and compares it to the setpoint SP = 0. If timeout
errors have occurred, then the controller increments CHCT by
a value proportional to the number of timeout errors and to
the positive gain Kp, which is in line with the standard design
of a proportional feedback controller. On the other hand, if
no timeout errors have been found during three consecutive
periods, the controller decreases CHCT proportionally to the
negative gain Kn.

The two gain parameters Kp and Kn respectively define
how aggressive the controller should be in increasing and in
decreasing the CHCT value.
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B. Tuning the controller parameters

Defining the controller parameters requires one to find a
trade-off between a system which would react too slow to
environment changes to provide an appropriate reaction and
one which may potentially over-react to any such changes.

To get an initial estimate for Kp we use the Ziegler-Nichols
rules, which are a set of simple heuristics that perform well
a wide variety of situations [31]. The Ziegler-Nichols tuning
method does not require detailed knowledge of the controlled
system, and the rules can be expressed entirely in terms of
the system’s step-input response (i.e., the system’s reaction
characteristics upon a change of its parameter value) [30].

Figure 8 shows the step response of the system as the CHCT
parameter is suddenly increased from the default value of
CHCT = 3 sec to CHCT = 13 sec at time t = 10min. From
the system’s step response, we estimate three parameters that
are used in the Ziegler Nichols tuning rules:
• The process gain K is the ratio of the change in process

output ∆PV that results from a change of input ∆CO:

K =
∆PV

∆CO

• The time constant T is the time it takes for the process
to settle to a new steady-state after experiencing a sudden
change in input, i.e., the time it takes the process to reach
about two-thirds of its final value.

• The dead time τ is the delay until an input change begins
to affect the output.

From Figure 8, we find K = 1.5, T = 60 s, and τ = 60 s.
Based on these step-input response values we can define Kp:

Kp = α× T

K × τ
where α is a coefficient which typically falls in the range
[0.3, 1.2] [30]. We can therefore estimate that Kp should fall
in the range [0.2, 0.8]. Based on these estimations, in the next
section we experiment the controller with Kp values of 0.1,
0.5, and 1. Similarly, we use Kn values of 0.1, 0.25, and 0.5.

VI. EVALUATION

A. Experimental Setup

We evaluate our controller using the same experimental
setup as described in Section IV-A with the same application
and workload for the three scenarios. However, now we also
deploy our controller on the master node of the host cluster.
We run a total of nine experiments per scenario, one for each
combination of the Kp and Kn parameters of the controller.
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Fig. 9. Stationary scenario with different values of Kp.

Each experiment is run for two hours. We repeat each of the
27 experiments three times and report the mean value.

B. Experimental Results

We present the results of the stationary, network variability
and cluster failure scenarios in Figures 9, 10 and 11 respec-
tively. In all scenarios, the controller adjusts CHCT according
to the conditions, and significantly improves the federation
stability compared to the no-controller scenario from Figure 6.

In the Network variability scenario, CHCT increases from
t = 30min as a reaction to the degraded networking per-
formance, and decreases back at t = 90min when network
performance returns to normal. Similarly, in the Cluster failure
scenario, CHCT increases after t = 30min as a reaction to
the detected cluster failure, and decreases from t = 90min
after cluster recovery. The stability drop at t = 90min is
a direct consequence of cluster recovery, as several pods get
stopped in other clusters and restarted in the recovered one.

In all scenarios, we see a faster increase of the CHCT pa-
rameter as Kp increases, and faster decrease as Kn increases.
In some cases, the larger values of Kn lead to a brief instability
as the CHCT parameter is aggressively decreased to very low
values, leading to timeouts.

To determine values of Kp and Kn which work in all three
scenarios, we compare all 27 cases for accuracy. Table III
shows the accuracy of the controller in decreasing the number
of timeout errors N , and in improving the stability υ. For each
scenario, we show the best values for N and υ in bold and the
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Fig. 10. Network variability scenario: network latency increases at t =
30min and decreases back at t = 90min.

TABLE III
ACCURACY OF THE PROPOSED CONTROLLER AS THE VALUES OF Kp AND
Kn VARY IN THE THREE SCENARIOS. THE BEST VALUES ARE BOLD,

WHEREAS THE WORST VALUES ARE Italic.

Kp Kn

Stationary
scenario

Network
variability
scenario

Cluster
failure
scenario

N υ (%) N υ (%) N υ (%)

0.1
0.10 0.98 99.99 1.18 99.98 1.55 98.77
0.25 1.41 100.00 1.40 99.98 1.85 99.16
0.50 0.87 99.91 1.64 99.89 2.11 97.71

0.5
0.10 0.48 100.00 0.64 99.97 1.05 99.22
0.25 0.78 99.59 0.90 99.97 1.28 98.66
0.50 1.12 100.00 1.19 99.92 1.63 98.39

1
0.10 0.31 100.00 0.46 99.93 0.82 99.48
0.25 0.55 99.22 0.75 99.90 1.10 97.65
0.50 0.86 99.87 1.00 99.91 1.36 98.14

worst values in italic. We see that the controller with Kp value
of 1 and Kn value of 0.1 has the best values for N in all three
scenarios, and the best value of υ in two out of three scenarios.
Thus, we conclude that the controller works best in all three
scenarios for this combination of values of the parameters Kp

and Kn. This configuration improves stability from 83–92%
with no controller (see Table II) in stationary situations to
99.5–100% using the controller, even in challenging scenarios
with network variability or cluster failures.
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Fig. 11. Cluster failure scenario: one cluster fails at t = 30min and recovers
at t = 90min.

VII. CONCLUSION

Geo-distributed systems such as fog computing platforms
need to operate in difficult and uncertain networking condi-
tions. In particular, it is notoriously difficult to distinguish
actual node failures from delays caused by the networking
or local node condition. We demonstrated that these effects
can create significant instability in Kubernetes Federations. We
identified the main configuration parameter which influences
this behavior, and proposed a feedback controller which dy-
namically adapts its value to the operational conditions, and
improves the system stability from 83–92% with no controller
to 99.5–100% using the controller.
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and L. Sarzyniec, “Adding virtualization capabilities to the
Grid’5000 testbed,” in Cloud Computing and Services Science,
vol. 367, Springer, 2013.

https://github.com/kubernetes-sigs/kubefed


[28] F. P. Tso, D. R. White, S. Jouet, J. Singer, and D. P. Pezaros,
“The Glasgow Raspberry Pi cloud: A scale model for cloud
computing infrastructures,” in Proc. ICDCS Workshops, 2013.

[29] A. van Kempen, T. Crivat, B. Trubert, D. Roy, and G. Pierre,
“MEC-ConPaaS: An experimental single-board based mobile
edge cloud,” in Proc. IEEE Mobile Cloud Conference, 2017.

[30] P. K. Janert, Feedback control for computer systems: intro-
ducing control theory to enterprise programmers. O’Reilly
Media, Inc., 2013.

[31] J. G. Ziegler and N. B. Nichols, “Optimum settings for
automatic controllers,” Trans. of the ASME, vol. 64, 1942.


	Introduction
	Background
	Related Work
	Problem analysis
	Experimental setup
	The instability problem
	The influence of configuration parameters
	Trade-off between instability and failure detection delay
	The influence of the networking environment

	A control-based approach for tuning CHCT
	Feedback controller design
	Tuning the controller parameters

	Evaluation
	Experimental Setup
	Experimental Results

	Conclusion

