Skip to Main content Skip to Navigation
Conference papers

Coordinated autonomic loops for target identification, load and error-aware Device Management for the IoT

Neil Ayeb 1 Eric Rutten 2 Sebastien Bolle 1 Thierry Coupaye 1 Marc Douet 1
2 CTRL-A - Control for Autonomic computing systems
LIG - Laboratoire d'Informatique de Grenoble, Inria Grenoble - Rhône-Alpes
Abstract : With the expansion of Internet of Things (IoT) that relies on heterogeneous, dynamic, and massively deployed devices, device management (DM) (i.e., remote administration such as firmware update, configuration, troubleshooting and tracking) is required for proper quality of service and user experience, deployment of new functions, bug corrections and security patches distribution. Existing industrial DM platforms and approaches do not suit IoT devices and are already showing their limits with a few static home devices (e.g., routers, TV Decoders). Indeed, undetected buggy firmware deployment and manual target device identification are common issues in existing systems. Besides, these platforms are manually operated by experts (e.g., system administrators) and require extensive knowledge and skills. Such approaches cannot be applied on massive and diverse devices forming the IoT. To tackle these issues, our work in an industrial research context proposes to apply autonomic computing to DM platforms operation and impact tracking. Specifically, our contribution relies on of automated device targeting (i.e., aiming only suitable devices) and impact-aware DM (i.e., error and anomalies detection preceding patch generalization on all suitable devices of a given fleet). Our solution is composed of three coordinated autonomic loops and allows more accurate and faster irregularity diagnosis, vertical scaling along with simpler IoT DM platform administration. For experimental validation, we developed a prototype that demonstrates encouraging results compared to simulated legacy telecommunication operator approaches (namely Orange).
Complete list of metadata

Cited literature [26 references]  Display  Hide  Download

https://hal.inria.fr/hal-02934785
Contributor : Éric Rutten <>
Submitted on : Wednesday, September 9, 2020 - 4:14:43 PM
Last modification on : Monday, February 15, 2021 - 9:34:02 AM
Long-term archiving on: : Thursday, December 3, 2020 - 1:13:58 AM

File

final_FEDCSIS_2020.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02934785, version 1

Collections

Citation

Neil Ayeb, Eric Rutten, Sebastien Bolle, Thierry Coupaye, Marc Douet. Coordinated autonomic loops for target identification, load and error-aware Device Management for the IoT. FedCSIS 2020 - 15th Federated Conference on Computer Science and Information Systems, Sep 2020, Sofia, Bulgaria. pp.1-10. ⟨hal-02934785⟩

Share

Metrics

Record views

64

Files downloads

296

Données de recherche

doi: web.