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Abstract—With the expansion of Internet of Things (IoT) that
relies on heterogeneous, dynamic, and massively deployed devices,
device management (DM) (i.e., remote administration such as
firmware update, configuration, troubleshooting and tracking) is
required for proper quality of service and user experience, de-
ployment of new functions, bug corrections and security patches
distribution.

Existing industrial DM platforms and approaches do not
suit IoT devices and are already showing their limits with a
few static home devices (e.g., routers, TV Decoders). Indeed,
undetected buggy firmware deployment and manual target device
identification are common issues in existing systems. Besides,
these platforms are manually operated by experts (e.g., system
administrators) and require extensive knowledge and skills. Such
approaches cannot be applied on massive and diverse devices
forming the IoT.

To tackle these issues, our work in an industrial research
context proposes to apply autonomic computing to DM platforms
operation and impact tracking. Specifically, our contribution
relies on of automated device targeting (i.e., aiming only suit-
able devices) and impact-aware DM (i.e., error and anomalies
detection preceding patch generalization on all suitable devices
of a given fleet). Our solution is composed of three coordinated
autonomic loops and allows more accurate and faster irregularity
diagnosis, vertical scaling along with simpler IoT DM platform
administration.

For experimental validation, we developed a prototype that
demonstrates encouraging results compared to simulated legacy
telecommunication operator approaches (namely Orange).

Keywords–device management, multiple loop cooperation, inter-
net of things, firmware update, configuration management.

I. CONTEXT & MOTIVATION

A. Device Management
Device Management (DM) consists of remote (and po-

tentially massive) operations on a fleet of deployed devices.
Managed devices include, but are not limited to, workstations,
broadband or IoT gateways and smartphones. After the wide
usage of Blackberry and smartphones later-on in business
context, enterprises used Mobile Device Management (MDM)
for application remote installing, configuration provisioning
and over-the-air (OTA) software updates [1].

Historically, DM solutions targeted workstation for config-
uration management, application provisioning and OS patch-
ing. Afterwards, with high speed (e.g., Digital Subscriber
Line, Cable) internet accesses widespread, routers and modems
(a.k.a Boxes) required user specific configurations and regular
firmware updates to enhance Consumer Premises Equipment

(CPE) lifespan. This led to the creation of an industry con-
sortium, the Broadband Forum [2], (initially ADSL Forum)
that aim to standardize network technologies and protocols
for internet access over phone lines, then progressively inte-
grated home device management specifications and architec-
tures among other topics.

With the rise in complexity of services and device com-
puting power, later Telco DM solutions started incorporating
remote troubleshooting features.

B. DM Features
We define DM as initial and ’in-life’, remote, firmware

updates (Maintenance) configuration of devices (i.e., Provi-
sioning), probe data collection (Monitoring), and troubleshoot-
ing (Assistance) [3]. Maintenance lets system administrators
push firmwares on the entirety or specific parts of a given
device fleet of a given device fleet (e.g., patching a security
issue with a new firmware, deploying a new feature for beta
test members). It was the core feature for early solutions.
Historically, DM was mainly about remote firmware updates.
With the increasing complexity of devices and maintenance
costs, solutions started incorporating new features such as
those we mentioned above. Provisioning incorporates new
services (de)activation, and equipment behavior modification
by editing a given device data-model (e.g., change its data
platform URL, enable new sensors of a modular peripheral,
pair with a nearby device). Monitoring grants log and runtime
data to be pushed using a DM protocol to a central platform for
data analysis (e.g., using QoS measures to detect network con-
gestion or average resource consumption per device category).
Assistance empowers system administrator to remotely execute
diagnostic commands on devices aiming for troubleshooting
without physical intervention (e.g., triggering reboots, factory
configuration resets aiming to fix a peripheral).

DM is crucial a continuous, correct functioning of devices,
while ensuring proper Quality of Service (QoS) for end users
or business partners. Yet faulty DM operations can cause
consequent losses for companies, especially when they target
a whole fleet of devices. In october 2019, Google pushed a
faulty firmware to a part of its home voice assistants Google
Home and Google Mini fleet. After a reboot, devices became
unable to boot or were locked in an infinite loop. This incident
had a negative economic impact on Google since all devices
were replaced free of charge [4]. If we suppose that 1% of the
fleet (i.e., 52 Millions at the end of Q4 2018) [5] was affected,
it would represent 520,000 devices bricked to be potentially
replaced, plus shipping costs. Moreover, HP-Enterprise (HPE)



and Dell EMC deployed a critical firmware update designed
by their enterprise SSD manufacturer Western Digital. Indeed,
a faulty firmware was integrated within these drives at release
time (2015). Without fix, data loss become basically inevitable
after 32768 hours of running [6] [7]. Beside fault mitigation,
DM can be used for performance enhancement and new
features deployment. Indeed, Tesla electric vehicles received
in November 2019 an OTA (i.e., Over-the-Air meaning via
4G-LTE Networks) software update that enhanced the peak
output power of Model S engine by 37kW. Besides, Tesla’s
firmwares constantly improve self-driving and charging capa-
bilities. Telecommunication operators use some DM features of
their home and enterprise internet gateways (a.k.a. boxes) for
remote troubleshooting when customers call after-sales service
for technical assistance. It allows pushing new firmwares
and configurations to its deployed fleets of home devices
(e.g., Broadband and Fiber Gateways, TV decoders, Wi-Fi
Extenders). These experiences show how crucial DM is for
businesses and give a peak about its evolution with Internet of
Things widespread.

IoT relies on massive deployment of various devices
(e.g., sensors, gateways, actuators..). However, they are
usually heterogeneous regarding their computing, storage, and
communication capabilities (i.e., simple sensors configured
to push data vs. peripherals with high computing power)
and environments (i.e., mobile on-battery devices vs. rather
powerful fixed gateways). IoT Services can rely on multiple
devices from distinct manufacturers and owners. This
entails collaborative DM Platforms for service provisioning,
troubleshooting and configuration.

C. Challenges and contributions
These characteristics, compared to legacy DM, involve

several challenges regarding IoT Device Management.

• Heterogeneity: From few types of devices to numerous
ones and various environments (connectivity, nearby
devices), computing, storage and networking capabil-
ities. IoT allows services to use multiple devices in
contrast with single owner traditional objects.

• Dynamicity: From internal states (battery, computing
load, running services, network conditions) that are
rather stable to versatile ones that changes over time.

• Interoperability: From isolated technical solutions
(i.e., one DM platform per device type) to multi-
platform devices enabling multiple interdependent ser-
vices.

• Scalability: From a few ’things’ managed by central-
ized designs to massive amounts of devices.

In this study, our goal is DM platform operation automa-
tion, therefore tackling device Heterogeneity and environment
Dynamicity by adjusting execution speed to capabilities of
devices and infrastructure (i.e., hardware, current load and net-
work congestion). Our adaptation strategy relies on operational
metrics such as monitored DM operation execution error count
or infrastructure response time. Furthermore, a step towards
Scalability management is introduced in this paper via vertical
scaling [8].

Operating DM solutions require consequent efforts and
expertise. For instance, according to interviews realized with

DM teams, updating a fleet of residential routers at Orange is
done as follows:

First, the DM system should be given (by its administrator)
a firmware and its target (i.e., subset of devices in this version
of this manufacturer) that will be processed. For each DM
operation, it is potentially required to add specific parameters
(e.g., higher retry tolerance, variable firmwares depending on
subscribed services or owners). Once launched, firmware in-
stallation is remotely done for each device. During that phase,
active monitoring is performed remotely by administrators for
fault detection and tracking. After complete target migration
to the new firmware, a rollback can potentially be triggered if
unexpected device behavior is reported by users. This typical
workflow cannot be adequate for IoT DM if the previously
mentioned challenges are taken into consideration due to high
complexity and failure risk.

In order to address the above-mentioned IoT DM chal-
lenges, this paper makes the following architectural and ex-
perimental contributions:

• A Coordinated multi-loop autonomic architecture
for IoT DM;

• An Operation Generation & Target Identification
loop for automatic target (i.e., subset of devices to
process) identification and operation launching;

• A Decomposition, Enforcement and Tracking loop
for DM operations execution and monitoring;

• A Speed Regulation loop for batch size variation (i.e.,
amount of devices processed in each Decomposition,
Enforcement and Tracking loop iteration) depending
on anomalies and infrastructure load;

• A Proof of Concept for speed regulation and impact
assessment validation.

The rest of this paper is organized as follows. Section 2
describes existing research and industrial work. Section 3 intro-
duces our contribution regarding Autonomic IoT DM. Section
4 discusses our proof-of-concept and experimental results.
Finally, Section 5 presents our conclusion and perspectives.

II. RELATED WORK

We propose to analyze the different categories of DM
solutions, i.e. Home, Mobile, Workstation and IoT, to compare
their proposed features as well as technical implementations.

Our survey on existing work led us to conclude that the
main objective of authors is to optimize executing firmware
updates on constrained embedded boards, therefore focusing
on the process itself and not fleet management or DM platform
operation. These devices are often working using battery power
and do not offer much computing power. Therefore, update
process adaptation (e.g., optimization [9], [10], [11], securing
[12],[13],[14]) is explored for such devices. Existing standard
DM protocol are also studied and compared for IoT usecases
[15],[16],[17].

To the best of our knowledge, no existing research work
aims to automate DM platforms operation for IoT manage-
ment.



Orange LiveObjects Amazon Web Services IoT Microsoft Azure Iot Hub Bosch IoT IBM Watson
Firmware Update 3 3 3 3 3
Configuration Update 3 3 3 3 3
Standard DM Protocol LWM2M + Custom Custom Custom CWMP - OMA-DM - LWM2M Custom
Campaigns 3 3 3 3 3
Execution Speed Regulation 7 7 7 7 7
Dynamic Target Partial 3 3 Partial 7
Reactivity to DM ops. errors 7 Progress Reporting Progress Reporting Progress Reporting Manual

TABLE I. IoT Platform DM Capabilities Survey

A. Industrial Solutions Analysis

From our analysis of existing Home, Mobile, Workstation,
and IoT DM solutions and their features we observe that:

• Home (e.g., Internet residential gateways and TV de-
coders) management does not offer application stores
except Android TV devices therefore partially re-
sembling IoT management in that point. The main
difference with the IoT is that home devices are always
plugged in AC power, usually connected with reliable
network connections and embed some auto-diagnosis
features.

• MDM (Mobile Device Management) differs from IoT
DM by a significant firmware fragmentation [18]
and user-triggered updates. Android will also allow
seamless transition (i.e., no service interruption) from
one firmware to another [19] in its next release. Such
advanced mechanisms cannot easily be implemented
in constrained IoT devices. For instance, IoT hardware
limitations does not allow the separation between
applications (Google Store) and kernel-OS packages
(Android ROM).

• Workstation DM, (according to our internal survey at
Orange), allows operating system (OS) updates and
configurations installation while machines are used
with little acceptable performance degradation. These
updates are applied outside work hours by a remote
reboot command (or by waiting for end users to
reboot). IoT updates could be theoretically differed
but firmware update implementations usually triggers
a reboot at the end. Even though some IoT devices run
UNIX kernels or micro-kernels, they do not include
package management like their desktop and server
counterparts.

Configuration updates and remote troubleshooting of IoT de-
vices has some similarities but also significant differences
with home, mobile and workstation management. The key
difference between those is firmware nature (OS + applica-
tions for some, OS only for others) and update mechanisms
(instant reboot, firmware developed by manufacturer or a
third party). Besides, Home and mobile device manufacturers
keep their firmware closed source and rarely implement DM
API. IoT however is going towards openness via unified
standards (e.g., OneM2M) and protocols (e.g., Open Mobile
Aliance Lightweight Machine to Machine LWM2M) Due to
the aforementioned differences, efforts have been focused to
analyze and identify limitations in telecommunication device
management, and also investigate Orange current management
strategy for its device fleets, in addition to surveying industrial
IoT platforms capabilities and features.

1) Telecommunication Operator Home Device Manage-
ment:

a) Features: Orange current Home DM solution is
internally developed. Its based on CWMP [20] protocol (i.e.,
CPE WAN Management Protocol), also known by the name of
its technical specification document: TR-069. It enables remote
firmware updates, tracking, troubleshooting, and configuration
of Livebox Routers (i.e., Orange’s Internet Gateways) and Set-
Top-Boxes (TV Decoders and Multimedia Gateways). This so-
lution is currently centralized and manages around 20 Millions
of CWMP Devices.

CWMP proprietary platforms (Arris, SagemCom, Axiros)
and open-source solutions (e.g., GenieACS [21], FreeACS
[22]) exist and are being operated for router and other TR-069
compliant devices management. They cover firmware update
and device configuration but do not usually offer advanced
mechanisms such as dynamic device groups, operation tracking
and history.

b) Operation Analysis: Our study of Orange’s strategy
for HomeLAN device management shows this behavior: A
firmware will be installed on a few devices and these will
be manually observed by experts (i.e., who have the ability
to interpret probe data, and trace errors). Afterwards, several
thousands of devices will be migrated and will stay under
observation during approximately ten days among other indi-
cators such as hotline calls for malfunctioning devices. In case
of very high amount of reports by users and field-technicians,
firmware will be declared non-viable by system administra-
tor, the global operation canceled and processed equipment
returned to its original firmware. Otherwise, firmware is set to
be installed in the entire fleet.

2) IoT Device Management:

a) Features: In Table I, we compare existing technical
IoT platform DM capabilities. Our criteria include minimal
DM features (Firmware and Configuration Upgrade), Cam-
paign Launching (i.e., operations on multiple devices of the
fleet), error reactions (ability to react to execution abnormal
behavior from a platform or devices), speed regulation (how
much devices are processed in a given time slot) or dynamic
target (entities that includes devices depending on their current
hardware or software states).

All of existing platforms incorporate at least firmware and
configuration update capabilities. Depending on the platform
standard DM protocols can be supported or custom ones can
be used. Orange Business Services (OBS) Internet of Things
platform Live Objects [23] incorporates DM capabilities. It
is targeting rather constrained devices and enables remote
firmware update. AWS IoT as Microsoft Azure IoT Hub
and Bosch IoT Suite adds to these features dynamic group
capabilities, progression tracking of operations and additional



multiple standard DM protocols support for Bosch IoT Suite.
However, IBM Watson IoT only support firmware and con-
figuration updates on multiple devices via custom proprietary
DM protocols.

b) Operation Analysis: Strategies are defined by system
administrators and are specific to usecases. It depends on
which devices are managed, what hardware capabilities they
have, their network environments and finally how much device
anomaly/error/loss is tolerable. To the best of our knowledge,
no public documentation regarding such strategies exists.

B. Discussion of existing work
A part of existing research work [9], [10], [11], [12], [13],

[14], [15], [16], [17], aims to tackle embedded and security
constraints regarding firmware update process therefore opti-
mizing DM at a device level. None focus on large fleet man-
agement (e.g., numerous IoT gateways, sensors or actuators)
and DM platform operation optimization as a whole (e.g.,
configuring firmware-device association, firmware deployment
strategy).

Feature-wise, the previously mentioned approaches and
solutions for Home Device Management are not suitable for
IoT objects. Indeed, the former are usually very specific de-
signs, thus very efficient for single device types, but unsuitable
for heterogeneous device fleets in various and dynamic envi-
ronments (i.e., constantly changing battery states, computing
load, network signal, activated services). In contrast, traditional
home network devices are usually plugged-in AC power,
mostly wired to a wide-area-network access, and managed by a
single specific owner/vendor DM solution. Industrial solutions
however such as Amazon IoT [24], Azure IoT Hub [25],
Bosch IoT Suite [26], and Orange LiveObjects [23] offer many
characteristics that suit IoT DM such as light communication
cost implementation, multi-protocol and various device type
compatibility.

However, performing large operations still require the inter-
vention of experts. Operation and configuration is done manu-
ally by them (as with Home DM). Indeed, these platforms do
not implement mechanisms that automate target identification
in a fleet, or allow error detection and mitigation operation
execution and tracking. Moreover, device states (e.g., load,
network, software) are not taken into consideration for man-
agement operations and fleet firmware update. The dynamicity
of device states implies several specific configurations to be
deployed on subsets of a given device fleet, even in case of
homogeneous set of devices. Thus, active and complex re-
configuration of such DM solutions is required for correct and
optimal functioning.

These characteristics lead us towards investigating auto-
nomic computing approaches for IoT DM platform operation
and configuration while also automating anomaly detection and
mitigation. We aim to add an autonomic management layer on
top of existing DM platform to enhance their capabilities and
automate their operation.

III. AUTONOMIC IOT DM MANAGERS

We propose an architecture based on three cooperating
autonomic loops respectively for ’operation launching and tar-
get identification’, ’DM operations speed regulation’, and ’on-
device execution while detecting anomalies’. Our proposal is

platform and protocol agnostic, therefore masking existing DM
platforms complexity and specificity. This allows integration of
diverse objects while extending and interfacing with various
DM solutions.

A. Overview

IoT device firmware get released by manufacturers during
device’s commercialization and support period. Configurations
are developed and pushed when required (e.g., new service,
security flaw patching etc..) by the system administrator. These
are not meant to be systematically applied to every compatible
device except for security updates that should be generalized
as soon as possible.

Based on device and firmware information (extracted from
their datamodels), it is possible to infer whether a device
should be updated or not. For instance, when on low battery or
poor network conditions, firmware updates should be avoided
to prevent a corrupted installation that would render the device
definitely out-of-order. Another example is only targeting
relevant devices for a minor firmware or configuration update
(i.e., fixes a bug when certain features are enabled or used).
The main goal is avoiding service interruption and serious
dysfunctions risks induced by DM operations when they are
not critical. Besides, if faulty DM operations (e.g., bugged
firmwares or configurations) are performed on a part of the
fleet or all of it. Consequences can be (but are not limited
to) lower QoS, abnormal behavior and device rendered unable
to function again without manual flashing or replacement. To
avoid generalization of such firmwares and configurations, we
propose active monitoring of DM Operations impact.

To sum up, we aim to integrate part of a system admin-
istrator expertise in an autonomic management layer that will
enhance DM platform operation. Thus, we identify two key
features for a smarter IoT DM:

• Automatic operation launching and target (devices)
identification;

• Automatic anomaly tracking on both of devices and
infrastructure (i.e., hardware and network hosting the
DM platform).

These features are defined to take on three of the main
challenges induced by the massive deployment of IoT devices.
Indeed, our architecture tackles the Heterogeneity of IoT by
allowing multiple device types to be handled by the same
autonomic managers by abstracting the concept DM Command
(i.e., protocol specific elementary) and allow heterogeneous
device types to be handled by the same autonomic managers.
Besides, Dynamicity of IoT devices conditions is also ad-
dressed by our proposal in two ways: using device state active
checking for target identification and operation launching (e.g.,
computing power at a given time, running services, paired
devices, network signal, movement, interference), and anomaly
tracking also allow our proposal to tackle Dynamicity via
active monitoring of defined QoS measures during progressive
operation execution on the fleet. Indeed, deployment speed is
regulated according to operation metrics (e.g., errors, warning).
Scalability is managed via our approach thanks to its ability
to vertically scale (i.e., use more available computing power
to increase execution speed [8]) depending on infrastructure
load.



B. Multi-Loop IoT Device Management Architecture

Figure 1. Global multi-loop architecture for DM

We propose an autonomic control system that will au-
tomatically operate some features of DM platforms, namely
operation generation, target identification, anomaly detection
(e.g., execution errors, infrastructure overload), processing
speed variation. It is based on multiple coordinated control
loops that react to execution errors and warnings faster than
existing human-based approaches.

The architecture is able to tackle IoT challenges (i.e., nu-
merous devices with different context, states and capabilities).
Indeed, it automatically triggers DM operations and identifies
suitable devices to process (i.e., correct initial firmware, battery
and network status). Moreover, it takes into consideration
hardware load and network congestion.

The system aims towards one global goal: ’Keeping a
device fleet compliant and up to date’. It is composed of three
autonomic loops (see Figure 1). First, Operation Generation
& Target Identification gets devices datamodels via IoT Plat-
forms. This allows automatic target identification and operation
launching. Second, speed execution variation is operated by the
Speed Regulation loop that decides, depending on progression,
phase, errors count, and infrastructure response time, among
other measures, which speed should be forwarded to the Oper-
ation Generation & Target Identification manager. Finally, the
Decomposition Enforcement and Tracking manager actually
sends commands to devices and collects execution data and
logs that are compiled and sent to the Speed Regulation loop
to compute.

We distinguish two levels of managers. High level ones
(colored in orange in Figure 1) that are centralized and
concentrate all data for decision-making (operation generation
& target identification, speed regulation). Low level managers
(colored in purple in Figure 1) are meant to be instantiated
multiple times for horizontal scaling.

1) Managed Element: DM platforms and their managed
device fleets, each containing one (or more) device type
(e.g., Netatmo Home Weather Stations, Philips Hue Devices)
represent the managed element of our proposed autonomic
control system.

2) Monitoring: The autonomic management system ob-
serves these data:

• Firmware & Configuration Notifications: they contain
information (e.g., Type or Criticality, Installation re-

quirements) used for prioritization and target identifi-
cation;

• Device Hardware and Software states (extracted from
their datamodel instances), for error and warning
detection;

• Infrastructure Metrics (e.g., DM Servers API’s re-
sponse times) for overloading avoidance;

• Optional: External business information such as
amount of hotline calls.

Firmware information is provided by developers. It takes
the form of a description file manifest that contains information
such as Type (Critical, Major, Minor, Hotfix) or installation
requirements (e.g., migration path: v1.1 to v1.2 to v2.0, mini-
mum battery level). This information is used by our autonomic
system to target the right subset of devices that should be
receiving the DM Operation.

In order to accurately detect QoS variation for warning
diagnosis and error mitigation, we defined a collection of com-
monly available metrics in devices datamodels. These include
an average CPU usage, RAM load, and network interface
occupation. In addition, for accuracy’s sake, we propose a set
of device-type related measures. For instance, an IP Camera
should show a stable video bitrate (within margins).

Infrastructure congestion mitigation is done via response-
time observation. In fact, an increase in that measure implies
a size reduction of sent DM operations for execution.

3) Effectors: In order to keep a fleet up to date and well-
functioning, devices that were targeted will receive a set of
DM commands (i.e., elements composing a DM operation)
generated by the autonomic IoT DM system.

In the following subsections, each autonomic manager has
its input, output, pace and workflow detailed.

C. Decomposition, Enforcement and Tracking
This autonomic loop aims to push DM commands to IoT

platforms while enforcing execution policies (e.g., asserting
max parallel operations possible on servers, operation priori-
tization, retry approaches). It is also responsible for tracking
data (e.g., logs, server response-times, probe data) aggregation.

a) Input: Three entries are necessary for this loop to
run:

• The first input required for this autonomic loop to
operate is a set of ’DM Operation Elements’. They
target a part of identified devices (e.g., 20% of eli-
gible devices for a firmware installation). These are
computed by Operation Generation loop.

• Ongoing devices datamodels are the second input of
this loop, allowing device state assessment during
execution (e.g., detect whether a DM Command is
properly executed or not). These states include current
firmware version, QoS measures, hardware state (e.g.,
battery power, CPU load, free memory).

• The last entry is related to infrastructure metrics (e.g.,
response time, overload alerts, amount of network or
platform errors).

We propose two sets of QoS indicators related to managed
devices: commonly available probe measures in different stan-
dard protocols datamodels (LWM2M [27], USP [28], CWMP
[20]) and a set optional of device-type related indicators.



Figure 2. Decomposition, Enforcement & Tracking autonomic workflow

First ones are as follows:

• Average CPU usage per time slot (e.g., 6 hours);
• Average RAM usage per time slot;
• Storage utilization;
• Amount of network packets sent, received, errors;
• Network signal strength.

Optional data include (but are not limited to):

• Application QoS measures (e.g., video bitrate, abnor-
mal sensor data);

• CPU usage variation per time slot (e.g., for spike
detection).

We aim by analyzing these data for more accurate processing
of hard to detect losses of QoS (e.g., slight variations but ran-
domly happening, big spikes on a certain type of environment).
These are usually assessed via costly physical interventions
from technical services following a customer care call. These
trips should only be triggered for mandatory interventions (e.g.,
battery replacement, hardware failure).

b) Output: Two outputs emanate from this autonomic
loop.

• Error and Warning percentages and rates (in blue in
the scheme): they indicate if a DM Operation have a
negative impact on devices, or if a firmware doesn’t
install properly on a part of the target. These measures
are extracted from devices datamodels and aggregated
before being sent to Speed Regulation loop. It also
integrates QoS measures regarding DM Servers (e.g.,
infrastructure response-time)

• Protocol specific DM Commands (in orange in the
scheme) inferred from ongoing DM Operations Ele-
ments. They are sent to devices via one (or more) DM
Server APIs.

c) Pace: This autonomic loop keeps running while all
awaiting and ongoing DM Operations are not completed or
failed.

d) Workflow: Figure 2 provides a global picture of how
are the DM Operations Elements processed. Its workflow is
composed of the following steps:

• Filtering: First module filters out DM Operations that
does not comply with retry policy. This action avoids
loop’s overflow due to several unsuccessful operations
being queued. This module assesses if on-going DM
Operations are successful based on Execution Success
Statistics. For instance, an operation can expire if a
certain percentage of its commands fail after several
retries. These percentages are extracted from devices
datamodel. Operation nature should be taken in con-
sideration. Indeed, a network configuration patch on a
fleet may be considered failed if not applied on 100%
of the fleet.

• Reordering: Afterwards, reordering component pro-
ceeds in rearranging operations to be treated regarding
their priority. It is either set by the DM Operator for a
manual Operation, or inferred using loop’s knowledge
base. We identified the following order:

1) Critical (e.g., security patch, urgent fix);
2) Major (e.g., new feature release);
3) Minor (e.g., non critical bugfix);
4) Hotfix (e.g., bugfix for rare certain devices in

specific environments).



Figure 3. Operation Generation & Target Identification autonomic workflow

This procedure is needed in order to avoid higher
priority operations to be systematically executed after
on-going massive low priority ones (e.g., a security
patch on a small set of devices must be pushed before
applying a minor hotfix to a complete fleet of sensors).

• Queuing: Next module concerns operations Queuing.
It sets some operation for later execution depending on
node’s hardware capabilities. It computes how much
parallel operations can be executed and tracked. This
mechanism avoids hardware overloading.

• Execution: Once to-be-executed operations are identi-
fied, they are translated to protocol specific DM Com-
mands that are sent by a DM Server to the targeted de-
vices (i.e., Managed Element). For a given autonomic
loop, Device Type and DM Protocol are identified
(e.g., Indoor Geolocalization Station, LWM2M).

• Aggregation: In order to track proper execution of
a given DM Command, the loop pulls execution-
data from devices then Aggregates warning and error
percentages. This data is used for two purposes. First,
retry policy relies on it to discontinue operations when
considered failed. Second, compiled execution data is
pushed to Speed Regulation Autonomic loop allow-
ing it to regulate DM Operations progression. Errors
represent devices that do not respond after updates,
while warnings incorporate DM Server response time
variation and abnormal device behavior (e.g., wrong
values, high memory usage, frequent registration rate).

• Extraction: This entity consists of querying devices
datamodels and extracting required data from it, cur-
rent firmware version and impacted features QoS
measures for a firmware update operation. For a
given device, a datamodel defines its state, hardware
capabilities, and software environment.

D. Operation Generation & Target Identification
This autonomic loop is responsible for DM Operation gen-

eration (based on the managed fleet state) and decomposition
in DM Operation Elements that will be forwarded to the
Enforcement, Decomposition & Tracking loop. Indeed, it is
in charge of target identification (i.e., defining the currently
suitable devices that will (or need to) receive a given firmware
or configuration) while applying computed ongoing processing
speed (via decomposed operations size) based on the decision
of the Speed Regulation loop.

a) Input: Two events can trigger its activation.

• New firmware or configuration notifications and their
description file. This information allows target identi-
fication and priority inference.

• Manually sent DM operations (e.g., Update Compliant
Weather stations to Firmware 3.1, Enable motion de-
tection on all Proximity Sensors). These are basically
notifications in which target is manually defined by
DM Operator (or Administrator).

Besides, another input is required for this autonomic loop to
fulfill its role. Indeed, the computed amount of devices by
Speed Regulation loop is injected for operation speeding up or
down.

b) Output: There is a single output for this autonomic
loop. It consists of DM Operation that aim suitable devices
from the fleet (e.g., Devices with correct network conditions).

c) Pace: This autonomic loop keeps monitoring the
deivce fleet therefore detecting new devices that are not
compliant (new or out-of-date device). If new DM operation
is to be executed or ongoing, it keeps passing through all its
phases until done.

d) Workflow: Figure 3 details this manager’s workflow.
It is composed of the following steps:



• Identification: Once an input received by the loop, this
module triggers target identification based on included
information in firmware description. For instance, a
given system update may only be applied to devices
in the right current version. Another example is min-
imum battery requirement for patching.

• Reordering: Next module is in charge of business
SLA application through reordering. Indeed, in an
open DM platform (e.g., DM as a Service), contracts
with 3rd parties may induce variable SLA agreements.
It is different from Decomposition, Enforcement &
Tracking Loop reordering module. This one aims to
do SLA-based high level prioritization of pending
operations, while the lower entity reorders parts of
ongoing ones.

• Decomposing: Last task treats how fast a DM Oper-
ation progresses depending on warning and errors by
increasing or decreasing its batch size (i.e. amount of
device processed each iteration). This amount is based
on Speed Regulation loop that computes how much
devices should to be treated according to execution
anomalies rates and IoT platform infrastructure load.

E. Speed Regulation
This loop aims to decide whether an ongoing DM Op-

eration should be accelerated, slowed, halted, or stopped. It
takes its decision based on warnings, error rates on devices
received by Decomposition, Enforcement, & Tracking loop,
while also taking into account infrastructure load metrics sent
by the managed IoT Platform.

DM Operations are characterized by their ’State’ and
’Phase’.

• State: Pending (Not Started), Ongoing (being pro-
cessed), Aborted (Stopped due to high error rates),
Finished (successfully executed)

• Phase: We define three possibilities: Test (beginning of
an operation). Cautious (next step, with more devices
yet moderate speed). Generalization (fast phase where
the goal is to process as many devices as possible).
Phases are determined by target percentage that have
been processed.

We propose a rather simple algorithm making that choice
based on the current phase of an operation. Depending on in
which phase it is, the changes of speed will be more or less
significant. Thus, error and warning tolerance are lower in Test
phase. This allows more accurate decision-making for speed
regulation: the earlier anomalies are detected, the more drastic
is the regulation.

a) Input: Input here is error and warning rates arriving
from Decomposition, Enforcement and Tracking autonomic
loop and infrastructure metrics. Both are used for decomposi-
tion rate computation.

b) Output: This loop outputs the right number of suit-
able devices that should be processed in Operation Generation
& Target Identification loop based on error and warning rates.

c) Pace: Each execution cycle of this loop is triggered
by an operation batch finishing in Decomposition Enforcement
& Tracking loop.

Figure 4. Technical Component Architecture

d) Algorithm: This algorithm works as follows for each
operation:

1) If pending: Start Operation
2) If errors > tolerated error rates, Abort
3) Update Phase (depending on progression)
4) Regulate: According to metrics variation and phase :

Speedup or Slowdown

Multiple regulation strategies are possible. Depending on
risk tolerance, variation can be Linear, Power, Polynomial,
Exponential.

IV. PROOF OF CONCEPT & EXPERIMENTAL VALIDATION

In this section we detail our experimental setup in order
to evaluate our approach capability to regulate speed automat-
ically. First, we provide details regarding the technical archi-
tecture of our setup. Afterwards, we present our environment
before describing autonomic loop implementation.

A. Implementation & Experimental Results
For this experimental setup, we used Eclipse Foundation

open-source DM Client and Server (i.e., Leshan Project) [29].
Each autonomic loop is implemented in the form of a Python
script. Inter-loop communication is done via a messaging
queue: RabbitMQ. Figure 4 details components interactions.
Currently, all software modules run on a single physical server
therefore no network latency is present during inter-process
communication. During execution, logs are being pushed to
a database for further analysis and interpretation. ArangoDB
serves as a database for our experimentation, it hosts logs and
past execution traces.

Our internal survey of Orange DM approach leads us to
model it in three phases as follows. Initial phase aiming few
devices (less than 0.01%) of the fleet lasting 48 hours of
manual metrics observation. Second phase targets few percents
of our fleet (i.e., 3%). It lasts 10 days of execution and
surveillance time. Last step is a generalization phase that
installs the update in all available devices at a rate of 6.25%
of the fleet per 24 hour slot (rate defined by experts as a



Existing Orange Home DM Industrial IoT Platforms Autonomic Enhanced Platform
Operation Launching Manual Manual Automatic
Target Identification Manual Manual Automatic
Protocol Support Single Multiple Multiple (Platform Dependent)
Execution Speed Static Static Dynamic
Anomaly Awareness 7 Partial 3
Vertical Scaling 7 Up Up-Down

TABLE II. Comparison Table: Existing vs Autonomic Approach

Figure 5. Autonomic DM: Reaction to DM Platform metric perturbations

reasonable speed that allows manual monitoring to be done
and avoids call-center congestion). For comparison, we take
the latter (Fastest rate) as reference regarding existing home
DM solution execution speed.

B. Test Protocol
In order to test our system, we launch a predefined (150 for

our tests) amount of DM Client that simulates our device fleet.
Afterwards, we trigger a new firmware availability notification
via the messaging queue. This leads Operation Generation &
Target Identification loop to compute which device of the fleet
will receive this firmware and starts the DM operation.

During each DM Operation Element execution its size
is monitored and plotted (i.e., how much devices are to be
processed). This allows to observe what decision how the au-
tonomic system regulates the element size in normal iterations
and perturbed ones. We introduce 2 types of perturbations (red
arrows in Figure 5), positive and negative events.

• Positive variation of infrastructure response times and
execution metrics.

• Negative variation of the aforementioned indicators.

If metrics improve compared to last iteration, accelerate
update deployment by rising Batch Size (i.e., amount of devices
processed in each iteration). Otherwise, it will either slow
down (increasing amount of anomalies), stabilize (if little or
no variation) or abort (if too many errors are detected).

For reference, Orange internal Home Device Management
migration strategy’s peak speed is represented in purple in
Figure 5 (6.25% of the fleet per iteration).

In Figure 5 the number of devices per iteration is plotted as
a function of overall progression. It details how our autonomic
loops based approach reacts to metric variations.

Scenario 1 (Negative variation of metrics) colored in red in
Figure 5 shows how autonomic management reacts to response
time increase (red arrows in plot). Indeed, it slightly lowers
execution speed for one iteration (as seen approx. at 35%
65%). Once infrastructure scaled up (therefore response time
back to a lower value), the system increases batch size again
in next iteration.

Scenario 2 (Positive variation of metrics) colored in blue
in Figure 5 shows how our system manages improving met-
rics coming from DM Infrastructure at 27%, 55% and 90%.
Slopes between these points and next ones is higher (therefore
speed variation too). In fact, autonomic Management interpret
lower response time (and error count) as a sign of resources
availability at the IoT Platform level.

C. Discussion
Table II compares our approach with existing Orange

Home DM Platform and industrial IoT Platforms, DM protocol
support, execution speed adaptation, reaction to anomalies and
vertical scaling.

While Orange Home DM and Industrial IoT rely on system
administrators for operation launching and target identification,
autonomic approach monitors new firmware or configuration
availability by itself and also triggers update operations when a
fleet is not up-to-date anymore (e.g., new device arrival). Both
of current Home and IoT DM platforms respectively support
single or few DM standard protocols. Autonomic Enhanced
approach relies on underlying platform for connectivity. Two
key features of autonomic management are speed regulation
based on error & infrastructure metrics and anomaly aware-
ness. These allow more accurate platform operation and avoid
faulty configuration and firmware to be generalized creating
service interruption. Finally, while Home DM do not offer
vertical scaling [8], since industrial IoT platform are designed
to run on Cloud Infrastructure such as Microsoft and Amazon
ones, they allow up and down scaling. However, since they
rely on the infrastructure beneath them to scale, if not hosted
in an unrestricted elastic cloud environment or in case of
limited resources available, no scaling is possible. Autonomic
Enhanced DM enables full vertical scaling in the DM system
directly by regulating execution speed.

Our tests are realized in a local server with some great
compute capabilities. Yet for experimentation accuracy, real
life testing on IoT platforms such as Azure, AWS or IBM could
make experimental results richer. This requires to have access
to source code and instances of them in order to modify their
behavior and integrate an autonomic management layer on top.
While Vertical Scalability is addressed in this paper, horizontal
scalability is currently in investigation. It is required for mas-
sive (Millions, Billions) amount of IoT device management.
Last, our proposal protocol compatibility is currently enabled
via platform protocol support. Our design was thought to be



protocol agnostic by design. With middleware acting a proxy
translating ourgoing orders from autonomic management to
protocol specific commands this issue should be resolved.

V. CONCLUSION & PERSPECTIVES

In this paper, we address three of identified IoT DM chal-
lenges. Heterogeneity, dynamicity and scalability of devices
makes existing Home, MDM and workstation DM solutions
used at Orange and their industrial IoT counterparts unsuitable
for IoT DM. This is due to their manual operation, static
execution speed and lack of impact detection (e.g., device
errors, infrastructure overload).

We propose a novel autonomic approach for IoT device
management. It relies on:

• A Coordinated multi-loop architecture for IoT DM
• An Operation Generation & Target Identification

loop that automatically targets suitable devices.
• A Decomposition, Enforcement and Tracking loop

that executes DM operations and monitors devices and
infrastructure.

• A Speed Regulation loop that regulates Decomposi-
tion, Enforcement and Tracking speed according to
anomalies and infrastructure load.

• A Proof of Concept for experimental validation.

In terms of perspectives, we aim to validate autonomic
target identification by interfacing our autonomic IoT DM
managers to Orange LiveObjects [23] cloud platform. We have
ongoing work regarding IoT challenges that have not been
addressed in this paper (i.e., Interoperability and Scalability).
Thus, we are investigating our proposal’s scaling capability
through distribution at the edge of the network, that is a
key requirement for massive IoT device management. This
will allow numerous IoT devices management via horizontal
scalability in addition to vertical scalability detailed in this
paper [8]. We are also exploring several millions of devices
simulation on Grid5000 infrastructure [30].
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