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Abstract

ForM a compact Lipschitz Riemannian manifold of dimension at least 2, we
prove a Helmholtz-Hodge decomposition of tangent Lp vector fields as a sum
of a gradient and a divergence free fields; the result holds for restricted range
of p around 2, and for all p ∈ (1,∞) whenM is VMO-smooth. If, moreover,
M is a compact and connected hypersurface having the local Lipschitz graph
property, embedded in Rn+1 with the natural metric, we also establish a
Hardy-Hodge decomposition of a Rn+1-valued vector field of Lp class on M
as the sum of a tangent divergence free field and of two (traces of) harmonic
gradients of Hardy class with exponent p, one from inside and one from
outside M. The latter holds for restricted range of p, and for all p ∈ (1,∞)
when M is C1-smooth.

Keywords: harmonic gradients, boundary value problems,
Helmholtz-Hodge decomposition, Clifford analysis.

1. Notation and preliminaries
sec:DF

Let Rk denote the Euclidean space of dimension k. We write x = (x1, · · · , xk)t
to indicate the coordinates of x ∈ Rk, with superscript “t” to mean “trans-
pose”. We put 〈x, y〉 =

∑
j xjyj, for the scalar product of x, y ∈ Rk, and

|x| = 〈x, x〉1/2 for the Euclidean norm of x. Hereafter, B(x, r) stands for
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the open ball centered at x of radius r and S(x, r) for the boundary sphere,
while r(B) indicates the radius of the ball B. When B is a ball of radius r
and λ a strictly positive real number, we put λB for the concentric ball with
radius λr. A similar convention holds for cubes. We set d(E,F ) to mean
the Euclidean distance between sets E,F ⊂ Rk, and diamE to designate
the diameter of E. The notation is independent of k, but this will cause no
confusion. We put χE for the characteristic function of a set E, and use the
same letter at different places (e.g. “C”) to designate various constants.

1.1. Lebesgue and Sobolev spaces

We let mk denote Lebesgue measure on Rk. If E ⊂ Rk is measurable and
p ∈ [1,∞], we write Lp(E,Rm) for the familiar Lebesgue space of (equivalence
classes of mk-a.e. coinciding) Rm-valued measurable functions on E whose p-
th power is summable, with norm ‖g‖Lp(E,Rm) = (

∫
E
|g|pdmk)

1/p (ess. supE |g|
if p = ∞). If E is open, we set Lploc(E,Rm) to consist of functions f whose
restriction f|K to K lies in Lp(K,Rm), for every compact K ⊂ E. When
m = 1, we simply write Lp(E) instead of Lp(E,R).
For 1 ≤ p <∞, we denote the conjugate exponent with a prime superscript:
1/p+ 1/p′ = 1. The dual of Lp(E,Rm) is Lp

′
(E,Rm) under the pairing

(X, Y )E =

∫
E

〈X, Y 〉dmk X ∈ Lp(E,Rm), Y ∈ Lp′(E,Rm). (1) pairingOpq

If Ω ⊂ Rk is open, we let W 1,p(Ω) be the Sobolev space of functions lying
in Lp(Ω) together with their first distributional derivatives. It is a Banach
space with norm

‖g‖W 1,p(Ω) =
(
‖g‖pLp(Ω) + ‖∇g‖p

Lp(Ω,Rk)

)1/p

,

where ∇g = ( ∂g
∂x1
, · · · , ∂g

∂xk
)t indicates the gradient of g. The space W 1,p

loc (Ω) is

comprised of functions lying in Lploc(Ω) together with their first order deriva-
tives. We let W 1,p

0 (Ω) stand for the closure in W 1,p(Ω) of C∞0 (Ω), the space
of infinitely differentiable functions with compact support in Ω. We denote
by Ẇ 1,p(Rk) the homogeneous Sobolev space of functions in L1

loc(Rk) whose
distributional derivatives lie in Lp(Rk). These lie in W 1,p

loc (Rk) [15, Theorem
6.74], and if we identify functions which differ by an additive constant, then
Ẇ 1,p(Rk) is a Banach space with norm ‖g‖Ẇ 1,p(Rk) = ‖∇g‖Lp(Rk,Rk). When
1 < p <∞, it is in fact the closure with respect to ‖.‖Ẇ 1,p(Rk) of smooth func-
tions with compact support; this follows, e.g. from [36, Thm. 1]. We write
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W 1,p(Ω,Rm) (resp. W 1,p
loc (Ω,Rm), . . . ) for corresponding spaces of Rm-valued

maps. The space W 2,p(Ω) consists of functions in Lp(Ω) whose derivatives of
the first order lie in W 1,p(Ω). The local version is designated by W 2,p

loc (Ω).

1.2. Lipschitz functions

A map f : E → Rm, E ⊂ Rk, is Lipschitz if |f(x) − f(y)| ≤ C|x − y| for
some constant C and all x, y ∈ E. The smallest C for which this holds is the
Lipschitz constant of f , denoted by cf . It is easily checked that f maps sets
of Lebesgue measure zero to sets of Lebesgue measure zero if m ≥ k. More
generally, if B ⊂ E is Borel, thenHs(f(B)) ≤ csfHs(B) whereHs indicates s-
dimensional Hausdorff measure, see e.g. [21, 56] for a definition of Hausdorff
measure and the fact that Hk essentially coincides with mk on Rk. If, in
addition, f is injective and its inverse f−1 : Im f → E ⊂ Rk is also Lipschitz,
then we say that f is bi-Lipschitz. In this case, f is a homeomorphism onto
its image, and if E is open then necessarily m ≥ k, by invariance of the
domain [42, chap. 10, sect. 62]. If each x ∈ E has a relative neighborhood
Ox in E such that the restriction f|Ox is Lipschitz, we say that f is locally
Lipschitz.
When Ω ⊂ Rk is open and f : Ω→ Rm is Lipschitz, a result by Rademacher
asserts that f is differentiable mk-a.e on Ω. Clearly, ‖Df(x)‖ ≤ cf , where
Df(x) indicates the derivative of f at x and ‖.‖ the operator norm. Moreover,
the distributional derivatives of a Lipschitz function agree with the pointwise
derivatives mk-a.e., hence the space of Rm-valued Lipschitz functions on a
bounded open set Ω ⊂ Rk coincides with W 1,∞(Ω,Rm), see [51, Ch. V, Sec.
6 and Ch. VIII, Thms. 1&3].
Let Ω ⊂ Rk be open and f : Ω → Rm be Lipschitz, with m ≥ k. At each
x ∈ Ω where f is differentiable, we let Jkf(x) be the k-dimensional Jacobian,
namely the square root of the sum of the squares of the k × k determinants
of Df(x), when the latter is identified with its matrix in the canonical bases
of Rk and Rm (the familiar Jacobian matrix). If f is also injective, then the
area formula [21, Thm. 3.2.3] and the extendability of Lipschitz functions
[21, Thm. 2.10.43] together imply that, for every integrable function u on Ω,∫

Ω

u(x)Jkf(x)dmk(x) =

∫
f(Ω)

u(f−1(y)) dHk(y). (2) area

Note that when m = k, the identity (2) reduces to the standard change of
variable formula for Lipschitz reparametrizations.
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Let Ω ⊂ Rk be open and f : Ω→ Rm be bi-Lipschitz. For x ∈ Ω, w ∈ Rk\{0}
and t > 0 small enough, we obviously have that

|w| = |f
−1(f(x+ tw))− f−1(f(x))|
|f(x+ tw)− f(x)|

|f(x+ tw)− f(x)|
t

,

therefore we get on letting t→ 0 that if f is differentiable at x, then

|w|
cf−1

≤ |Df(x)(w)| ≤ cf |w|. w ∈ Rk, (3) diffpi

It follows in particular from (3) that Df is injective. If f : Ω → Ω′ is a
bi-Lipschitz homeomorphism between open sets in Rk and g : Ω′ → Rm is
Lipschitz, then the chain rule holds: D(g ◦ f)(x) = Dg(f(x))Df(x) for a.e.
x ∈ Ω; it is so because the set of x ∈ Ω such that g is not differentiable at
f(x) has Lebesgue measure zero.

1.3. BMO and VMO functions
BMOgen

For Ω ⊂ Rk an open set, the space BMO(Ω) of functions with bounded mean
oscillation on Ω consists of those h ∈ L1

loc(Ω) such that

sup
Q⊂Ω

inf
b∈R

1

mk(Q)

∫
Q

|h(x)− b| dmk(x) <∞, (4) defBMOTc

where the supremum is over all open cubes Q with closure Q ⊂ Ω. If we let

hQ :=
1

mk(Q)

∫
Q

h(x) dmk(x)

be the mean of h on Q, we get that
∫
Q
|h − hQ| dmk ≤ 2

∫
Q
|h − b| dmk for

every b ∈ R, therefore (4)is equivalent to

‖h‖BMO(Ω) := sup
Q⊂Ω

1

mk(Q)

∫
Q

|h(x)− hQ| dmk(x) <∞. (5) defBMOT

One may restrict to cubes with sides parallel to the axes, or replace cubes
by balls, as this will define equivalent quantities (i.e. whose ratio with (5) is
bounded above and below by strictly positive constants). This follows from
the work in [47, 37, 50]. Note that ‖ · ‖BMO(Ω) is a norm modulo additive
constants only.
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The space VMO(Ω) of functions with vanishing mean oscillation is the closed
subspace of BMO(Ω) comprised of those h for which

lim
ε→0

sup
Q⊂Ω

mk(Q)<ε

1

mk(Q)

∫
Q

|h(x)− hQ| dmk(x) = 0. (6) defVMO

The space VMOloc(Ω) consists of functions h : Ω → R whose restriction to
any relatively compact open subset Ω′ lies in VMO(Ω′). It is equivalent to
require that each x ∈ Ω has an open neighborhoodOx with h|Ox ∈ VMO(Ox).
We denote by VMO1,∞(Ω) the subspace of W 1,∞(Ω) comprised of functions
whose first order derivatives lie in VMO(Ω). The space VMO1,∞

loc (Ω) consists
of functions inW 1,∞

loc (Ω) whose derivatives are in VMOloc(Ω). It is elementary
that L∞(Ω) ∩ VMO(Ω) is an algebra. So, by Leibnitz’s rule, VMO1,∞(Ω)
and VMO1,∞

loc (Ω) are also algebras.
We write BMO(Ω,Rk), VMO(Ω,Rk) and so on for Rk-valued functions
whose components lie in the space indicated.

1.4. Compact Lipschitz Riemannian manifolds
defgen

A Lipschitz manifold of dimension n is a second countable Hausdorff topo-
logical spaceM equipped with an open cover {Vl}, each element of which is
homeomorphic to an open subset of Rn under a map ψl : Vl → Rn, in such
a way that changes of charts ψl1 ◦ ψ−1

l2
: ψl2(Vl1 ∩ Vl2) → ψl1(Vl1) are locally

Lipschitz. We call ∪l(Vl, ψl) an atlas for M, and two atlases are equivalent
if their union is again an atlas. The collection of all atlases equivalent to
the initial one defines the corresponding Lipschitz structure on M. It is no
loss of generality to assume that M is embedded into Rm for some m ≥ n,
moreover we may pick the atlas so that the charts ψl : Vl → Rn, as well as
the parametrizations ψ−1

l : ψl(Vl) → Vl ⊂ Rm, are locally Lipschitz; in fact
m = n(n + 2) will do, see [43, Thm.4.9]. In particular, M is a metric space
with metric induced by Euclidean distance on Rm, which is compatible with
the local metrics induced by the Euclidean sets ψl(Vl), see [43].
We assume throughout that n ≥ 2 and restrict ourselves to compact M,
hence we may refine a given atlas (Vl) (i.e. replace it by another atlas (Uj, φj)
such that each Uj is contained in some Vl with φj = ψl|Uj) to get an equivalent
atlas (Uj, φj), where j ranges over a finite set {1, · · · , N} and φj : Uj → Bj

is bi-Lipschitz onto a bounded open set Bj ⊂ Rn for each j. We call such
an atlas a B-atlas, for short. Clearly, we may assume in addition that Bj is
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smooth and connected (e.g. an open ball). Note that a B-atlas is Lipschitz,
meaning that changes of charts are Lipschitz, not just locally Lipchitz.
A point x ∈ M is said to be singular if there is j ∈ {1, · · · , N} such that
x ∈ Uj and φ−1

j : Bj → Rm is not differentiable at φj(x). A point which is
not singular is called regular. The set of regular points depends on the atlas,
not just on the Lipschitz structure. Below, we ignore this dependence, for
our results will not involve a particular atlas. Accordingly, we (improperly)
denote the set of regular points by RegM and put RegBj = φj(RegM∩Uj).
The set of singular points is small in that its image in any chart has Lebesgue
measure zero, by Rademacher’s theorem. From (3), we get that Dφ−1

j (y) is
injective for y ∈ RegBj.
By definition, the tangent space TxM⊂ Rm at x ∈M is {0} if x is singular,
and TxM = ImDφ−1

j (φj(x)) if x ∈ Uj ∩ RegM. In the latter case, each
X ∈ TxM has a local representative in the chart (Uj, φj), which is the unique
v ∈ Rn such that X = Dφ−1

j (φj(x))v. A map g : M → Rk is said to be

differentiable at x ∈ RegM if g ◦ φ−1
j is differentiable at φj(x), and the

derivative Dg(x) : TxM→ Rk is defined by Dg(x)(X) = D(g ◦φ−1
j )(φj(x))v,

with v the local representative of X. By the chain rule, the definitions do not
depend on j such that x ∈ Uj, and if we use another B-atlas they will agree
with the present ones at any point which is regular for both atlases. Note
that dimTxM = n at regular points. Lipschitz-smooth partitions of unity
subordinated to an open cover of M can be constructed as in the smooth
case.
A Riemannian metric Γ assigns to each x ∈ M a positive definite scalar
product Γx : TxM× TxM → R such that, for each j ∈ {1, · · · , N} and

1 ≤ i, k ≤ n, the local metric tensor g
(j)
i,k defined a.e. on Bj by

g
(j)
i,k (y) := Γx

(
∂φ−1

j

∂yi
(y) ,

∂φ−1
j

∂yk
(y)

)
, y = (y1, · · · , yn)t ∈ RegBj, (7) defMTg

is Lebesgue measurable and, for some constants c1, c2 > 0 independent of x,
we have the inequality:

c1|X|2 ≤ Γx(X,X) ≤ c2|X|2, X ∈ Tx(M). (8) RgM

At singular points, Γx is the trivial bilinear form on the zero vector space.
For X, Y ∈ TxM with x ∈ RegM∩ Uj, the scalar product Γx(X, Y ) can be

written as a symmetric bilinear form with matrix (g
(j)
i,k ) in terms of the local
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representatives at y = φj(x):

Γx(X, Y ) = vt(g
(j)
i,k (y))w, X = Dφ−1

j (y)v, Y = Dφ−1
j (y)w. (9) locmetg

The determinant of (g
(j)
i,k ) will be denoted by g(j). Since φ−1

j is bi-Lipschitz,
(3) and (8) together imply the existence of constants c, C such that

0 < c ≤ g(j) ≤ C, 0 < cIn ≤ (g
(j)
i,k ) ≤ CIn, (10) detlocg

where In is the identity matrix of size n×n and the second set of inequalities
is understood between symmetric matrices. Alternatively, we could postulate
(10) and then (8) would hold. Since there are finitely many charts Uj, the
constants c, C in (10) can be made independent of j.
Associated with a Riemannian metric is the volume measure σ onM, whose
image under φj is, for each j, absolutely continuous with respect to mn on

Bj with density
√
g(j). To check that it exists, pick a Lipschitz partition of

unity (ϕj) subordinated to (Uj)1≤j≤N and, for a continuous f :M→ R, let∫
M
fdσ =

∑
j

∫
Bj

(
(ϕjf) ◦ φ−1

j (y)
)√

g(j)(y) dmn(y). (11) integralsg

By the chain rule and the change of variable formula, (11) does not depend
on the B-atlas nor the partition of unity we choose, and defines a bounded
linear form on continuous functions for the sup-norm, thanks to (10). Thus,
by the Riesz representation theorem, σ is a Radon measure. We denote by
Lpσ(M) or Lpσ(M,R`) the corresponding Lebesgue spaces, and we drop the
subscript σ if the Riemannian metric is understood. Clearly, E ⊂ M is
negligible for σ if and only if φj(E ∩ Uj) has Lebesgue measure zero for all

j. Moreover, h ∈ L1
σ(M) if and only if

√
g(j)(h ◦ φ−1

j ) ∈ L1(Bj) for each j,

that is if and only if h ◦ φ−1
j ∈ L1(Bj), in view of (10). We often omit the

superscript (j) and simply write gi,k or g when a single chart is involved.
For example, when Γ is the Euclidean scalar product in Rm, we get on iden-
tifying Dφ−1

j with the Jacobian matrix that (gi,k) = (Dφ−1
j )tDφ−1

j , hence

g = (Jnφ
−1
j )2 by the Binet-Cauchy formula. In this case, we see from (2)

that σ = HnbM, the restriction to M of n-dimensional Hausdorff measure.
The volume measure σ is doubling, meaning that for some constant C0:

σ(B(ξ, r) ∩M) ≤ C0 σ(B(ξ, r/2) ∩M) < +∞, ξ ∈M, r > 0, (12) doubling
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where B(ξ, r) indicates a Euclidean ball in Rm. Indeed, by the compactness of
M, there is δ > 0 such that every relative ballB(ξ, δ)∩M, ξ ∈M, is included
in some Uj. Then B(φj(ξ), δ/cφ−1

j
) ⊂ φj(Uj), and for r < δ/(cφjcφ−1

j
):

B(φj(ξ), r/cφ−1
j

) ⊂ φj(B(ξ, r) ∩M) ⊂ B(φj(ξ), rcφj) ⊂ φj(Uj), (13) incB

where we used that cφjcφ−1
j
≥ 1. Letting r0 := min1≤j≤N δ/(cφjcφ−1

j
), we

deduce from (10), (11) and (13) that

c′rn ≤ σ(B(ξ, r) ∩M) ≤ C ′rn, ξ ∈M, r < r0, (14) Ahlfors

where c′, C ′ depend on n, δ, max1≤j≤N{cφj , cφ−1
j
} and the constants c, C in

(10). Now, (12) follows at once from (14) and the fact that σ(M) < ∞.
Because σ is regular, Equation (14) itself expresses that the n-dimensional
manifold M is Ahlfors-David regular in Rm, see [31, Sec. 1]. The doubling
property makes M a space of homogeneous type when equipped with the
Euclidean distance induced by Rm and the volume measure σ, see [9].
Differential forms can be defined as in the smooth case: a 0-form is a real-
valued function on M and, for k ≥ 1, a k-form ω associates to each x ∈ M
an alternating k-linear map ω(x) : (TxM)k → R. In this paper, we only deal
with vector fields and we could do away with forms entirely. However, vector
fields correspond to 1-forms under the identification TxM ∼ T ∗xM via Γx,
and in order to connect Sobolev spaces of functions onM, defined in Section
2, with more general spaces defined in terms of forms classically found in the
literature[53, 24], we briefly discuss them.
The local representative of a k-form ω in the chart φj : Uj → Bj is the k-form
(φ−1

j )∗(ω) on Bj which is the pullback of ω under φ−1
j at regular points:

(φ−1
j )∗(ω)(y) := ω(φ−1

j (y)) ◦ (Dφ−1
j (y)× · · ·×Dφ−1

j (y)), y ∈ RegBj, (15) replocc

where the product map has k factors. We set (φ−1
j )∗(ω) = 0 if y ∈ Bj\RegBj.

Rearranging (15), we get an expression of the form

(φ−1
j )∗(ω)(y) =

∑
i1<i2,··· ,<ik

a
{φj}
i1,··· ,ik(y) dyi1 ∧ · · · ∧ dyik , y ∈ RegBj, (16) coefflocf

where the dyi are dual to the canonical basis of Rn and the coefficients a
{φj}
i1,··· ,ik

are functions on Bj that transform naturally under changes of coordinates.
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We identify k-form which coincide σ-a.e. or, equivalently, whose coefficients

agree mn-a.e. on Bj. We say that ω is of Lp-class if the a
{φj}
i1,··· ,ik in (16) lie in

Lp(Bj) for each j.
Integrating n-forms goes as in the smooth case. Namely, given a n-form
µ(y) = a(y)dy1 ∧ · · · ∧ dyn on Bj with a ∈ L1(Bj), we set

∫
Bj
µ =

∫
Bj
a dmn.

Then, if ω is a n-form of L1-class on M, we pick a Lipschitz partition of
unity (ϕj) subordinated to the Uj and we set

∫
M ω =

∑N
j=1

∫
Bj

(φ−1
j )∗(ϕjω).

The definitions are independent from the B-atlas and the partition of unity
we use, thanks to the change of variable formula.
For 0 ≤ k < n, we say that a k-form ω of Lp-class on M is p-flat if there is
a k + 1-form dω of Lp-class (the distributional exterior derivative of ω) such
that, for all j ∈ {1, · · · , N},∫

Bj

(φ−1
j )∗(ω) ∧ dµj = (−1)k+1

∫
Bj

(φ−1
j )∗(dω) ∧ µj (17) extderSobf

whenever µj is a smooth (n− k− 1)-form compactly supported on Bj. Here,
the exterior derivative dµj is the usual one and (17) defines (φ−1

j )∗(dω) as a
(n − k − 1)-current on Bj; the assumption that ω is p-flat means that this
current is the pullback under φ−1

j of a (k + 1)-form of Lp-class on M, which
is called dω. This definition is consistent, for on φj2(Uj1 ∩ Uj2) it holds that

d
(

(φj1 ◦ φ−1
j2

)∗
(

(φ−1
j1

)∗(ω)
))

= (φj1 ◦ φ−1
j2

)∗
(

(φ−1
j1

)∗(dω)
)
, (18) consflat

see [55, Thm. 9C] when p =∞ and [24, Thm. 2.2] for 1 ≤ p ≤ ∞, compare
also [53, Prop.1.2]. Thus, dω does not depend on the B-atlas we choose. By
convention, a n-form of Lp-class is p-flat with zero exterior derivative. With
the present definition, the ∞-flat forms are the usual flat forms on M, see
[55, 24, 53]. Now, if f : M → R is a function, it is easy to see that it is
p-flat (as a zero form) if and only if f ◦ φ−1

j ∈ W 1,p(Bj) for all j, and that

(φ−1
j )∗(df) =

∑
i(∂(f ◦ φ−1

j )/∂yi)dyi.

1.5. VMO-smooth manifoldsVMOSM
We say a manifold M of dimension n is VMO-smooth if there is an atlas
∪l(Vl, ψl) such that changes of charts ψl1 ◦ ψ−1

l2
: ψl2(Vl1 ∩ Vl2) → ψl1(Vl1) lie

in VMO1,∞
loc (ψl2(Vl1∩Vl2),Rn) for all l1, l2. We call ∪l(Vl, ψl) a VMO-smooth

atlas, and two such atlases are equivalent if their union is again a VMO-
smooth atlas. The collection of all VMO-smooth atlases equivalent to the
initial one defines the corresponding VMO-smooth structure on M.
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VMO-smooth manifolds are smoother than Lipschitz manifolds, but a little
rougher than C1-manifolds. Being a particular case of Lipschitz manifold,
a VMO-smooth manifold has a Lipschitz embeding into Rm for some m ≤
n(m+2), but increasing m as much as (n+1)2 if necessary, we can ensure that
M embeds in Rm with a VMO-smooth atlas ∪l(Vl, ψl) such that the ψl are
locally bi-Lipschitz and the parametrizations ψ−1

l lie in VMO1,∞
loc (ψl(Vl),Rm),

see Lemma 7.4. When M is compact, any such atlas can be refined into a
B-atlas ∪j(Uj, φj)1≤j≤N such that φj1 ◦φ−1

j2
: φj2(Uj1 ∩Uj2)→ φj1(Uj1) lies in

VMO1,∞(φj2(Uj1 ∩ Uj2),Rn) (not just VMO1∞
loc (φj2(Uj1 ∩ Uj2),Rn)) and φ−1

j

in VMO1,∞(φj(Uj),Rm). We call it a VMO-smooth B-atlas.
If M is VMO-smooth with Riemannian metric Γ, and for some VMO-
smooth atlas ∪l(Vl, ψl) the local metric tensor lies in VMOloc(ψl(Vl),Rn×n)
for each l, then the same is true of any VMO-smooth atlas, see Lemma 7.5.
Thus, it makes sense to call such a Γ a VMO metric on M. If, in addition,
M is compact, then every VMO-smooth B-atlas can be refined into another
one, say ∪j(Uj, φj)1≤j≤N , such that (g

(j)
i,k ) ∈ VMO(φj(Uj),Rn×n) for each j.

1.6. Lipschitz hypersurfaces with the local graph property
LHGP

In Sections 4, 5 and 6, we restrict to the case of a compact and connected
hypersurface M ⊂ Rn+1 having the local Lipschitz graph property, meaning
that it is locally the graph of a Lipschitz function. This is a particular type
of Lipschitz manifold for which a B-atlas (Uj, φj) may be chosen so that
φj : Uj → Bj is of the form (Pn ◦Lj)|Uj , where Lj is a linear isometry of Rn+1

and Pn : Rn+1 → Rn is the projection onto the first n-components, while
φ−1
j = L−1

j ◦ (In,Ψj)
t for some Lipschitz map Ψj : Bj → R. We call such an

atlas a G-atlas, for short. Note that φj extends naturally to a globally defined
linear map Rn+1 → Rn. We may assume in addition that Bj is smooth and
connected (for instance a ball in Rn), but such extra assumptions will be
made explicit.
Being a closed hypersurface, M is orientable [29, Cor. 3.46]. If in addi-
tion it is connected, then its complement has two components: the inte-
rior denoted by Ω+, which is bounded, and the exterior denoted by Ω−,
which is unbounded [29, Cor. 3.45]. For ∪j(Uj, φj) a G-atlas on M, we
make the convention that for some numbers aj < bj and εj > 0 such
that aj < infy∈Bj Ψj(y) − εj and bj > supy∈Bj Ψj(y) + εj, the image by

L−1
j of the hypograph {(x, t) : x ∈ Bj, aj ≤ t < Ψj(x)} (resp. epigraph
{(x, t) : x ∈ Bj,Ψj(x) < t ≤ bj}) is included in Ω+ (resp. Ω−) for every j.
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This can always be achieved by composing Lj with a rotation and Ψj with
an affine transformation.
The open set Cj := L−1

j (Bj × (aj, bj)), whose intersection with M is Uj, will
be called a coordinate cylinder (over Uj). We orient its axis in the direction
of the unit vector v−j := L−1

j (0, · · · , 0, 1)t pointing towards Ω−, and we set
v+
j = −v−j for the opposite unit vector pointing towards Ω+. We shall assume

that the bases Bj×{aj} and Bj×{bj} of the coordinate cylinders have closure
contained in Ω+ and Ω−, respectively. This can be ensured by truncating the
cylinders to slightly shorter length and adding a small constant to Ψj.
The local Lipschitz graph property ofM is equivalent to the fact that Ω± has
the so-called uniform cone property; i.e., each boundary point (that is: each
point ofM) has a neighborhood V such that the translate of a fixed positive
truncated circular cone at any point of V ∩ Ω± is contained in Ω±, see [27,
Thm. 1.2.2.2]. In this connection, the following construction is useful. For
y, z ∈ Rn+1 with |z| = 1, and θ ∈ (0, π/2), we put Cθ,z(y) for the open right
circular positive cone with vertex y, axis directed along z and aperture angle
2θ, cut off to some suitable length. For simplicity, we do not make the length
explicit in the notation, but we shall indicate how to choose it when needed.
For (Uj, φj) a G-atlas and Vj an open cover of M such that V j ⊂ Uj (such
a cover can always be found), then

Cθ,v±j (ξ) \ {ξ} ⊂ Cθ+ε,v±j (ξ) ⊂ Cj ∩ Ω±, ξ ∈ Vj, (19) inclucone

provided that θ ∈ (0, π/2) and ε > 0 satisfy tan θ < tan(θ + ε) < 1/M
with M := maxj cΨj , while Cθ,v±j (ξ) is cut off to length strictly less than

d(φj(V j),Rn \Bj)/ tan(θ + ε). We call Cθ,v±j a natural cone for Ω± (relative

to Uj and Vj), meaning that its axis is v±j and its aperture is strictly less than
2 tan−1(1/M), while it is truncated to sufficiently small length that (19) holds
for some ε > 0.
Note that when ξ ∈ Vj and r > 0 is small enough, the cone Cθ,v±j (x) is

included in Ω± for each x ∈ B(ξ, r) ∩ Ω±, and since the Vj cover M this
evidences the uniform cone property.
For (Uj, φj) a G-atlas, identifying Dφ−1

j (x) with its (n+ 1)×n matrix in the
canonical bases of Rn and Rn+1, we get if ψj is differentiable at y ∈ Bj that

Dφ−1
j (y) = L−1

j

(
In , ∇Ψj(y)

)t
, (20) laformphi

hence x ∈ RegM if and only if ψj is differentiable at φj(x) whenever x ∈ Uj.
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By restriction to TxM, the Euclidean scalar product in Rn+1 induces a Rie-
mannian metric on M whose local metric tensor in a chart is a rank-1 per-
turbation of the identity:

(gi,k)(y) =
(
Dφ−1

j (y)
)t
Dφ−1

j (y)

= In +∇Ψj(y)
(
∇Ψj(y)

)t
, y ∈ RegBj.

(21) format

Using (21), the determinant of (gi,k) is easily computed to be

g(y) = 1 + |∇Ψj(y)|2, y ∈ RegBj, (22) calculg

so the volume measure σ = HnbM has image
√

1 + |∇Ψj|2 dmn under φj.
The outward unit normal nx to M at x can be defined σ-a.e. in measure-
theoretic terms: recall the measure-theoretic normal to a set E ⊂ Rn+1 at x
is the only unit vector v (if it exists) such that

lim
r→0

r−(n+1)mn+1

(
B(x, r) ∩ {y /∈ E, (y − x).v < 0}

)
= 0 (23) mtn1

and
lim
r→0

r−(n+1)mn+1

(
B(x, r) ∩ {y ∈ E, (y − x).v > 0}

)
= 0. (24) mtn2

Now, the local graph property implies that the measure theoretic normal nx
to Ω+ at x ∈ Uj exists when Ψj is differentiable at y = φj(x), and is equal
to L−1

j (−∇Ψj(y)t, 1)t/
√

1 + |∇Ψj(y)|2, see [56, Rem. 5.8.3]. Conversely,
if (23), (24) hold with E = Ω+ at x ∈ Uj, it is not difficult to see that the
Lipschitz function Ψj must be differentiable at φj(x) and that ImDΨj(φj(x))
is orthogonal to v. This makes for an intrinsic definition of RegM in this
case.
By definition (see [56, 5.8.4]), the measure-theoretic boundary of a set E ⊂
Rn+1 consists of those x ∈ Rn+1 such that

lim sup
ρ→0

mn+1(B(x, ρ) ∩ E)

mn+1(B(x, ρ))
> 0 and lim sup

ρ→0

mn+1(B(x, ρ) \ E)

mn+1(B(x, ρ))
> 0.

(25) defthb

We record for later use that the measure theoretic boundary of Ω± is M.
This is obvious, for instance from the uniform cone property.
We say that a compact hypersurface M ⊂ Rn+1 has the local VMO1,∞

graph property if it is locally the graph of a VMO1,∞-function. This is
a particular type of VMO-smooth manifold with the local Lipschitz graph

12



property, for which a G-atlas may be found so that Ψj ∈ VMO1,∞(Bj)
for all j. In this case, the Euclidean scalar product on Rn+1 induces by
restriction a VMO Riemannian metric on M, thanks to (21) and the fact
that L∞(Bj) ∩ VMO(Bj) is an algebra.

2. Sobolev spaces and vector fields
SobGD

Hereafter, we let M be a compact Lipschitz manifold of dimension n, as-
sumed without loss of generality to be embedded in Rm, and we pick a
B-atlas (Uj, φj)1≤j≤N in the sense of Section 1.4. We assume that M is en-
dowed with a Riemannian metric Γx : TxM× TxM → R, and σ indicates
the associated volume measure. We recall the notation Lp(M) or Lp(M,Rk)
for the corresponding Lebesgue spaces on M.
A σ-measurable map M → Rm will be called a vector field on M, and
we identify vector fields that coincide a.e. A vector field X is said to be
tangent if X(x) ∈ TxM for σ-a.e. x. The subspace of tangent vector fields
in Lp(M,Rm) is denoted by T p(M). It is closed because X is tangent if and
only if, for each j, all (n+1)×(n+1) minors of the matrix (Dφ−1

j ◦φj(x), X(x))
vanish for σ-a.e. x ∈ Uj, while a convergent sequence in Lp(M,Rm) has a
subsequence converging pointwise a.e. We endow T p(M) with the norm

‖G‖T p(M) =

(∫
M

(
Γx(X,X)

)p/2
dσ(x)

)1/p

, (26) equivNT

where the integral is replaced by essential sup (Γ(X,X))1/2 if p =∞. By (8),
the norm ‖.‖T p(M is equivalent to the restriction of ‖.‖Lp(M,Rm) to T p(M).
For 1 ≤ p <∞, the dual of T p(M) is isometrically T p′(M) under the pairing

(X, Y )Γ =

∫
M

Γx(X, Y )dσ(x), X ∈ T p(M), Y ∈ T p′(M). (27) pairingT

Indeed, applying the Schwarz inequality to Γx and Hölder’s inequality, we get
that L : T p′(M)→ (T p(M))∗ given by L(Y )(X) = (X, Y )Γ, is a contractive
linear map, and taking X = (Γ(Y, Y ))p

′/2−1 Y shows that L is an isometry.
To see it is surjective, observe that every Φ ∈ (T p(M))∗ induces in local
coordinates a linear form on Lp(Bj,Rn) which can be represented as f 7→∫
Bj
fhjdmn for some hj ∈ Lp

′
(Bj,Rn), by standard duality. Then, the vector

field Hj ∈ T p
′
(M) defined by Hj = Dφ−1

j ((g−1
i,k )hj/

√
g(j)) on Uj and 0

elsewhere satisfies Φ(X) = L(Hj)(X) for those X ∈ T p(M) that vanish
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off Uj. Letting (ϕj) be a Lipschitz partition of unity subordinated to (Uj),
we find that L(

∑
j ϕjHj) = Φ. Now, since L is injective and surjective, it is

an isomorphism by the open mapping theorem, as announced.
If Φ : M → R is differentiable at some regular x, the derivative DΦ(x)
belongs to T ∗xM, thus it can be represented as DΦ(x)(X) = Γx(∇Φ(x), X)
for all X ∈ TxM and some unique vector ∇Φ(x) ∈ TxM, called the gradient
of Φ at x. It follows from (9) and the chain rule that, in the chart (Uj, φj), the
local representative v(y) of ∇Φ(x) at y = φj(x) is related to the Euclidean
gradient ∇(Φ ◦ φ−1

j )(y) of Φ ◦ φ−1
j at y by the formula:

v(y) = (gi,k)
−1(y)∇(Φ ◦ φ−1

j )(y), Dφ−1
j (y)v(y) = ∇Φ(x), y = φj(x).

(28) corgrad

The Sobolev space W 1,∞(M) consists of real-valued Lipschitz functions on
M, endowed with the norm

‖ψ‖W 1,∞(M) = ‖ψ‖L∞(M) + ‖∇ψ‖T∞(M). (29) defSobinf

Note that indeed ∇ψ ∈ T ∞(M) when ψ is Lipschitz on M, which is equiv-
alent to say that ψ ◦ φ−1

j is Lipschitz on Bj for each j.
For 1 ≤ p < ∞, the Sobolev space W 1,p(M) is the Banach space obtained
as the completion of W 1,∞(M) with respect to the norm:

‖ψ‖W 1,p(M) =
(
‖ψ‖pLp(M) + ‖∇ψ‖pT p(M)

)1/p

. (30) defSob

Note that ψ ∈ W 1,p(M) if and only if, for each chart (Uj, φj) the function
ψ ◦ φ−1

j belongs to the Euclidean Sobolev space W 1,p(Bj): using a Lips-
chitz partition of unity, this follows easily from (28), (10) and the fact that
Lipschitz functions are dense in W 1,p(Bj), see [1, Thm. 3.17]. Moreover∑

j ‖ψ ◦ φ
−1
j ‖W 1,p(Bj) is a norm equivalent to ‖ψ‖W 1,p(M). Passing to the

limit with respect to a sequence (Φk) of Lipschitz functions in (28), we get
that each ψ ∈ W 1,p(M) has a well-defined gradient ∇ψ ∈ T p(M). Note
that ∇ψ(x) needs not be a directional derivative of ψ in the strong sense if
p ≤ n [51, Ch.VIII]. Instead, the gradient is characterized by the property
that ψ is p-flat as a 0-form, with distributional exterior derivative dψ given
by dψ(x)(X) = Γx(∇ψ(x), X) for X ∈ Tx(M).
Proceeding in local coordinates, one easily gets a Sobolev embedding the-
orem for W 1,p(M) from the well-known Euclidean version [1, thms. 4.12].
Namely, if p > n then W 1,p(M) embeds continuously in Hölder-continuous
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functions onM with exponent 1−n/p (for the metric induced onM by Rm

is compatible with the Euclidean metrics on the Bj), while for 1 ≤ p < n
the embeding is into Lp

∗
(M) with p∗ = np/(n − p), and W 1,n(M) embeds

in L`(M) for ` ∈ [1,∞).
Likewise, we get an analog of the Rellich-Kondrachov theorem [1, thm. 6.3]:
for p ≤ n the embedding W 1,p(M) → L`(M) is compact when ` ∈ [1, p∗).
Moreover, W 1,p(M) is reflexive for 1 < p <∞, as it identifies with a closed
subspace of Lp(M)× Lp(M,Rm) under the map ψ 7→ (ψ,∇ψ). With these
results in mind, the argument given in [30, Lemma 3.8 & Prop. 3.9] for
smooth M applies without change to give us:∥∥∥∥ψ − 1

σ(M)

∫
M
ψdσ

∥∥∥∥
Lp∗ (M)

≤ C‖∇ψ‖T p(M), ψ ∈ W 1,p(M), 1 < p < n.

(31) Poincareinegr

From (31) we easily obtain a Poincaré inequality for 1 < p <∞:

Poincarep Lemma 2.1. For 1 < p <∞, there is a constant C = C(M, p) such that∥∥∥∥ψ − 1

σ(M)

∫
M
ψdσ

∥∥∥∥
Lp(M)

≤ C‖∇ψ‖T p(M), ψ ∈ W 1,p(M). (32) Poincareineg

Proof. Since p∗ > p and σ(M) is finite, we get (32) from (31) and Hölder’s
inequality if p < n. Next, assume that p ≥ n and pick ψ ∈ W 1,p(M). If we
set r = np/(n + p), then 1 < r < n ≤ p = r∗ except when n = p = 2 (then
r = 1). Save in this case, applying (31) with p replaced by r and observing
from Hölder’s inequality that ‖∇ψ‖T r(M) ≤ C ′‖∇ψ‖T p(M), we get (32). To
deal with the pending case p = n = 2, pick q ∈ (1, 2) so that q∗ > 2 and
write (31) with q instead of p. Using Hölder’s inequality on both sides yields
(32) in this case as well.

We denote with Gp(M) the subspace of T p(M) comprised of gradients of
W 1,p(M)-functions. That is: G ∈ Gp(M) if and only if there is f ∈ W 1,p(M)
with G = ∇f . Of course, f is defined up to an additive constant only.

gradfer Lemma 2.2. For 1 < p <∞, the space Gp(M) is closed in T p(M).

Proof. Let (Gk)k∈N be a Cauchy sequence in Gp(M) with Gk = ∇fk for some
gk ∈ W 1,p(M), normalized so that

∫
M fkdσ = 0. Then, Gk converges to a

limit Y in T p(M), and we need to show there is h ∈ W 1,p(M) with ∇h = Y .
By Lemma 2.1 fk is bounded in Lp(M), so we can extract a subsequence,
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again denoted by fk, that converges weakly to some h ∈ Lp(M). Writing
(17) with k = 0, ω = fk and dfk(X) = 〈Gk, X〉, we see upon passing to the
limit for fixed j as k → ∞ that X 7→ 〈Y,X〉 is the distributional exterior
derivative of h, as desired.

For 1 < p <∞ and 1/p+ 1/p′ = 1, the dual W−1,p′(M) of W 1,p(M) may be
realized as the completion of Lp

′
(M) for the norm

‖f‖W−1,p′ (M) := sup
‖ψ‖W1,p(M)=1

∣∣∣∣∫
M
fψ dσ

∣∣∣∣ ;
the proof goes as in the Euclidean case by the reflexivity of W 1,p(M), see [1,
Sec. 3.13].
Let now δ : T p′(M) → W−1,p′(M) be the adjoint of the gradient operator
∇ : W 1,p(M) → T p(M) mapping ψ to ∇ψ. The operator δ is minus the
divergence operator on T p′(M). We denote by Dp′(M) the kernel of δ. By
construction Dp′(M) is a closed subspace of T p′(M), the elements of which
are said to be divergence-free.
It follows at once from the definition that Dp′(M) is the space orthogonal to
Gp(M) under the pairing (27). It is then a consequence of the Hahn-Banach
theorem [16, Thm. 7.1] that, for X ∈ T p(M), the norm of the coset Ẋ in the
quotient space T p(M)/Gp(M) is the norm of the functional D 7→ (X,D)Γ

on Dp′(M). In particular, if X ∈ T p(M) is orthogonal to Dp′(M) via (27),
it holds that X ∈ Gp(M).
By (28) and the divergence formula, we get on using a Lipschitz-smooth
partition of unity subordinated to (Uj)1≤j≤N that a tangent vector field V ∈
T p′(M) lies in Dp′(M) if and only if, for every j, its local representative v
in the chart φj : Uj → Bj is a distributional solution in Lp

′
(Bj,Rn) to the

equation:

div(
√
g(j) v) = 0, Dφ−1

j (y)(v(y)) = V (x), y = φj(x), (33) locdf

where div =
∑n

i=1
∂
∂yi

is the Euclidean divergence operator.

3. The Helmholtz-Hodge decomposition
sec:HH

A Helmholtz-Hodge decomposition is a direct sum decomposition, in a given
regularity class on a manifold, of all tangent vector fields into gradient vector
fields and divergence-free vector fields, see [8] for some motivation and history.
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In Euclidean space, it was first established by Helmholtz for smoothly decay-
ing vector fields in R3, and later carried over to vector fields in Lp(Rn,Rn)
for 1 < p < ∞, see [45, 35]. That is, if Dp(Rn) denotes the space of those
X ∈ Lp(Rn,Rn) such that divX = 0 in the distributional sense, and if
Gp(Rn) ⊂ Lp(Rn,Rn) designates the subspace of gradients of functions in
Ẇ 1,p(Rn), then there is a topological sum:

Lp(Rn,Rn) = Gp(Rn)⊕Dp(Rn), 1 < p <∞. (34) HeHoRk

The sum is indeed direct, because no nonconstant harmonic function on Rn

has Lp derivatives. On a bounded C1-smooth domain Ω ⊂ Rn, a similar
decomposition holds, namely:

Lp(Ω,Rn) = Gp0(Ω)⊕Dp(Ω), 1 < p <∞, (35) HeHoRk1

where Dp(Ω) denotes the space of divergence-free vector fields in Lp(Ω,Rn),
in the distributional sense, and Gp0(Ω) ⊂ Lp(Rn,Rn) is the space of gradients
of functions in W 1,p

0 (Ω); when ∂Ω merely has the Lipschitz graph property,
(35) still holds, at least for 3/2 − ε < p < 3 + ε where ε > 0 depends on Ω,
see [20, Thm. 11.2].
On a bounded C∞-smooth domain, decomposition (35) is actually a byprod-
uct of Hodge theory, asserting that a k-form on Ω is uniquely the sum of three
terms: (i) the exterior derivative of a (k− 1)-form with vanishing tangential
component on the boundary ∂Ω, (ii) the co-differential of a (k + 1)-form
with vanishing normal component on ∂Ω, (iii) a harmonic k-form [35, Thm.
10.5.1]. Here, the co-differential is the adjoint to the exterior derivative for
the Hodge scalar product, and when applied to a 1-form it yields the di-
vergence of the vector field representing the form via the Euclidean scalar
product. As co-differentiating twice yields the zero map and since harmonic
forms have zero co-differential, we see that (35) indeed follows from the Hodge
decomposition at k = 1. Note that the Helmholtz-Hodge decomposition is
less precise, as it merges (ii) and (iii) into a single, divergence-free term.
Similar considerations apply on a C∞-smooth, compact and oriented Rie-
mannian manifold M, where classical Hodge theory was extended to forms
of Lp-class in [49]. When applied to 1-forms, it entails again that

T p(M) = Gp(M)⊕Dp(M), 1 < p <∞, (36) HeHodecMp

see [39, 3] for generalizations to the noncompact case.
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On a closed oriented manifold which is merely Lipschitz-smooth, Hodge the-
ory was carried over to forms of L2-class in [53], as a tool to develop index
theory for signature operators. This far reaching generalization implies of
course the existence of a Helmholtz-Hodge decomposition in T 2(M), but the
latter is obvious anyway for it reduces to the decomposition of the Hilbert
space T 2(M) as the sum of the closed subspace G2(M) and its orthogonal
complement. When p 6= 2, Hodge theory for forms of Lp -class on a Lipschitz
manifold has apparently not been adressed so far.
Our goal in this section is to establish a Helmoltz-Hodge decomposition for
tangent vector fields of Lp-class on a compact (not necessarily oriented) Lip-
schitz Riemannian manifold M, at least when p is close enough to 2, and
in fact for all p ∈ (1,∞) if, in addition, the metric tensor in local coordi-
nates is of VMO-class. This result will be used in Section 6 to establish the
Hardy-Hodge decomposition on Lipschitz hypersurfaces with the local graph
property. We shall need a non-Euclidean version of (35), namely:

Lp(Ω,Rn) = Gp0(Ω)⊕DpA(Ω), (37) HeHoRkA

where Ω ⊂ Rn is a bounded open set whose boundary is locally a Lipschitz
graph, Gp0(Ω) is the space of gradients of functions in W 1,p

0 (Ω), and

DpA(Ω) = {D ∈ Lp(Ω,Rn) : div(AD) = 0} (38) DA

in the distributional sense on Ω, for some function A : Ω→ Rn×n, valued in
the set of positive-symmetric matrices, satisfying a strict ellipticity condition:

0 < c1In ≤ A ≤ C1In a.e. on Ω. (39) ellipticcond

Clearly, (37) holds as a topological sum if and only if the equation

div(A∇u) = div(AF ) (40) divVMO

can be solved uniquely with respect to u ∈ W 1,p
0 (Ω) for each F ∈ Lp(Ω),

because then the natural map Gp0(Ω)⊕DpA(Ω)→ Lp(Ω,Rn) is surjective and
injective, hence a homeomorphism by the open mapping theorem. This is
actually the case when p ∈ (q′, q), for some q > 2 depending on Ω and
the constants in (39), see [44, Cor. 4]. If in addition Ω is C1-smooth and
the coefficients of A lie in VMO(Ω), then we may take q = ∞ [17]. Note
that, by reason of homogeneity, the exponent q as well as the norms of
the projections in (37) remain unchanged under a dilation of Ω and the
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corresponding dilation of the argument of A. In particular, if Ω ⊂ Rk is a
ball, these are uniformly bounded in terms of k and the constants in (39),
independently of the radius of that ball.

HHMG Theorem 3.1 (Helmholtz-Hodge decomposition). LetM be a compact Lip-
schitz manifold endowed with a Riemannian metric. There exists ε ∈ (0, 1/2]
such that, for |1/2− 1/p| < ε, the following topological sum holds:

T p(M) = Gp(M)⊕Dp(M). (41) HeHodecM

If, in addition, M is a compact, VMO-smooth manifold equipped with a
VMO Riemannian metric, then (41) holds for 1 < p <∞.

Proof. Let (Uj, φj)1≤j≤N be a B-atlas such that Bj := φj(Ui) is an open
ball in Rn for each j. Define a positive matrix-valued function Aj on Bj

by Aj :=
√
g(gi,k)

−1; here, for simplicity, we do not show the dependence
of g, gi,k does not show the dependence on j. Observe from (10) that Aj
satisfies (39) on Bj, where c1, C1 can be made independent of j. Thus, by
the discussion after (39), there is q > 2 such that (37) holds for all p ∈ (q′, q)
when Ω is set to Bj and A is set to Aj, for every j ∈ {1, · · · , N}. We shall
prove that (41) holds if p ∈ (q′, q). The case p = 2 is trivial, as pointed
out already, therefore we need only consider the cases where p ∈ (2, q) and
p ∈ (q′, 2).
We first show that when p ∈ (2, q), each member of T p(M) can uniquely be
written in the form G+D, with G ∈ Gp(M) and D ∈ Dp(M). By the open
mapping theorem, this will establish (41) for such p, because M is compact
so that T p(M) ⊂ T 2(M) , whence the sum Gp(M)+Dp(M) is direct as it is
direct for p = 2. To proceed, fix F ∈ T p(M). A fortiori F ∈ T 2(M), hence
we can write F = G + D with D ∈ D2(M) and G ∈ G2(M), say G = ∇f
where f ∈ W 1,2(M). Let (ϕj) a Lipschitz partition of unity subordinated
to the (Uj). Set h = f ◦ φ−1

j and ηj = ϕj ◦ φ−1
j , so that h ∈ W 1,2(Bj)

and ηj ∈ W 1,∞(Bj). Let Fj, Dj be the vector fields on Bj which are local
representatives of F , D; i.e., F|Uj = Dφ−1

j (Fj) and D|Uj = Dφ−1
j (Dj). Since

φ−1
j is bi-Lipschitz. we have that Fj ∈ Lp(Bj,Rn) and Dj ∈ L2(Bj,Rn), by

(3). Consider the two vector fields on Bj given by W =
√
gFj and X =

(gi,k)Dj which lie in Lp(Bj,Rn) and L2(Bj,Rn) respectively, thanks to (10).
In local coordinates, we see from (28) that the relation ϕjF = ϕjG+ϕjD is
equivalent to

ηjA
−1
j W = ηj∇h+ ηjX on Bj, (42) decs
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where Aj was defined above. It follows from (33) that div(AjX) = 0, in the
distributional sense on Bj, hence div(AjηjX) = 〈∇ηj, AjX〉 lies in L2(Bj)
because ∇ηj ∈ L∞(Bj,Rn) and Aj satisfies (39). Thus, by elliptic regularity
on the smooth domain Bj (see e.g. [26, Thm. 9.15]), there is u ∈ W 2,2

0 (Bj)
such that ∆u = div(AjηjX), where ∆ =

∑n
k=1 ∂

2
yk

is the Euclidean Laplacian.

Setting Z = ηjX − A−1
j ∇u, we get that Z ∈ L2(Bj,Rn) with divAjZ = 0,

and we can rewrite (42) as

ηjA
−1
j W + h∇ηj − A−1

j ∇u = ∇(hηj) + Z on Bj, (43) decs1

Note that hηj ∈ W 1,2
0 (Bj) since ηj is compactly supported in Bj, therefore

(43) expresses the unique decomposition of the left-hand side in G2
0 ⊕ D2

Aj
.

We claim that ϕjf ∈ W 1,α(M) whenever the left-hand side of (43) lies in
Lα(Bj,Rn) with α ∈ (2, p]. Indeed, by (37), this left-hand side can then be
written uniquely as ∇h1 + D1 where h1 ∈ W 1,α

0 (Bj) and D1 ∈ Lα(Bj,Rn),
with div (AjD1) = 0. As Lα(Bj,Rn) ⊂ L2(Bj,Rn) because Bj is bounded,
we thus get two decompositions of the left-hand side in G2

0 ⊕ D2
Aj

and they
must coincide: ∇(hηj) = ∇h1. Consequently ∇(hηj) ∈ Lα(Bj,Rn), hence
hηj = (ϕjf)◦φ−1

j belongs to W 1,α(Bj) by the Poincaré inequality. Since ϕjf
is supported in Uj it follows that ϕjf ∈ W 1,α(M), thereby proving the claim.
We now use the claim inductively to prove that f ∈ W 1,p(M).
If n = 2, then h ∈ L`(Bj) and ∇u ∈ L`(Bj,R2) for every ` ∈ [1,∞), by
the Sobolev embedding theorem. Hence, the left-hand side of (43) lies in
Lp(Bj,R2), since ∇ηj is bounded and Aj satisfies (39). Thus, we get from
the claim that ϕjf ∈ W 1,p(M), and since this holds for each j ∈ {1, · · · , N}
we get that f =

∑
j(ϕjf) ∈ W 1,p(M), as desired.

Suppose next that n ≥ 3 and set p1 := 2n/(n − 2). By the Sobolev embed-
ding theorem, we get that h ∈ Lp1(Bj) and ∇u ∈ Lp1(Bj,Rn), so the left-
hand side of (43) belongs to Lp1(Bj,Rn) and the claim implies that ϕjf ∈
W 1,min{p,p1}(M) for each j. If p1 ≥ p we are done, otherwise f ∈ W 1,p1(M),
implying that G = ∇f and D = F − G belong to T p1(M). Consequently
h ∈ W 1,p1(Bj) and X ∈ Lp1(Bj,Rn) for each j, and the latter implies that
div(AjηjX) = 〈∇ηj, AjX〉 ∈ Lp1(Bj), whence u ∈ W 2,p1

0 (Bj) by elliptic reg-
ularity on Bj. If p1 > n then h and ∇u are bounded on Bj, and if p1 = n
they lie respectively in L`(Bj) and L`(Bj,Rn) for every ` ∈ [1,∞), by the
Sobolev embedding theorem again. So, if p1 ≥ n then the left-hand side of
(43) a fortiori lies in Lp(Bj,Rn), and the claim implies that ϕjf ∈ W 1,p(M),
implying since this holds for every j that f ∈ W 1,p(M), as desired. If on the
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contrary p1 < n, we set p2 := np1/(n−p1) and repeat the previous argument
replacing p1 by p2. As the sequence pk+1 = npk/(n−pk) will overshoot n or p
after finitely many steps, this reasoning eventually leads us to the conclusion
that f ∈ W 1,p(M), so that G and D = F −G lie in T p(M), as wanted.
Having proven (41) for p ∈ (2, q), we get it in the range of exponents (q′, 2)
by duality, because (41) implies that every linear form on T p(M) is uniquely
the sum of a form vanishing on Gp(M) (i.e. a member of Dp′(M)) and a
form vanishing on Dp(M) (i.e. a member of Gp′(M)).
Finally, if M is VMO-smooth with VMO Riemannian metric, we may pick
∪j(Uj, φj)1≤j≤N to be a VMO-smooth B-atlas such that (g

(j)
i,k ) belongs to

VMO(Bj,Rn×n) for each j, where Bj := φj(Uj) is a ball. In view of (10),

Lemma 7.2 implies that
√
g(j)(g

(j)
i,k )−1 lies in VMO(Bj,Rn×n). With the

previous notation, this means that Aj belongs to VMO(Bj,Rn) for all j,
therefore we may take q = ∞ in the above proof to conclude that (41) is
valid for 1 < p <∞.

4. Some properties of harmonic functions on Lipschitz domains
hfl

Let M ⊂ Rn+1 be a compact and connected hypersurface with the local
Lipschitz graph property. We endowM with the Riemannian metric induced
by Euclidean scalar product on Rn+1, and denote by σ the corresponding
volume measure (i.e. σ = HnbM). We write Ω+ and Ω− for the interior and
exterior components of Rn \M, respectively. Lipschitz domains referred to
in the title of this section are those of the form Ω±, for some M as above.
To ξ ∈M and α > 1, we associate two nontangential regions of approach to
ξ, one from Ω+ and one from Ω−, given by

RΩ±

α (ξ) = {x ∈ Ω± : |x− ξ| < α d(x,M)}. (44) rNT

The nontangential maximal function (associated with α) of h : Ω± → Rk is
NΩ±
α h :M→ [0,+∞] defined by

NΩ±

α h(ξ) = sup
x∈RΩ±

α (ξ)

|h(x)|, ξ ∈M. (45) defNT

We say that h converges nontangentially to a at ξ ∈M from Ω± , abbreviated

as h
n.t.Ω±→ a at ξ, if for each α > 1 we have that

lim
x→ξ, x∈RΩ±

α (ξ)
h(x) = a. (46) defntc
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It can happen that ξ /∈ RΩ±
α (ξ), and in fact RΩ±

α (ξ) may even be empty for
some ξ and α, but since the measure-theoretic boundary of Ω± is M (see
Section 1.6) such ξ form a set of σ-measure zero [33, Prop. 2.3.2]. Hence
(46) makes sense, at least for σ-a.e ξ. The property that NΩ±

α h ∈ Lp(M)
holds for every α > 1 if it holds for one of them. This fact, which depends
on the Ahlfors-David regularity ofM (see (14)), is stated in [33, Prop. 2.12]
for 0 < p <∞, but the proof works for p =∞ as well. More precisely, if for
f :M→ R we let f ∗ : R+ → R+ indicate its distribution function:

f ∗(λ) = σ ({ξ ∈M : |f(ξ)| > λ}) , λ ≥ 0, (47) distfun

then [33, Eqn. 2.1.19] shows that (NΩ±
α h)∗ and (NΩ±

β h)∗ are equivalent for
any α, β > 1, up to a multiplicative constant depending on α, β and the
constants in (14). Thus, as the Lp-norm is computed from the distribution
function in an increasing manner, a minor variation of [33, Prop. 2.1.2] is:

compfmd Lemma 4.1. Let 1 < α < β and h : Ω± → Rk. To each p ∈ [1,∞], there is
a constant C1 depending on α, β, and Ω such that

‖NΩ±

α h‖Lp(M) ≤ ‖NΩ±

β h‖Lp(M) ≤ C1‖NΩ±

α h‖Lp(M). (48) inegcentcomp

The previous notions of nontangential limit and maximal function are intrin-
sic, in that the definition of RΩ±

α (ξ) in (44) does not depend on a particular at-
las forM. However, seminal works on the Dirichlet and regularity problems,
like [34, 11, 10, 12, 54], use another notion of nontangential approach, taken
locally in a chart of some G-atlas, on the “natural” cones Cθ,v±j (ξ) defined

in Section 1.6. Estimates obtained in each chart can then be glued together
using a regular family of cones to obtain global estimates, as in [12, 54, 2].
With the notation set up in Section 1.6, a regular family of cones for Ω± is
a map associating to every ξ ∈M a truncated cone Cθ,±z(ξ)(ξ) ⊂ Ω±, where
θ is independent of ξ and z : M → Sn is a continuous function into the
n-dimensional unit sphere Sn ⊂ Rn+1, in such a way that for some G-atlas
(Uj, φj), some cover (Vj) of M with V j ⊂ Uj for each j, every ξ ∈ M and
all j for which ξ ∈ Vj, the cone Cθ,±z(ξ)(ξ) cut off to suitable length indepen-
dent of ξ and j contains a natural cone Cθ1,±v±j (ξ) relative to Uj, Vj, and is

contained in another natural cone Cθ2,±v±j (ξ), with θ1 < θ2 independent of ξ:

Cθ1,v∓j (ξ) \ {ξ} ⊂ Cθ,±z(ξ)(ξ) ⊂ Cθ,±z(ξ)(ξ) ⊂ Cθ2,v∓j (ξ) ⊂ Cj ∩ Ω±. (49) incC
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The existence of a regular family of cones is folklore, but it seems very hard
to see a proof1 of this technical result pertaining more to convex geometry
than to analysis. We provide such a proof in Lemma 7.8, in which the G-atlas
(Uj, φj) associated to the regular family of cones is such that Bj = φj(Uj)
is a ball while Vj is of the form φ−1

j (µBj), where µ ∈ (0, 1) can be made
arbitrary small with respect to the length of Cj. This last fact is important
to glue together certain estimates from works like [34, 10], because if µ is
small enough with respect to the length of Cj then the cordinate cylinders
over Vj have starlike intersection with Ω± about points on the axis of Cj,
close to the base.
Associated to a regular family of cones {Cθ,±z} is a nontangential maximal
operator N±θ,z, defined for h : Ω± → Rk by N±θ,zh(ξ) = supx∈Cθ,±z(ξ) |h(x)|.
We have thus two nontangential maximal functions for h, namely N±θ,zh and

NΩ±
α h, and the question arises of how they compare. It follows easily from

(19) that Cθ,±z(ξ)(ξ) ⊂ RΩ±

1/ sin ε(ξ), therefore ‖N±θ,zh‖Lp(M) ≤ c‖NΩ±
α h‖Lp(M)

for 1 ≤ p ≤ ∞ with c = c(α, ε,Ω), by Lemma 4.1. That a reverse inequality
holds to the effect that ‖N±θ,zh‖Lp(M) and ‖NΩ±

α h‖Lp(M) are in fact equivalent,
at least when h is harmonic, is tacitly implied in several works; see, e.g.
[13]. Because the proof is nontrivial and we could not find a discussion in
the literature, we provide an argument through Lemmas 7.9, 7.10. With
these facts at our disposal, we freely recast estimates established in terms
of ‖N±θ,zh‖Lp(M) as estimates in terms of ‖NΩ±

α h‖Lp(M), and vice-versa. We
also get in the same stroke that such estimates do not depend, up to a
multiplicative constant, of the regular family of cones we choose.
Next, recall for z ∈ Ω+ the harmonic measure ω+

z , which is the Borel proba-
bility measure on M such that

∫
ϕdω+

z = u+
ϕ (z) where, for each continuous

function ϕ : M→ R, we let u+
ϕ be the solution to the Dirichlet problem in

Ω+ with data ϕ; that is, u+
ϕ is harmonic in Ω+ and continuous on M∪ Ω+

with (u+
ϕ )|M = ϕ; see, e.g. [4, Thms. 6.3.8 & 6.4.1 & 6.6.4]. Note that u+

ϕ

uniquely exists because Ω+ is regular for the Dirichlet problem, since it sat-
isfies the exterior cone condition [4, Thm. 6.6.15]. That the latter is fulfilled
follows at once from the local Lipschitz graph property.
For z ∈ Ω−, we define ω−z to be the positive Borel measure on M such that∫
ϕdω−z = u−ϕ (z) where, for a continuous function ϕ :M→ R, we let u−ϕ be

1Works we know either take this fact for granted or quote unpublished material, or else
mention references in which we could not locate the result.
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the solution to the Dirichlet problem in Ω−∪{∞} with data ϕ; that is, u−ϕ is
harmonic in Ω− ∪ {∞} and continuous onM∪Ω− ∪ {∞} with (u−ϕ )|M = ϕ.
Here, recall since n + 1 ≥ 3 that a harmonic function u on Ω− is harmonic
at infinity if lim|z|→∞ |u(z)| = 0 [6, Thm. 4.8], and that u−ϕ uniquely exists
because {∞} is a regular point of ∂∞Ω− := M ∪ {∞} [4, Thm. 6.7.1].
However, ω−z is not a probability measure, as it is the restriction to M of
harmonic measure on Ω− if z ∈ Ω−, while ω−∞ is the zero measure.
The following construction is useful to relate ω−z to harmonic measure of a
bounded Lipschitz domain: suppose without loss of generality that 0 ∈ Ω+

and consider the inversion I(x) = x/|x|2. It is a smooth conformal involution
of the “sphere” Rn+1∪{∞}, mapping Ω− onto a bounded domain Ω1, and the
Kelvin transform K[u](x) := |x|1−nu(I(x)) establishes an involutive one-to-
one correspondence between harmonic functions u on Ω−∪{∞} and harmonic
functions on Ω1 [6, Ch. 4]. For x0 ∈ M and x ∈ B(x0, ρ) ⊂ Ω− with ρ > 0
small enough, the image under I of a cone Cθ,v(x) ⊂ Ω−, truncated to
sufficiently small length r, contains a cone Cθ1,DI(x0)(v)(I(x)) ⊂ Ω1 truncated
to sufficiently small length r1, where θ1, r1 > 0 are independent of x, by the
smoothness and conformality of I. Thus, Ω1 has the uniform cone property
since Ω− does, implying that its boundary ∂Ω1 is locally a Lipschitz graph.
Let ωΩ1

x indicate harmonic measure on ∂Ω1 at x ∈ Ω1, and put uΩ1
Φ for the

solution to the Dirichlet problem in Ω1 with continuous boundary values
Φ : ∂Ω1 → R; that is: uΩ1

Φ (x1) =
∫

ΦdωΩ1
x1

for x1 ∈ Ω1. For every continuous

ϕ :M→ R, it is readily checked that u−ϕ = K[uΩ1

|Id|1−nϕ◦I ], as both sides solve

the classical Dirichlet problem on Ω− with boundary values ϕ onM and 0 at
infinity; here, Id denotes the identity map on ∂Ω1. Hence, we get for x ∈ Ω−

that
∫
M ϕ(ξ)dω−x (ξ) = |x|1−n

∫
∂Ω1
|ζ|1−nϕ ◦ I(ζ)dωΩ1

I(x), which yields:

dω−x (ξ) =
|x|1−n

|ξ|1−n
dI∗(ωΩ1

I(x)), x ∈ Ω−, ξ ∈M, (50) CVFHM

where I∗(ωΩ1

I(x)) is the image of ωΩ1

I(x) under I; i.e., I∗(ωI(x))(E) = ωΩ1

I(x)(I(E))
for every Borel set E ⊂M.
Note that z 7→ ω±z (E) is harmonic in Ω±, and one can see from Harnack’s
inequalities (see e.g. [4, Thm. 1.4.1]) that for each z0 ∈ Ω± and any com-
pact neighborhood K of z0 in Ω±, there is a constant C = C(M, K) with
ω±z (E)/C ≤ ω±z0(E) ≤ Cω±z (E) for all z ∈ K. Hence, ω±z1 and ω±z2 are mutu-
ally absolutely continuous for any z1, z2 ∈ Ω±, with bounded Radon-Nykodim
derivative of each one with respect to the other. In particular, one can speak
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of a subset ofM of harmonic measure zero. Also, it is worth observing from
(50) and the Harnack inequalities that dωe := lim|x|→∞ |x|n−1dω−x exists in the

strong sense as a positive measure on M, with dωe(ξ) = |ξ|n−1dI∗(ωΩ1
0 )(ξ).

In fact, ωe is the so-called Newtonian equilibrium measure on Ω+ ∪M, com-
pare [32, Ch. IV, Sec. 5, §20].
The following fundamental fact regarding harmonic measure on Lipschitz
domains was proven in [10]:

HMDa Lemma 4.2. For z ∈ Ω±, the measures ω±z and σ are mutually absolutely
continuous. Moreover, the Radon-Nykodim derivative h±z := dωz/dσ lies in
L2(M), locally uniformly with respect to z ∈ Ω±.

For the bounded domain Ω+, Lemma 4.2 quickly follows from [10, Cor. to
Thm. 3] and the observation that h+

z /C ≤ h+
z0
≤ Ch+

z for z in a compact
neighborhood of z0, by previous remarks on harmonic measure. In view
of (50), assuming without loss of generality that 0 ∈ Ω+, the case of Ω−

follows by applying what we just said to the bounded domain Ω1 = I(Ω+),
while observing that the inverse image of Hnb∂Ω1 under I has differential
|ξ|−2ndσ(ξ) because, for x ∈ Rn+1 \ {0}, the derivative DI(x) is a similarity
transformation with ratio |x|−2, see [6, Prop. 4.2].
Below, we record three properties of harmonic functions in Lipschitz domains.
The first one is very well known:

cvntp1 Lemma 4.3. Let u be harmonic in Ω± and such that NΩ±
α u(ξ) < ∞ for

ξ ∈ E ⊂M. Then, u has nontangential limit from Ω± at σ-a.e. ξ ∈ E.

For the bounded domain Ω+, Lemma 4.3 follows from the combination of
[34, Sec. 5, Thm] and [11, Thm. 1]. The case of Ω− reduces to the one of
a bounded domain by excising out the complement of a large ball. Let us
mention that the lemma is valid more generally on the class of nontangentially
accessible domains, see [14, Thm. 6.4].
The second property that we set forth is a global version of results from [10].

Dirichlet1 Theorem 4.4. For 2 ≤ p ≤ ∞, to each ϕ ∈ Lp(M) there is a unique
harmonic function u±ϕ : Ω± → R (including at infinity in the case of Ω−)
converging nontangentially to ϕ(ξ) from Ω± at σ-a.e. ξ ∈M, and such that
‖NΩ±

α u±ϕ‖Lp(M) <∞. It holds that u±ϕ (z) =
∫
ϕdω±z , moreover there is a con-

stant C = C(α, p,Ω) such that ‖NΩ±
α u±ϕ‖Lp(M) < C‖ϕ‖Lp(M). If u± is har-

monic in Ω± (including at infinity in the case of Ω−) and ‖NΩ±
α u±‖Lp(M) <

∞, then u± = u±ϕ for some ϕ ∈ Lp(M).
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Proof. Let ϕ ∈ Lp(M) and put u±ϕ (x) :=
∫
ϕdω±x . As p ≥ 2, we get from

Lemma 4.2 that u±ϕ is well-defined and harmonic in Ω±. Let {Cθ,±z} be a reg-
ular family of cones, associated to a G-atlas (Uj, φj)1≤j≤N ofM, with cover Vj
such that Vj ⊂ Uj, see Lemma 7.8. For ξ ∈ Vj and θ2 as in (49), consider the
natural cones Cθ2,v+

j
(ξ) and put Mθ2u

+
ϕ (ξ) := supx∈C

θ2,v
+
j

(ξ) |u+
ϕ (x)|. When

2 ≤ p < ∞, it follows from [10, Thm.2] that
∫
Vj
Mθ2u

+
ϕdσ ≤ C1‖ϕ‖Lp(M)

for some C1 = C1(M, Vj, θ2, p), and summing over j we get, since the Vj
cover M, that ‖N±θ,zu+

ϕ‖Lp(M) ≤ C2‖ϕ‖Lp(M), whence ‖NΩ+

α u+
ϕ‖Lp(M) ≤

C‖ϕ‖Lp(M) where C = C(α, p,Ω); if p = ∞, the corresponding estimate
holds with C = 1 as ω+

x is a probability measure, absolutely continuous with
respect to σ. As (u+

ϕ )|M = ϕ when ϕ is continuous, and since continuous
functions are dense in L2(M) where any converging sequence has a subse-
quence converging pointwise a.e., the previous estimate implies that u+

ϕ has
nontangential limit ϕ from Ω+ at σ-a.e. point ofM, as soon as ϕ ∈ L2(M).
Conversely, let u be harmonic in Ω+ with ‖NΩ+

α u‖Lp(M) < ∞ for some
p ∈ [2,∞). Pick j1 ∈ {1, · · · , N} and some open set Wj1 ⊂ Uj1 in M with
V j1 ⊂ Wj1 ⊂ W j1 ⊂ Uj1 . By the uniform cone property discussed after (19),
there is β > 1 such that ξ+εv+

j1
∈ RΩ+

β (ξ) for ε > 0 small enough and ξ ∈ Wj1 .

By Lemma 4.1 ‖NΩ+

β u‖Lp(M) ≤ c < ∞, so
∫
Wj1
|u(ξ + εv+

j1
)|pdσ(ξ) < c

a fortiori. Then, [10, Thm. 3] implies there is fj1 ∈ Lp(M) such that
limΩ+3x→ξ u

+
fj1

(x) − u(x) = 0 for every ξ ∈ Vj1 (the decisive fact here is

that the limit needs not be nontangential). Define a harmonic function
hj1 in Ω+ by hj1(x) :=

∫
fj1χM\Vj1dω

+
x . By Lemma 7.11, it holds that

limΩ+3x→ξ hj1(x) = 0 for every ξ ∈ Vj1 . Thus, if we put ψ1 := fj1χVj1 ∈
Lp(M), we have that limΩ+3x→ξ u

+
ψ1

(x) − u(x) = 0 for ξ ∈ Vj1 , and by

Lemma 7.11 again limΩ+3x→ξ u
+
ψ1

(x) = 0 for ξ ∈M \ V j1 .
Next, choose j2 6= j1 such that Vj2∩Vj1 6= ∅ and repeat the previous argument
with Vj1 replaced by Vj2 \ Vj1 (note that connectedness was not an issue)
to obtain a function ψ2 ∈ Lp(M), vanishing outside Vj2 \ Vj1 , such that
limΩ+3x→ξ u

+
ψ2

(x)−u(x) = 0 for ξ ∈ Vj2 \Vj1 and limΩ+3x→ξ u
+
ψ2

(x) = 0 when

ξ ∈ M \ Vj2 \ Vj1 . Continuing in this fashion, we get a sequence of at most
N disjoint open sets O1 := Vj1 , O2 := Vj2 \ Vj1 , O3 := Vj3 \ Vj2 ∪ Vj1 . . . that
cover M up to a set E ⊂ ∪i∂Oi of σ-measure zero, along with functions
ψi ∈ Lp(M) such that ψi vanishes outside Oi and limΩ+3x→ξ u

+
ψi

(x)−u(x) = 0

for ξ ∈ Oi while limΩ+3x→ξ u
+
ψi

(x) = 0 when ξ ∈ M \ Oi. Set ψ :=
∑

i ψi
and observe that limΩ+3x→ξ u

+
ψ (x) − u(x) = 0 for ξ ∈ ∪iOi, whence ψ is
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equal σ-a.e. to the nontangential limit of u, by Lemma 4.3 and the first
part of the proof. In view of Lemma 4.2, this shows in particular that u+

ψ is
independent of the atlas, and we may pick the latter so that a given given
ξ ∈ M belongs to exactly one set Vj and to the closure of no other, see
Remark 1. As E is contained in ∪j∂Vj by construction, this entails that
limΩ+3x→ξ u

+
ψ (x)− u(x) = 0 for all ξ ∈M, whence u = u+

ψ by the maximum
principle. This achieves the proof for the bounded domain Ω+, and the
case of Ω− follows from this one by inversion and Kelvin transform, see the
discussion before (50).

The third result that we need is a classical estimate for layer potentials,
often stated for bounded domains only. Recall the single layer potential of
h ∈ L1(M), given by

Sh(x) =
1

γn(1− n)

∫
M

h(ζ)

|ζ − x|n−1
dσ(ζ), x ∈ Rn+1 \M, (51) slp

where γn = Hn(Sn). One can verify that the nontangential limit of Sh from
Ω± at σ-a.e. ξ ∈M is

Sh(ξ) =
1

γn(1− n)

∫
M

h(ζ)

|ζ − ξ|n−1
dσ(ζ), ξ ∈M, (52) sslp

where we note that the integral is absolutely convergent.
For v a harmonic function on Ω±, the Lusin integral function Lv : M→ R
is defined by

Lv(ξ) :=

(∫
Cθ,±z(ξ)(ξ)

|∇v(x)|2|x− ξ|1−ndmn+1(x)

)1/2

, ξ ∈M. (53) Lusindef

regL Theorem 4.5. There exists p1 ∈ (2,∞] such that, if g ∈ W 1,p(M) for
some p ∈ (1, p1), then there is a unique harmonic function v±g in Ω± with

‖NΩ±
α ∇v±g ‖Lp(M) < ∞ and such that v±g converges nontangentially to g(ξ)

from Ω± at σ-a.e. ξ ∈ M. Moreover, S : Lp(M) → W 1,p(M) is invertible
and

v±g (x) = S(S−1g)(x), x ∈ Ω±. (54) repslp1

In addition, there is a constant C = C(p,Ω, α) such that

‖NΩ±

α v±g ‖Lp(M) + ‖NΩ±

α ∇v±g ‖Lp(M) < C‖g‖W 1,p(M). (55) inegSobnt

If M is C1-smooth, then we can take p1 =∞.

27



Proof. On Ω+, the result follows from [54, Thm. 5.1 & Rem. 5.9] or [13,
Thms. 4.14, 4.17 & 4.18], anf when M is C1-smooth from [19, Thm. 2.4],
except for the inequality ‖NΩ+

α v+
g ‖Lp(M) < C‖g‖W 1,p(M). To obtain the lat-

ter, it is enough to assume that v+
g (x0) = 0 for some fixed x0 ∈ Ω, because

|vg(x0)| ≤ c‖g‖Lp(M) for some c = c(x0, p,Ω), by (54). Then, we get from [12,

Thm. 1] that ‖Lv+
g
‖Lp(M) and ‖NΩ+

α vg‖Lp(M) are equivalent quantities, with

constants depending on Ω, p and x0. By inspection, |Lv+
g
| ≤ C ′NΩ+

α ∇v+
g

pointwise for suitable α and C ′ (remember (49)), which gives us what we
want.
To obtain the result on the unbounded domain Ω−, we assume that 0 ∈
Ω+ and appeal again to the inversion I and the Kelvin transform K, as in
the proof of Theorem 4.4. Specifically, we apply the result just proven to
Ω1 := I(Ω−) and g̃ := K[g], observing that ‖g̃‖W 1,p(∂Ω1) and ‖g‖W 1,p(M) are
equivalent quantities. This yields a harmonic function vg̃ on Ω1, and then
v−g := K[vg̃] satisfies all our requirements because

∇K[vg̃](x) =
∇vg̃(I(x))

|x|n+1
− 2 〈x , ∇vg̃(I(x))〉 x

|x|n+3
− (n− 1)vg̃(I(x))

x

|x|n+1
.

The uniqueness of v−g follows from the uniqueness of vg̃.

5. Hardy spaces of harmonic gradients
hargrad

For 1 ≤ p ≤ ∞, we define the Hardy space Hp
± to consist of vector fields

F : Ω± → Rn+1 such that NΩ±
α F ∈ Lp(M) and F = ∇u for some real-valued

function u which is harmonic in Ω± (including at infinity in the case of Ω−).
The value of α is immaterial, by Lemma 4.1. Endowed with the Lp norm of
NΩ±
α F , one sees that Hp

± is a Banach space.
Hardy spaces of harmonic gradients were first introduced on half-spaces in
[52], and studied over C1-domains in [18, 48]. On domains whose boundary
is connected and has the local Lipschitz graph property, they are implicitely
considered in [54] for 1 < p < 2 + ε and more explicitly in [13] for p = 1,
as companions to regularity theory of the Laplacian; here, ε > 0 depends on
M. Since harmonic gradients identify with vector-valued Clifford-analytic
functions (see Lemma 7.6), H±p may also be viewed as a closed subspace of
the Clifford-analytic Hardy space of exponent p studied when 1 < p < ∞
over Lipschitz graphs in [41, Ch. 4] and, more generally, on non-tangentially
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accessible domains with Ahlfors-David regular boundary in [33, sec. 4], see
Section 7.3 for a definition of Clifford-analyticity.
Hereafter our main concern is the range 1 < p < ∞, but we briefly discuss
the cases p = 1,∞ for completeness.

propHp Proposition 1. Let M ⊂ Rn+1 be a compact and connected hypersurface
with the local Lipschitz graph property, and p ∈ [1,∞]. Every F ∈ Hp

± has a
nontangential limit F ∗(ξ) at σ-a.e. ξ ∈ M. The function F ∗ characterizes
F uniquely. Moreover, for 1 < p ≤ ∞ to each α > 1, there is a constant
C = C(α, p,M) such that

‖N±α F‖Lp(M) ≤ C‖F ∗‖Lp(M,Rn+1). (56) nntl

Proof. The existence of F ∗ is clear from Lemma 4.3. BecauseM is compact
and has the local Lipschitz graph property, one can see that Ω± is a particular
instance of a so-called nontangentially accessible domain, see [14] and [33] for
the definitions. Therefore, observing from Lemma 7.6 that Hp

± is a subspace
of the Clifford -analytic Hardy space defined in [33, Def. 4.7.3], the case
1 < p <∞ follows from [33, Eqns. 4.7.13 & 4.7.11]. The case p =∞ follows
from Lemma 4.4, applied componentwise. When p = 1 and F ∈ H1

+, it
follows from [13, Thm. 4.12] that F = ∇u where the nontangential limit u∗

(it lies in L1(M) by [12, Thm. 1] and the definition of Lu in (53)), when
normalized to have mean zero, lies in the so denoted space H1

1,at(M) with

‖u∗‖H1
1,at(M) ≤ C1‖NΩ+

α F‖L1(M) ≤ C2‖u∗‖H1
1,at(M),

and u (thus, also F ) is uniquely defined by its nontangential limit. The
case where F ∈ H1

− follows by Kelvin transform, as in the proof of Theorem
4.5.

In view of Proposition 1, we may as well equip H±p with the Lp(M)-norm
of its nontangential limit when 1 < p ≤ ∞, thereby identifying this Hardy
space with a closed subset of Lp(M,Rn+1).
Let us point out that [33, Eqns. 4.7.13 & 4.7.11], while a convenient reference
to us, conceals that Proposition 1 does not depend on the fact that F is a
gradient when p ≥ 2, because then everything follows from Theorem 4.4. It is
when 1 ≤ p < 2 that this fact becomes decisive. Also, it would be interesting
to know if (56) holds when p = 1.
The case 1 < p ≤ 2 of Proposition 1 would alternatively follow without much
difficulty from Theorem 4.5 and the next lemma that will of use later on.

29



derGT Lemma 5.1. For 1 < p <∞, each F ∈ Hp
± is of the form F = ∇f where f

is harmonic in Ω± (including at infinity in the case of Ω−) with nontangential
limit f ∗ ∈ W 1,p(M) such that ∇f ∗ is the tangential component of F ∗ at σ-
a.e. point of M.

Proof. We only consider the case of Ω+, as the case of Ω− will then follow
by Inversion and Kelvin transform. Fix ζ0 ∈ Ω+ and let f be a harmonic
function in Ω+ such that ∇f = F , with f(ζ0) = 0. Argueing with the
Lusin integral function as we did in the proof of Theorem 4.5, we find that
NΩ+

α f ∈ Lp(M). Hence, f has nontangential limit f ∗ at σ-a.e. point of M.
Let {Cθ,±z} be a regular family of cones, associated to a G-atlas (Uj, φj)1≤j≤N
of M whose coordinate cylinders Cj have cross-section a ball, and such that
the Vj := µCj ∩M are a cover for the family {Cθ,±z} for some 0 < µ < 1, see
Lemma 7.8. Recall also the notation Bj = φj(Uj), so that φj(Vj) = µBj. Fix
j ∈ {1, · · · , N}, and assume for simplicity that Cj is oriented along the xn+1-
axis so as to write ξ = (y,Ψj(y)) when ξ ∈ Vj, for some unique y ∈ µBj. For
ε > 0 small enough that (y,Ψj(y)− ε) ∈ Ω+ when y ∈ µBj, the smoothness
of f in Ω+ implies that hε(y) := f(y,Ψj(y) − ε) is Lipschitz in µBj with
(∇hε(y))t = (F (y,Ψj(y) − ε))tDφ−1

j (y). Let εk → 0 and observe from (49)
that (y,Ψj(y)−εk) converges to ξ = (y,Ψj(y)) from within Cθ,−z(ξ)(ξ), hence
F (y,Ψj(y) − εk) converges for mn-a.e. y ∈ µBj to F ∗(y,Ψj(y)). Moreover,
it is less than N+

θ,zF ◦ φ
−1
j (y) which lies in Lp(µBj), thanks to (10), (11) and

our assumption that F ∈ Hp
+. Therefore, by dominated convergence, ∇hεk

converges in Lp(µBj) to (Dφ−1
j )tF ∗ ◦ φ−1

j . Besides, hεk converges pointwise

a.e. to f ∗(y,Ψj(y)), and clearly ‖hεk‖Lp(µBj) ≤ ‖N+
θ,zf ◦ φ

−1
j ‖Lp(µBj) which is

finite. Hence, replacing εk by a subsequence if necessary, we may assume that
hεk converges weakly in Lp(µBj), and since the pointwise and the weak limit
coincide there when both exist we find that f ∗ ◦ φ−1

j |µBj
lies in W 1,p(µBj)

and has Euclidean gradient:

∇(f ∗ ◦ φ−1
j |µBj

) = (Dφ−1
j )tF ∗ ◦ (φ−1

j )|µBj . (57) expglim

As the Vj coverM, this exactly means that ∇f ∗ is the orthogonal projection
of F ∗ onto TξM for σ-a.e. ξ.

6. The Hardy Hodge decomposition
HaHodecs

As in the previous section, let M be a compact connected hypersurface em-
bedded in Rn+1 with the local Lipschitz graph property. Below, we prove a
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decomposition for vector fields M :→ Rn+1 that combines the Helmholtz-
Hodge decomposition and Hardy spaces of harmonic gradients. This decom-
position that we shall call the Hardy-Hodge decomposition, generalizes the
familiar decomposition of a complex function on a plane curve as the sum
of a holomorphic function in the Hardy class of the interior of the curve and
of a holomorphic function in the Hardy class the exterior of the curve. In
higher dimension, a third term is needed because the tangential component
of a harmonic gradient is a gradient vector field on M, whereas not evry
tangent vector field is a gradient in dimension greater than 1.
The Hardy-Hodge decomposition has interesting applications to inverse po-
tential problems with source term in divergence form, like inverse magne-
tization problems. On the plane and the sphere (where the decomposition
is already known to exist), some of them can be found in [7, 22]; on more
general surfaces, cf. the manuscript [23].

HHdec Theorem 6.1 (Hardy-Hodge decomposition). Let M ⊂ Rn+1 be a compact
and connected hypersurface with the local Lipschitz graph property. Let Dp(M)
designate the tangential divergence free vector fields of Lp-class onM. Then,
there exist ε, ε′ > 0 such that, for 2− ε < p < 2 + ε′, it holds the direct sum:

Lp(M,Rn) = H+
p ⊕H−p ⊕Dp(M). (58) HHdece

Moreover, if M is C1-smooth then (58) holds for all p ∈ (1,∞).

Proof. Let V ∈ Lp(M,Rn). Let us write V = Vn+Vt where Vn is the normal
component and Vt the tangential component of V . By Theorem 3.1, it holds
for some ε ∈ (0, 1/2) and 2/(1+2ε) < p < 2/(1−2ε) that Vt = G+D, where
D ∈ Dp(M) and G ∈ Gp(M) is the gradient of some function ψ ∈ W 1,p(M).
Let u be the harmonic function in Ω+ solving the Dirichlet problem with
boundary condition u|M = ψ; decreasing the upper bound 2/(1 − 2ε) on p
to p1 > 2 if needed, u indeed exists with ∇u ∈ Hp

+, by Theorem 4.5. Then,
Lemma 5.1shows that V − D − ∇u has zero tangential component on M,
hence we are left to decompose normal vector fields in Lp(M,Rn). Now, if
hn is such a field, where h ∈ Lp(M) and n is the unit outer normal field on
M, then the single layer potential Sh(x) given by (51) defines a harmonic
function u± in ∂Ω± whose nontangential limit Sh on M from either side is
given by (52) and lies in W 1,p(M, by Theorem 4.5 again; moreover, the same
theorem tells us that ∇u± lies in H±, and classical jump conditions imply
that the nontangential limits from each side satisfy (∇u−)∗ − (∇u+)∗ = hn;
see, e.g [54, Thm. 1.11]. This shows that Lp(M,Rn) = H+

p +H−p +Dp(M).
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To see that the sum is direct, assume that F+ + F− + D = 0 for some
F+ ∈ Hp

+, F− ∈ Hp
−, and D ∈ Dp(M). Because the tangential components

of (F+)∗ and (F−)∗ are gradients by Lemma 5.1, we necessarily have that
D = 0 because no nonzero member of Dp(M) can be a gradient. Thus,
(F+)∗ + (F−)∗ = 0. Let u± be harmonic and real-valued in Ω± with ∇u± =
F±. By Lemma 5.1 the gradients of (u+)∗ and (−u−)∗ agree on M, hence
we may assume that (u+)∗ = (−u−)∗. Now, since the normal components of
(∇u+)∗ and (−∇u−)∗ also agree, the distribution which coincides with u+ on
Ω+ and −u− on Ω− is harmonic on Rn+1, by the Green formula, hence it is a
harmonic function. Because it vanishes at infinity, this function is identically
zero by Liouville’s theorem. Finally, when M is C1-smooth, it is a fortiori
VMO-smooth and both Theorem 3.1 and Theorem 4.5 apply.

Note that the set of p for which (58) holds contains the interval (2/(1+2ε, p1),
where ε is as in Theorem 3.1 and p1 as in Theorem 4.5.

7. Appendix
app

7.1. BMO, VMO and BMOL functions on open sets.VMOa
For Ω ⊂ Rk an open set, the spaces BMO(Ω), VMO(Ω) and VMOloc(Ω)
were defined Section 1.3. For E ⊂ Rk and g ∈ L1(E), recall also the elemen-
tary inequality valid for each b ∈ R:∫

E

|g − gE| dmk ≤ 2

∫
E

|g − b| dmk. (59) elm

invcompL Lemma 7.1. Let ϕ : Ω1 → Ω2 be a bi-Lipchitz map between open sub-
sets of Rk. Then, h 7→ h ◦ ϕ is an isomorphism from VMO(Ω2,Rk) onto
VMO(Ω1,Rk).

Proof. For B(x1, ρ1) ⊂ Ω1 and B(x2, ρ2) ⊂ Ω2, it holds that

B(ϕ(x1), ρ1/cϕ−1) ⊂ ϕ(B(x1, ρ1)) ⊂ B(ϕ(x1), ρ1cϕ), (60) dilat

Assume without loss of generality that cϕ ≥ 1. Let τ = cϕcϕ−1 ≥ 1, and
B(a, r) be such that B(a, τr) ⊂ Ω1. We see from the first inclusion in (60)
that B(ϕ(a), rcϕ) ⊂ ϕ(B(a, τr)) ⊂ Ω2, and since |Jkϕ| ≥ c−kϕ−1 , by (3), the
change of variable formula and the second inclusion in (60) yield:∫

B(a,r)
|h ◦ ϕ− hB(ϕ(a),rcϕ)|dmk ≤ ckϕ−1

∫
ϕ(B(a,r))

|h− hB(ϕ(a),rcϕ)|dmk

≤ ckϕ−1

∫
B(ϕ(a),rcϕ)

|h− hB(ϕ(a),rcϕ)|dmk.
(61) isoBMOL
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Now, (59) and (61) imply that

1

mk(B(a, r))

∫
B(a,r)

|h ◦ ϕ− hB(a,r)|dmk ≤ 2τ k‖h‖BMO(B(ϕ(a),rcϕ)),

and since rcϕ goes to zero with r the conclusion follows.

multinvVMO Lemma 7.2. For Ω ⊂ Rk an open set, L∞(Ω) ∩ VMO(Ω) is an algebra.
If h ∈ L∞(Ω) ∩ VMO(Ω) and h ≥ η > 0, then h1/2 and 1/h belong to
L∞(Ω) ∩ VMO(Ω).

Proof. This follows immediately from the inequalities:∫
Q
|hg − hQgQ| dmk ≤ ‖h‖L∞(Ω)

∫
Q
|g − gQ| dmk + ‖g‖L∞(Ω)

∫
Q
|h− hQ| dmk,∫

Q
|h1/2 − h1/2

Q | dmk =
∫
Q

|h−hQ|
h1/2+h

1/2
Q

dmk ≤ 1
2η1/2

∫
Q
|h− hQ| dmk,∫

Q
|h−1 − h−1

Q | dmk =
∫
Q

|h−hQ|
hhQ

dmk ≤ 1
η2

∫
Q
|h− hQ| dmk,

compVMO1i Lemma 7.3. Let ϕ : Ω1 → Ω2 be a bi-Lipschitz map between open subsets of
Rk, and assume in addition that ϕ ∈ VMO1,∞(Ω1,Rk). If h ∈ VMO1,∞(Ω2),
then h ◦ ϕ ∈ VMO1,∞(Ω1).

Proof. This follows from Lemma 7.1, Lemma 7.2 and the chain rule.

7.2. Compact VMO-smooth manifolds

Recall from Section 1.5 that a compact Lipschitz manifold is VMO-smooth
if it has a B-atlas ∪j(Uj, φj)1≤j≤N , in the sense of Section 1.4, whose changes
of charts φj1 ◦ φ−1

j2
lie in VMO1,∞(φj2(Uj1 ∩ Uj2),Rn) for all j1, j2. Such an

atlas is called a VMO1,∞-atlas.
Below, we adapt the proof of [43, Thm. 4.2] to obtain an embedding result
for compact VMO-smooth manifolds:

paramV Lemma 7.4. LetM be a VMO-smooth manifold of dimension n ≥ 2. There
is a bi-Lipschitz embedding f : M → Rm with m ≤ (n + 1)2, and a VMO-
smooth atlas (Vl, ψl) on f(M) such that each ψl is bi-Lipschitz and ψ−1

l :
ψl(Vl)→ Rm lies in VMO1,∞

loc (ψl(Vl),Rm).
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Proof. Let (W`, η`) be a VMO-smooth atlas. Refining the latter if necessary,
we may assume sinceM is a locally compact metric space that each W` has
compact closure, that η`(W`) is bounded and that the cover (W`) is locally
finite. Refining further is needed, we can write M = B0 ∪ · · · ∪ Bs, where
Bk = ∪i∈IkUi,k is a union of disjoint open sets Ui,k, each of which is a W`,
with s ≤ n and Ik a subset of the positive integers [42, Lem. 2.7]. If, say
Ui,k = W`, we put φi,k = η`. Composing η` with a non-singular linear map,
we can also ensure that φi,k(Ui,k) is contained in the ball B(3ie1, 1) with
e1 = (1, 0, · · · , 0)t, and this does not alter the VMO-smoothness of the atlas
by Lemmas 7.1 and 7.3. Pick (Oi,k) an open cover ofM withOi,k ⊂ Ui,k. This
is possible since M is normal. Let hi,k : φi,k(Ui,k) → [0, 1] be a C∞-smooth

compactly supported function, identically 1 on the compact set φi,k(Oi,k).
Define ϕi,k : M → [0, 1] to be hi,k ◦ φi,k on Ui,k and 0 elsewhere, then set
ωk =

∑
i∈Ik ϕk,i. Note that ωk is well defined for at most one summand

is nonzero at each x ∈ M, and clearly ωk : M → R is Lipschitz with
suppωk ⊂ Bk. We claim that ωk ◦ η−1

` belongs to VMO1,∞
loc (η`(W`)) for

each `. Indeed, it is equal to hi,k ◦ (φi,k ◦ η−1
` ) on the open set B`,i,k :=

η`(W` ∩ Ui,k), hence the restriction (ωk ◦ φ−1
` )|B`,i,k lies in VMO1,∞

loc (B`,i,k)
because it is obviously bounded and locally Lipschitz while its derivative lies
in VMOloc(B`,i,k), by the chain rule, Lemma 7.2 and the fact that (V`, ψ`) is
a VMO-smooth atlas. So, when y ∈ ψ`(W`) belongs to some B`,i,k, it has a
neighborhood V(y) such that ωk ◦ η−1

` |V(y) ∈ VMO1∞(V(y)). Next, assume

that y belongs to no B`,i,k. Let r0 > 0 be such that B(y, r0) ⊂ η`(W`) and
observe, since the cover W` of M is locally finite, that for r0 small enough
B(y, r0) meets at most finitely many B`,i,k, say B`,i1,k1 , · · · , B`,iN ,kN . If (yj) is
a sequence converging to y in B(y, r0), then the sequence φil,kl ◦ η−1

` (yj) has
at most finitely many terms in the compact set supphil,kl ⊂ φil,kl(W`∩Uil,kl),
otherwise a subsequence would converge to some z1 in φil,kl(W` ∩Uil,kl) and,
since η` ◦ φ−1

il,kl
is an isomorphism from φil,kl(W` ∩ Uil,kl) onto Bk,il.kl , the

corresponding subsequence of (yj) would converge to y = η` ◦ φ−1
il,kl

(z1) ∈
B`,il,kl , a contradiction. Thus, there is r > 0 such that ωk ◦ η−1

` (z) = 0 for
all z ∈ B(y, r), hence B(y, r) is a neighborhood of y such that, trivially,
ωk ◦ η−1

` |B(y,r) belongs to VMO1∞(B(y, r)). This proves the claim.

Let φ̃k : Bk → Rn coincide with φi,k on Ui,k, set m = (n+1)(s+1) and define

f : M → Rm by f = (ω0, ω0φ̃0, ω1, ω1φ̃1, · · · , ωs, ωsφ̃s), where the product

ωkφ̃k is extended by zero outside of Bk. As in the proof of [43, Thm. 4.2], one
checks that f is a locally bi-Lipschitz homeomorphism onto a closed subset
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of Rm. If we put Vl = f(Wl) and ψl = ηl ◦ f−1, we get an atlas for f(M)
such that ψl(Vl ∩ Vj) = ηl(Wl ∩Wj) and ψj ◦ψ−1

l = ηj ◦ η−1
l , hence this atlas

is VMO-smooth since (W`, η`) is a VMO-smooth atlas forM. Moreover, on
ψl(Vl) = ηl(Wl), it holds that

ψ−1
l =

(
ω0 ◦ η−1

l , (ω0 ◦ η−1
l )(φ̃0 ◦ η−1

l ), · · · , ωs ◦ η−1
l , (ωs ◦ η−1

l )(φ̃s ◦ η−1
l )
)
.

By a previous claim ωk ◦η−1
l ∈ VMO1,∞

loc (ηl(Wl)) for each k ∈ {0, · · · , s}, and

since φ̃k ◦ η−1
l coincides with φi,k ◦ η−1

l on Bl,i,k, we have that φ̃k ◦ η−1
l |Bl,i,k

lies in VMO1,∞
loc (Bl,i,k,Rn). Since the latter is an algebra, we deduce that the

restriction (ωk◦η−1
l )(φ̃k◦η−1

l )|Bl,i,k in turn lies in VMO1,∞
loc (Bl,i,k,Rn), and the

same arguments we used to prove the claim shows that (ωk ◦ η−1
l )(φ̃k ◦ η−1

l )
belongs to VMO1,∞

loc (ηl(Wl),Rn). Therefore ψ−1
l lies in VMO1,∞

loc (ηl(Wl),Rm),
as desired.

VMOat Lemma 7.5. Let M be a VMO-smooth manifold of dimension n ≥ 2,
endowed with a Riemannian metric Γ. If there is a VMO-smooth atlas
(Vl, ψl)l∈L such that (g

(l)
i,k) lies in VMO(ψl(Vl),Rn×n) for each l, then this

property holds for any compatible VMO-smooth atlas.

Proof. Let (W`, η`) be another VMO-smooth atlas, and (h
(`)
i,k) the corre-

sponding metric tensor. On η`(W` ∩ Vl), it holds that

(h
(`)
i,k) =

(
D(ψl ◦ η−1

` )
)t(

(g
(l)
i,k) ◦ (ψl ◦ η−1

` )
)
D(ψl ◦ η−1

` ). (62) transmet

Since ψl ◦ η−1
` ∈ VMO1,∞

loc (η`(W` ∩ Vl)) by assumption, D(ψl ◦ η−1
` ) lies in

L∞loc(η`(W` ∩ Vl)) ∩ VMOloc(η`(W` ∩ Vl)). Moreover, as ψl ◦ η−1
` is locally

bi-Lipschitz, (g
(l)
i,k) ◦ψl ◦ η

−1
` lies in VMOloc(η`(W` ∩Vl)), by Lemma 7.1, and

is otherwise bounded, by (10). Now, L∞loc(η`(W`∩Vl))∩VMOloc(η`(W`∩Vl))
is an algebra in view of Lemma 7.2, so we conclude from (62) that (h

(`)
i,k)

restricted to η`(W` ∩ Vl)w belongs to VMOloc(η`(W` ∩ Vl)). Since the open
sets η`(W` ∩ Vl) cover η`(W`) as l ranges over L, the result follows.

7.3. Some Clifford analysis
Cliffords

The Clifford algebra Cm is the unital algebra generated over R by ej, 1 ≤ j ≤
m, subject to the relations e2

j = −1 and eiej = −ejei when i 6= j. Clearly Cm
is a finite-dimensional vector space over R, and a natural basis consists of all
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products ej1 · · · ejk where i1 < · · · < ik and 0 ≤ k ≤ m (the empty product
is 1 by convention). Thus, each z ∈ Cm can uniquely be written in the form

z = x0 +
m∑
k=1

( ∑
1≤j1<···<jk≤m

xj1,··· ,jk ej1ej2 · · · ejk

)
, (63) decc

where x0 and the xj1,··· ,jk are real numbers. In (63), the homogeneous part
of degree 0 with respect to the ej, namely x0, is called the scalar part of z,
denoted by Sc z, while the homogeneous part of degree 1, namely x1e1 + · · ·+
xmem, is called the vector part of z, denoted as Vec z. The conjugate of z is

z = x0 +
m∑
k=1

(−1)k

( ∑
1≤j1<···<jk≤m

xj1,··· ,jk ej1ej2 · · · ejk

)
, (64) deccc

and the norm of z is defined by

|z| = (zz)1/2 =

(
x2

0 +
m∑
k=1

∑
1≤j1<···<jk≤m

x2
j1,··· ,jk

)1/2

.

The subspace of Cm comprised of homogeneous elements of degree 1 identifies
isometrically with Euclidean space Rm. Elements of this subspace are called
vectors, so that z is a vector if and only if it reduces to its vector part.
The space of Cm-valued distributions on an open set O ⊂ Rm is the tensor
product Cm ⊗ D(O), where D(O) indicates the distributions on O. They
act naturally on smooth Cm-valued functions with compact support in O,
but one must specify whether the action is taken from the left or the right
because Cm is a non-commutative algebra. The Dirac operator D is defined
by

D = e1∂/∂x1 + e2∂/∂x2 + · · ·+ en∂/∂xm, (65) defD

see e.g. [33, Eq. 3.4.5]. It acts on Cm-valued distributions from the right
and from the left by letting the differentiation operators commute with mul-
tiplication in Cm, but the two actions differ from each other. A distribution
f ∈ Cm ⊗ D(O) is called left Clifford-analytic if Df = 0 and right Clifford-
analytic if fD = 0. Because D2 = −∆ where ∆ = ∂2/∂x1

2 + · · ·+ ∂2/∂xm
2

is the Euclidean Laplacian, every left or right Clifford-analytic distribution
is a Cm-valued function with harmonic components in any basis of Cm, by
Weyl’s lemma.
The connection between harmonic gradients and Clifford-analytic functions
stems from the following elementary observation.
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connechg Lemma 7.6. A vector-valued function defined on an open set O ⊂ Rm is left
Clifford-analytic if and only if it is right Clifford-analytic, and this is also if
and only if it is locally the gradient of a harmonic function.

Proof. This follows from a straightforward computation: assume f is left
Clifford-analytic on O and set f =

∑m
j=1 fj where the fj are real valued

harmonic functions. By definition of left Clifford-analyticity, it holds that

0 = Df = −
m∑
j=1

∂xjfj +
∑

1≤j1<j2≤m

(∂xj1fj2 − ∂xj2fj1)ej1ej2

which is equivalently to

div(f1, · · · , fm)t = 0 and curl (f1, · · · , fm)t = 0. (66) equival

The second equation in (66) implies that (f1, · · · , fm)t is locally the gradient
of a real-valued function Φ, and then the first equation says that ∆Φ = 0.
Conversely, if fj = ∂xjΦ for some locally defined harmonic function Φ, then
(66) holds so that Df = 0, as desired. The case where f is right Clifford-
analytic is similar.

If f is left Clifford-analytic in Ω+ and N+
α |f | lies in Lp(M) for some p ∈

(1,∞), then f has a nontangential limit a.e. on M from Ω+, denoted by
f+ ∈ Lp(M), and it holds (see [33, Eqns. 4.7.13 & 4.7.11]) that

f(z) =
1

4π

∫
M

y − z
|y − z|3

n(y)f+(y)dσ(y), z ∈ Ω+. (67) Cauchy+

In (67), n(y) is the exterior unit normal to M at y ∈ M and the products
are Cliffordian. If z ∈ Ω−, then the right hand side of (67) is equal to zero.
Because (67) generalizes the Cauchy formula, we denote the integral in the
right hand side of (67) by Cf+.
A similar formula holds if f is left Clifford-analytic in Ω− and N−α |f | lies in
Lp(M). This time f is the nontangential limit on M from Ω−, denoted by
f− ∈ Lp(M), and we have that:

− f(z) =
1

4π

∫
M

y − z
|y − z|3

n(y)f−(y)dσ(y), z ∈ Ω−, (68) Cauchy-

that is to say f = −Cf− on Ω−.
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Whenever h ∈ Lp(M) is C-valued, then Ch is left Clifford-analytic on Rn\M,
moreover N±|Ch| lies in Lp(M) and Ch has nontangential limits C±h a.e. on
M, from Ω+ and Ω−. Moreover we have that

C±h(y) = ±h(y)

2
+ SCh(y), y ∈M, (69) Plemelj

where SCh is the singular Cauchy integral operator defined by

SCh(y) =
1

4π
lim
ε→0

∫
M\B(y,ε)

ξ − y
|ξ − y|3

n(ξ)h(ξ)dσ(ξ), y ∈M; (70)

see, e.g. [33, Eqn. 4.7.12].
Note the analog of the Plemelj formula:

C+h(y)− C−h(y) = h(y). (71) Plemeljs

7.4. Regular families of cones on Lipschitz domains
secrfc

For M a compact hypersurface embedded in Rn+1 with the local Lipschitz
graph property, recall the notation set up in Section 1.6 regarding G-atlases,
coordinate cylinders, natural cones and so on, as well as the definition of a
regular family of cones given in Section 4. Throughout this section, the
symbol M will indicate the supremum of the Lipschitz constants of the
parametrizations of the G-atlas under consideration: M := supj cΨj . We
also use the following notation: if B ⊂ Rn is a ball, L an isometry of Rn+1

and Y = L(B× [a, b]) ⊂ Rn+1 a doubly truncated cylinder with cross section
B, we let µY indicate for any µ > 0 the dilated (or contracted) cylinder
L(µB × [a, b]) ⊂ Rn+1 with cross section µB. Hereafter we prove that a
regular family of cones does exist. First, we need a lemma.

axpos Lemma 7.7. There exists a continuous map ν : M → Sn and a G-atlas
whose parametrization domains are balls in Rn, as well as c ∈ (0, 1) such
that: (i) if ξ ∈ M belongs to the domain of a chart with u to denote the
direction of the corresponding coordinate cylinder, then 〈ν(ξ), u〉 > c; (ii) if
ξ is a regular point, then 〈ν(ξ), nξ〉 > c.

Proof. Let ∪Nj=1(Uj, φj) be a G-atlas for M. We require without loss of
generality that µCj is still a coordinate cylinder for some µ > 1 and all j.
Assume that Uj1 ∩ Uj2 6= ∅ with v±j1 6= v±j2 , and let ξ ∈ Uj1 ∩ Uj2 . Note that
v−j1 6= v+

j2
otherwise, for ε > 0 small, ξ + εv−j1 = ξ + εv+

j2
∈ Ω− ∩ Ω+ = ∅,
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a contradiction. Let Π be the plane generated by the independent vectors
v−j1 and v−j2 . The intersection Π ∩ C11 ∩ Cj2 is a union of parallelepipeds with
opposite sides parallel to v−j1 or v−j2 , and ξ belongs to one of them, say P . Then,

P ∩M is an open arc Γ, with Lipschitz parametrization L−1
j1

(y,Ψj1(y)) as y
ranges over an open interval, contained in Bj, of the line  Lj(Π)∩ (Rn×{0}).
Hence, Γ \ {ξ} has two connected components, each of which must lie in
one of the four open cones cut out in P by the two oriented straight lines
∆1 and ∆2 through ξ with direction v−j1 and v−j2 , because M intersects ∆1

(resp. ∆2) only at ξ within P , by definition of coordinate cylinders. Assume
that one of the connected components of Γ \ {ξ}, say Γ1, intersects (and
therefore is contained in) the open cone ξ + C, where C consists of linear
combinations with strictly positive coefficients of v−j1 and v−j2 . For η > 0,
define x1,η := ξ + ηv−j1 and x2,η := ξ + ηv−j2 , and consider in Π the closed
triangle T with vertices {ξ , x1,η, x2,η}. For η small enough, T is contained
in P and does not contain Γ1. Because Γ1 has points interior to T (close to
ξ), it must meet the boundary of T on the open segment (x1,η, x2,η) (for it
cannot intersect the other two sides). Thus, T \ (Γ1 ∪ {ξ}) is disconnected
and the sides [ξ, x1,η], [ξ, x2,η] belong to different components. Now, x1,η

and x2,η both lie in Ω− for small η, so they can be joined in P ∩ Ω− by
a parametrized Lipschitz curve γ which meets ∆1 (resp. ∆2) only at the
initial point x1,ε (resp. endpoint x2,ε), as is obvious from the definiton of the
coordinates cylinders Cj1 and Cj2 . The curve γ must lie in T , for if it was
exterior to T (except for the initial and end points), it would meet ∆1 and
∆2 at other points than x1,ε and x2,ε because lines separate the plane. But
since x1,ε and x2,ε lie in different component of T \ (Γ1 ∪ {ξ}), of necessity
γ meets Γ1, contradicting the fact that it lies in Ω−. A similar argument
shows that no connected components of Γ \ {ξ} can meet the opposite cone
ξ − C. To sum up, if we set vt := tv−j1 + (1 − t)v−j2 with t ∈ (0, 1), then any
line parallel to vt through a point of M∩ P meets M only at this point.
Next, let {Q0, Q0 + λ1v

−
j1
, Q0 + λ1v

−
j1

+ λ2v
−
j2,
, Q0 + λ2v

−
j2
}, with λ1, λ2 >

0, be the four vertices of P . As µCj1 and µCj2 are coordinate cylinders,
the segment [Q0, Q0 + λ1v

−
j1

] meets M at some unique point, say ξ1. The
same argument as before now implies thatM cannot intersect (ξ1 + C) ∩ P ,
therefore if ξ1 6= Q0 + λ1v

−
j1

then lines parallel to v−j2 through a point of
[ξ1, Q0+λ1v

−
j1

] could not meetM∩P , a contradiction since Cj2 is a coordinate
cylinder. Swaping the roles of j1 and j2, we likewise obtain that M meets
[Q0 + λ1v

−
j1

+ λ2v
−
j2,
, Q0 + λ2v

−
j2

] in Q0 + λ2v
−
j2

. Thus, Γ(=M∩ P ) connects
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the two vertices Q0 + λ1v
−
j1

and Q0 + λ2v
−
j2

, implying that any line parallel
to vt which intersects P must meet Γ. Altogether, we have shown that when
v−j1 6= v−j2 , then the vector vt := tv−j1 + (1− t)v−j2 is nonzero for every t ∈ (0, 1)
and that vt/|vt| is the direction of a coordinate cylinder over Uj1 ∩ Uj2 ; by
definition of v−j1 and v−j2 , this also holds for t = 0, 1, and obviously it remains
true if v−j1 = v−j2 .
Proceeding inductively, we deduce that if Uj1 ∩ Uj2 ∩ · · · ∩ Ujk 6= ∅, then
any convex combination of the v−j` is nonzero and, once normalized, to unit
norm, defines the direction of a coordinate cylinder over Uj1 ∩Uj2 ∩ · · · ∩Ujk .
We claim there is a convex combination w of the v−j` such that 〈w, v−j`〉 > 0
for 1 ≤ ` ≤ k. To see this, we proceed by induction on k, the case k = 1
being trivial. Let G := (〈v−ji , v

−
j`
〉) ∈ Rk×k be the Gram matrix of the v−j` .

By Farkas’s lemma from linear programing [38, Lem. 1], either there is
y ∈ Rk such that 〈(−1, 0, · · · , 0)t, y〉 < 0 and (G, Ik)

ty has only non-negative
components, or else there exists x ∈ R2k with xi ≥ 0 for 1 ≤ i ≤ 2k such
that (G, Ik)x = (−1, 0, · · · , 0)t. However, the latter is impossible for it would
imply that |

∑k
i=1 xiv

−
ji
|2 = −

∑k
i=1 xixk+i−x1 ≤ 0, hence

∑k
i=1 xiv

−
ji

= 0 but
we showed that no convex combination of the v−ji can be zero, therefore we
necessarily have x1 = · · · = xk = 0 and thus, (xk+1, · · · , x2k)

t = (G, Ik)x is
equal to (−1, 0, · · · , 0)t, contradicting the fact that xk+1 ≥ 0. Hence, a vector
y as above must exist, which means that y` ≥ 0 for all ` and y1 > 0 while Gy
has only non-negative components. Then, wk :=

∑k
`=1 y`v

−
j`
/(
∑k

`=1 y`) gives
us a convex combination of the v−j` such that 〈wk, v−j`〉 ≥ 0 for 1 ≤ ` ≤ k.
Note that if 〈w, v−j`〉 = 0 for all `, then w = 0 which is impossible as we just
pointed out. Thus, 〈wk, v−jl 〉 > 0 for some l ∈ {1, · · · , k}. By induction, there
is a convex combination wk−1 of the {v−j` , ` 6= l} such that 〈wk−1, v

−
j`
〉 > 0 for

` 6= l. Putting u = λwk + wk−1 for large positive λ, we get 〈u, vj`〉 > 0 for
1 ≤ ` ≤ k, and then w := u/(1 +λ) gives us the desired convex combination.
This proves the claim.
To recap, we have shown that whenever Uj1 ∩ Uj2 ∩ · · · ∩ Ujk 6= ∅, there is a
coordinate cylinder over Uj1 ∩ Uj2 ∩ · · · ∩ Ujk whose direction w has strictly
positive scalar product with every v−j` .
Let now (ϕj) be a Lipschitz partition of unity subordinated to the Uj, and

set ν1(ξ) :=
∑N

j=1 ϕj(ξ)v
−
j . Clearly, ν1 is continuous, and since 〈v−j , nξ〉 is

equal to 1/
√

1 + |∇Ψj(y)|2 when ξ ∈ RegUj and y = Φj(ξ) it holds that

〈ν1(ξ), nξ〉 ≥ 1/
√

1 + n2M2 for ξ ∈ RegM. We define ν := ν1/|ν1|.
Pick ξ ∈M and let j1, · · · , jk be the set of j ∈ {1, · · · , N} such that ξ ∈ Uj.
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Let also jk+1, · · · , jl be the set of j such that ξ ∈ U j \ Uj. For r = r(ξ)
sufficiently small, B(ξ, r) ∩M intersects no Uj with j /∈ {j1, · · · , jl}, and it
is contained in E := (∩k`=1Uj`)

⋂
(∩l`=k+1µUj`). Since E is an intersection of

coordinate cylinders, we know from the previous part of the proof that there
is a coordinate cylinder over E with direction wξ such that 〈wξ, v−j`〉 > 0 for
1 ≤ ` ≤ l. By restriction, we get a coordinate cylinder over B(ξ, r)∩M with
direction wξ, and since ϕj(ζ) = 0 for j /∈ {j1, · · · , jl} when ζ ∈ B(ξ, r) ∩M,
we have that 〈ν(ζ), wξ〉 ≥ inf1≤`≤l〈v−j` , wξ〉 =: cξ > 0. Finally, we may pick a
neighborhoud Vξ of ξ inM, included in B(ξ, r)∩M, whose projection in the
direction wξ is a disk. CoveringM with finitely many Vξ for 1 ≤ i ≤ N ′, we
get the desired atlas, with c := min{1/

√
1 + n2M2,mini cξi}/‖ν1‖L∞(M).

For short, we call the collection of open sets (Vj) of M appearing in the
definition of a regular family of cones a cover for the family, see Section 4.

exrfc Lemma 7.8. For any µ ∈ (0, 1), there exists a regular family of cones asso-
ciated to a G-atlas whose coordinate cylinders have cross-section a ball and
their contraction by µ, when intersected with M, is a cover for the family,
while the length of the coordinate cylinders is independent of µ.

Proof. Choose a G-atlas ∪j(Uj, φj)1≤j≤N , a continuous map ν : M → Sn
and a constant c as in Lemma 7.7. For ξ ∈ Uj and r = r(ξ) small enough
that B(φj(ξ), r) ⊂ Bj, we let Oj(ξ, r) indicate the right circular coordinate
cylinder over φ−1

j (B(φj(ξ), r) ∩M obtained by restriction of Cj. Since M is
compact, we can find δ > 0 such that, whenever ξ ∈M, there exists j = j(ξ)
for which Oj(ξ, δ) ⊂ Cj. We note for later use that for r < δ:

B(ξ, r) ∩M ⊂ φ−1
j (B(φj(ξ), r)) ⊂ B(ξ, r

√
1 +M2) ∩M, (72) transd1

where the first and last balls are in Rn+1 and the middle one in Rn. Pick
0 < γ < c. By the uniform continuity of ν, there is ε0 > 0 such that,
for every ξ0 ∈ RegM, we have 〈ν(ξ0), nξ〉 ≥ γ for ξ ∈ RegM∩ B(ξ0, ε0).
Consequently,

|〈v, ν(ξ0)〉| ≤ (1− γ2)1/2|v|, v ∈ TξM, ξ ∈ RegM∩B(ξ0, ε0). (73) normap

Fix ξ0 ∈ RegM and let j be such that O(ξ0, δ) ⊂ Uj. We assume without loss
of generality that ε0 < δ, and Lj = Id, whence v−j = en+1 := (0, · · · , 0, 1)t.
Then, we can write ξ0 = (y0,Ψj(y0)) with y0 ∈ Bj, and (72) implies that each
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ξ ∈ B(ξ0, ε0) ∩M is of the form ξ = (y,Ψj(y)) with |y − y0| < ε0. Hence,
σ-a.e. ξ ∈ B(ξ0, ε0) ∩M can be written as

ξ = ξ0 +

∫ |y−y0|

0

Dφ−1
j (y0 + tu)(u)dt, (74) locM

with u = (y − y0)/|y − y0| ∈ Sn. Note that (74) indeed holds for σ-a.e.
ξ ∈ B(ξ0, ε0) ∩M, because for Hn-a.e. u ∈ Sn the map t 7→ φ−1

j (y0 + tu) is

absolutely continuous on [0, ε0] with derivative Dφ−1
j (y0 + tu)(u) at a.e. t,

by the (version in polar coordinates of the) absolute continuity on lines of
Sobolev functions, see for example [56, Thm. 2.1.4]. If θ0 ∈ (0, π/2) is such
that cos θ0 = (1− γ2)1/2, then (73) means that every tangent vector toM at
a point of RegM∩B(ξ0, ε0) lies in the complement E of the double (untrun-
cated) cone Cθ0,ν(ξ0)(0) ∪ Cθ0,−ν(ξ0)(0). In particular, Dφ−1

j (y0 + tu)(u) ∈ E
for a.e. t and Hn-a.e. u. Moreover, by (20), Dφ−1

j (y0 + tu)(u) belongs to the
vector space Πu generated in Rn+1 by the two orthogonal vectors (u, 0)t and
en+1. Because Πu is a plane containing 0, the intersection Πu∩E is either Πu

or a closed double (untruncated) cone C∪(−C) with vertex 0 and axis orthog-
onal to the projection νu(ξ0) of ν(ξ0) onto Πu. Note that νu(ξ0) 6= 0 because
〈ν(ξ0), en+1〉 > c. Since the integrand of (74) lies in Πu, so does the integral.
Therefore, if Πu ∩E = Πu we have that |〈ξ − ξ0, ν(ξ0)〉| ≤ (1− γ2)1/2|ξ − ξ0|
for σ-a.e. ξ ∈ B(ξ0, ε0) ∩M. Assume now that Πu ∩ E = C ∪ (−C). As
〈νu(ξ0), en+1〉 > c, the half-line ∆u emanating from 0 with direction (u, 0)t is
entirely contained in one of the two half-planes cut out in Πu by the straight
line through 0 with direction νu(ξ0), which is perpendicular to the axis of
C ∪ (−C). Therefore Dφ−1

j (y0 + tu)(u), which is of the form u + ρen+1 with
ρ ∈ R by (20), either lies in C for all t ∈ (0, |y − y0|) or in −C for all such
t. Since C and −C are closed and convex, the integral in (74) must be-
long to one of them, hence |〈ξ − ξ0, ν(ξ0)〉| ≤ (1 − γ2)1/2|ξ − ξ0| again for
σ-a.e. ξ ∈ B(ξ0, ε0) ∩M. By density, this inequality in fact holds for every
ξ ∈ B(ξ0, ε0) ∩M:

B(ξ0, ε0) ∩M ⊂ Rn+1 \
(
Cθ0,ν(ξ0)(ξ0) ∪ Cθ0,−ν(ξ0)(ξ0)

)
, (75) empcyl

because the right-hand side of this inclusion is closed.
Consider now a doubly truncated right circular cylinder Γξ0 , with axis having
ξ0 as middle point and direction ν(ξ0), whose length 2l and radius r0 satisfy:

r0 < (1− γ2)1/2l/γ and l(1− c2)1/2 + r0c < ε0. (76) estimrl
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The exact value of l and r0 do not matter, as long as they are strictly positive
and satisfy (76), but it is important that they can be chosen independently of
ξ0. The first inequality in (76) entails that the initial and final cross sections
of Γξ0 are included in Cθ0,ν(ξ0)(ξ0)∪Cθ0,−ν(ξ0)(ξ0). Moreover, as 〈ν(ξ0), nξ0〉 >
c, it holds that ξ0 ± εν(ξ0) ∈ Ω∓ for ε > 0 small and therefore, by (75),
that Cθ0,ν(ξ0)(ξ0) ∩ B(ξ0, ε0) and Cθ0,−ν(ξ0)(ξ0) ∩ B(ξ0, ε0) belong to distinct
connected components of Rn+1 \M. Hence, since the axis of Γξ0 meetsM at
ξ0 only (by(75)) and otherwise meets both Cθ0,ν(ξ0)(ξ0) and Cθ0,−ν(ξ0)(ξ0), the
initial and final cross sections of Γξ0 must lie in distinct connected components
of Rn+1 \M as well. Thus, each segment of length 2l parallel to the axis in
Γξ0 intersects both Ω+ and Ω− and therefore meetsM. We claim that such
a segment, say ∆, can intersect M only once. For if ξ1 = (y1,Ψj(y1)) and
ξ2 = (y2,Ψj(y2)) are two distinct points in ∆ ∩M, then y1, y2 ∈ B(y0, ε0)
since the orthogonal projection of Γξ0 onto Rn×{0} is contained in B(y0, ε0),
by the second inequality in (76). Thus, we can find y′2 ∈ B(y0, ε0) such that
ξ′2 = (y′2,Ψj(y

′
2)) is arbitrary close to ξ2 inM and φ−1

j (y1+tu) is differentiable
at a.e. t ∈ (0, |y′2 − y1|) for u = (y′2 − y1)/|y′2 − y1|. Then,

ξ′2 = ξ1 +

∫ |y′2−y1|

0

Dφ−1
j (y1 + tu)(u)dt, (77) locM2

and since y1 + tu ∈ B(y0, ε0) for t ∈ (0, |y′2 − y1|) we can argue as we did on
(74), to conclude that |〈ξ′2− ξ1, ν(ξ0)〉| ≤ (1− γ2)1/2|ξ′2− ξ1|.This prevents ξ′2
from being arbitrary close to ∆, a contradiction which proves the claim.
What we just showed is that a rotation Rξ0 of angle cos−1〈ν(ξ0), en+1〉 in
Rn+1, such that Rξ0(ν(ξ0)) = en+1, makes Rξ0(Γξ0 ∩M) the graph of some
function ϕξ0 over its basis. In addition, if ξ1, ξ2 ∈ Γξ0 and we let w be the
orthogonal projection of ξ1 − ξ2 onto the hyperplane orthogonal to ν(ξ0),
we get upon writing ξ1 = (y1,Ψj(y1)) and ξ2 = (y2,Ψj(y2)) with y1, y2 ∈
B(y0, ε0) that

|ξ1 − ξ2|2 = |w|2 + 〈
(
y1 − y2,Ψj(y1)−Ψj(y2)

)t
, ν(ξ0)〉2

≤ |w|2
(

1 +
1+c2Ψj
c2

)
,

since |w| > |y1 − y2|c because 〈ν(ξ0), en+1〉 > c. Thus, ϕξ0 is Lipschitz with
cϕξ0 ≤ (1 + M2)1/2/c, so that Γξ0 is a coordinate cylinder with direction
ν(ξ0) over Γξ0 ∩ M. The natural cones Cθ,±ν(ξ0)(ξ), where ξ ∈ µΓξ0 ∩ M
and tan θ < c−1

ϕξ0
, can be truncated to some length ρ > 0 small enough that
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they are included in Γξ0 and therefore in Ω∓. In fact, if we restrict to those
θ with tan θ < c/(1 + M2)1/2 (which is less than 1/cϕξ0 by what precedes),
then ρ can be adjusted independently of ξ0 for it is enough that ρ < l and
ρc/(1 + M2)1/2 < (1− µ)r0. Let us pick θ1 < θ < θ2 < tan−1 c/(1 + M2)1/2.
Obviously, we have that Cθ1,±ν(ξ0)(ξ0) ⊂ Cθ,±ν(ξ0)(ξ0) ⊂ Cθ2,±ν(ξ0)(ξ0), and
shrinking r0 further if necessary we may ensure by the uniform continuity of
ν that

Cθ1,±ν(ξ0)(ξ) ⊂ Cθ,±ν(ξ)(ξ) ⊂ Cθ2,±ν(ξ0)(ξ), ξ ∈ µΓξ0 . (78) nfC

Note that the shrinking of r0 involved to get (78) is independent of ξ0 and
depends solely on θ1, θ2, and the modulus of continuity of ν.
As ξ0 ranges over RegM which is dense, the µΓξ0 cover M because Γξ0
contains B(ξ0, µr0) whose radius is independent of ξ0. Therefore, we can find
finitely many Γξ1

0
, · · · ,ΓξL0 such that the µΓξ`0 coverM to produce a G-atlas

whose coordinate cylinders Γξ`0 have direction ν(ξ`0) and whose graphs have

Lipschitz constant at most (1 + M2)1/2/c. Then, if we put z(ξ) = −ν(ξ),
(78) indicates that {Cθ,±z(ξ)(ξ)} is a regular family of cones associated to this
atlas, with cover (µΓξ`0 ∩M). Finally, note that the common length l of the
coordinate cylinders Γξ`0 and µΓξ`0 is independent of µ.

pnb Remark 1. With the notation set up the previous proof, to any x ∈ M
there exists by density a ξ0 ∈ RegM such that x ∈ B(ξ0, µr0/2)), the ball
being in Rn+1. Then, µΓξ0 together with the µΓξ for ξ ∈ RegM and |ξ −
ξ0| > 3µr0/2 is a cover of M, from which we can extract a finite subcover
µΓξ0 , µΓξ1 , · · · , µΓξP . This shows that, in Lemma 7.8, a fixed x ∈ M can
always be assumed to lie interior to exactly one member of the cover of the
regular family of cones and to the closure of no other.

Given a regular family of cones {Cθ,±z(ξ)(ξ)} and a function h : Ω± → Rk,
we now compare N±θ,zh(ξ) := supx∈Cθ,±z(ξ)(ξ) |h(x)| with the nontangential
maximal function truncated at distance d, given by

NT Ω±

α,dh := sup
x∈RΩ±

α (ξ)

d(x,M)<d

|h(x)|,

where RΩ±
α (ξ) was defined in (44). Recall from (47) the notation f ∗ for the

distribution function of f :M→ R; i.e,

f ∗(λ) := σ ({ξ ∈M : |f(ξ)| > λ}) , λ ≥ 0. (79) distfundef
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Recall also the (centered) Hardy-Littlewood maximal function of ψ ∈ L1(M),
which is the function Mψ :M→ R+ ∪ {+∞}, defined by

Mψ(ξ) = sup
r>0

1

σ(B(ξ, r) ∩M)

∫
B(ξ,r)∩M

|ψ| dσ,

where B(ξ, r) indicates a ball in Rn+1. As M is a space of homogeneous,
type, the following weak 1-1 estimate is well-known to hold [9, Thm. (3.5)]:

σ({ξ ∈M : Mψ(ξ) > λ}) ≤ C

λ
‖ψ‖L1(M). (80) w11

compconent2 Lemma 7.9. Let {Cθ,z±(ξ)(ξ), ξ ∈M} be a regular family of cones. To each
α > 1 and p ∈ [1,∞], there exist d, C1 > 0 depending on α, p and the family
{Cθ,±z(ξ)(ξ)} such that, for every function h : Ω± → Rk:

(NT Ω±

α,dh)∗ ≤ C1 (N±θ,zh)∗. (81) compcone2

Proof. We only consider the case of Ω+, as the proof for Ω− is similar. Be-
cause any regular family of cones can be refined into one of the type described
in Lemma 7.8, at the cost perhaps of truncating the cones to smaller length,
we may assume that the G-atlas (Uj, φj) and the regular family of cones
{Cθ,z(ξ)(ξ), ξ ∈M} are as in this lemma. We use the notation set up in Sec-
tion 1.6, in particular coordinate cylinders are denoted by Cj, and after the
previous remark their cross-section is a ball. We will adapt a density-point
argument, much in the style of [33, Prop. 2.1.2]. However, technicalities arise
due to the local character of natural cones.
For x ∈ Cj ∩ Ω+, we denote by ξ(x, j) ∈ Uj the projection of x onto M
in the direction v−j ; this projection uniquely exists, since Cj is a coordinate
cylinder. When r = r(ξ) is small enough that B(φj(ξ(x, j)), r) ⊂ Bj, we
let Oj(ξ, r) be the coordinate cylinder over φ−1

j (B(φj(ξ(x, j)), r)) obtained
by restriction from Cj. Since the µCj cover M which is compact, there are
δ0, δ1 > 0 such that, whenever x ∈ Rn+1 satisfies d(x,M) < δ0, there exists
j = j(x) for which Oj(x, δ1) ⊂ µCj. Let l > 0 be the common length of
the cones Cθ,z(ξ)(ξ) in our regular family, and put δ := min{δ1, l} as well as
δ2 := δ/(2+(1+M2)1/2). Pick x ∈ Ω+ with d(x,M) < min{δ0, δ2} and j such
that Oj(x, δ1) ⊂ µCj, whence Oj(x, δ) ⊂ µCj. Assume for simplicity that Cj
is oriented along the xn+1-axis, so that Lj is the identity, and write x = (s, t)t

with s ∈ µBj and t ∈ (aj,Ψj(s)). For ξ0 ∈M such that |x− ξ0| = d(x,M),
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w get since |x − ξ0| < δ2 < δ that ξ0 ∈ O(x, δ) ⊂ µCj, so we can write
ξ0 = (y0,Ψj(y0)) with y0 ∈ µBj and |y0 − s| < δ2. Hence,

0 < Ψj(s)− t ≤ |x− ξ0|+ |ξ0 − (s,Ψj(s))|
< δ2 + (1 +M2)1/2|s− y0| < δ2(1 + (1 +M2)1/2).

(82) inegtr3

Thus, if we set δ3 := δ2/(1 +M2)1/2, we get from (82) that if y ∈ Rn satisfies
|y − s| < δ3, then y ∈ µBj since δ3 < δ1 and moreover:

|(y,Ψj(y))− x| ≤ |(y,Ψj(y)− (s,Ψj(s))|+ Ψj(s)− t
< (1 +M2)1/2δ3 + δ2(1 + (1 +M2)1/2) = δ < l.

(83) inegtr4

In another connection, for ξ ∈ Uj, let C̃θ1,v+
j

(ξ) be the untruncated positive

cone with vertex ξ, direction v+
j and aperture 2θ1. If we write ξ = (y,Ψj(y)),

a little geometry shows that x ∈ C̃θ1,v+
j

(ξ) as soon as |y− s| < tan θ1(Ψj(s)−
t)/(1 + M tan θ1); this holds for any θ1 ∈ (0, π/2), but we mean it for θ1 as
in (49). From this and (83) together with (49), we get that x ∈ Cθ,z(ξ)(ξ) as
soon as ξ = (y,Ψj(y)) where y satisfies:

|y − s| < min

(
δ3 ,

tan θ1(Ψj(s)− t)
1 +M tan θ1

)
. (84) premb4

Now, if x ∈ RΩ+

α (η) for some η ∈M, then |x−η| ≤ αd(x,M) ≤ α(Ψj(s)−t),
and letting K = tan θ1/(1 + M tan θ1) we see from (84) that the set Ax of
those ξ ∈ M such that x ∈ Cθ,z(ξ)(ξ) contains all (y,Ψj(y)) ∈ Uj for which
|y − s| < min(δ3, K|x − η|/α). Thus, either |x − η| ≥ αδ3/K and then
d(x,M) ≥ δ3/K, or else |x − η| < αδ3/K in which case Ax contains all
(y,Ψj(y)) for which |y − s| ≤ K|x− η|/α. In view of (72), this implies:(
x ∈ RΩ+

α (η) and d(x,M)<
δ3

K

)
=⇒B

(
ξ(x, j),

K|x− η|
α

)
∩M ⊂ Ax. (85) incb1

Observe also, since |x−η| ≤ α(Ψj(s)− t) as pointed out after (84), that (82)
and the definitions of δ2 and δ imply |x−η| < δ1, whence η ∈ O(x, δ1) ⊂ µCj.
Thus, we may write η = (ζ,Ψj(ζ)) with ζ ∈ µBj and we see that

|x− η| ≥ |s− ζ| ≥ |ξ(x, j)− η|/(1 +M2)1/2.

Therefore, by the triangle inequality, we get that

B

(
ξ(x, j),

K|x− η|
α

)
∩M ⊂ B

(
η,

(
(1 +M2)1/2 +

K

α

)
|x− η|

)
∩M.

(86) incb2
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Now, for λ > 0, let Oλ := {ξ ∈ M : N+
θ,zh(ξ) > λ} which is open in M, by

the continuity of z. Set A :=M\Oλ, and define for γ ∈ (0, 1):

A∗γ := {ξ ∈M : σ(A ∩B(ξ, r)) ≥ γσ(M∩B(ξ, r)), ∀r > 0}.

Next, set d := δ3/K and define Oα,λ := {ξ ∈ M : NT +
α,dh(ξ) > λ} which is

also open in M. Fix η ∈ Oα,λ and pick x ∈ RΩ+

α (η) with d(x,M) < d such
that |h(x)| > λ. From (85) and (86), we deduce that

B

(
ξ(x, j),

K|x− η|
α

)
∩M ⊂ Oλ ∩B

(
η,

(
(1 +M2)1/2 +

K

α

)
|x− η|

)
and therefore, putting for simplicity ρ := (1 +M2)1/2 + K

α
, we get from (14):

σ (Oλ ∩B (η, ρ|x− η|))
σ (B (η, ρ|x− η|) ∩M)

≥
σ
(
B
(
ξ(x, j), K|x−η|

α

)
∩M

)
σ (B (η, ρ|x− η|) ∩M)

≥ c′

C ′

(
K/α

ρ

)n
.

So, letting r := ρ|x− η|, we obtain upon taking complements that

σ(A ∩B(η, r))

σ(B(η, r) ∩M)
≤ 1− c′

C ′

(
K/α

ρ

)n
,

and if we choose γ such that 1 − c′

C′

(
K/α
ρ

)n
< γ < 1, we find that η /∈ A∗γ.

Thus, with this choice of γ, we have that Oα,λ ⊂ M \ A∗γ. Consequently, in
view of (80),(
NT +

α,dh
)∗

(λ) = σ(Oα,λ) ≤ σ(M\ A∗γ) = σ({ξ ∈M : MχA(ξ) < γ})
= σ({ξ ∈M : MχOλ(ξ) > 1− γ}) ≤ C

1−γσ(Oλ) = C1

(
N+
θ,zh
)∗

(λ).

This achieves the proof.

For any f : M → R, one has ‖h‖∞ = inf{λ : h∗(λ) = 0} and ‖h‖pLp(M) =

p
∫∞

0
tp−1h∗(t)dt for 1 ≤ p ≤ ∞, see e.g. [5, Prop. 1.8]. Hence, Lemma

7.9 entails that ‖NT Ω±

α,dh‖p ≤ C‖N±θ,zh‖p for some constant C. When h is
harmonic, a stronger estimate holds, as we now show. Recall that a harmonic
function on an unbounded domain in Rm, m ≥ 3, is harmonic at infinity if
it tends to zero there [6, Thm. 4.8].
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equivNTMF Lemma 7.10. Let {Cθ,z±(ξ)(ξ), ξ ∈M} be a regular family of cones. To each
α > 1 and p ∈ [1,∞], there exist C > 0 depending on α, p and the family
{Cθ,±z(ξ)(ξ)} such that, for every harmonic function h : Ω± → Rk (including
at infinity in the case of Ω−):

‖NΩ±

α h‖Lp(M) ≤ C‖N±θ,zh‖Lp(M).

Proof. In view of Lemma 7.9 and the remark after its proof, it is enough by
Hölder’s inequality to show that

sup{|h(x)| : x ∈ Ω±, d(x,M) > d} ≤ C ′‖N±θ,zh‖L1(M) (87) inegharNT

where C ′ depends onM and the regular family of cones. We shall need that
to each ε > 0, there exists a C∞-smooth compact hypersurface S± ⊂ Ω± such
that the coordinate cylinders Cj of the atlas (Uj, φj) onM, associated to the
family {Cθ,±z(ξ)(ξ)}, are also coordinate cylinders with the smooth graph
property on S±, and if we represent any ζ ∈ S± ∩ Cj as (y, f±j (y)) where
y ∈ Bj and f±j : Bj → R is a C∞-smooth function, then |f±j (y)−ψj(y)| < ε.
The existence of S± follows from [46, Thm. 1]. Since the µCj coverM, note
that they cover S± as well. Let us fix ε = d/2, where d is as in Lemma 7.9;
without loss of generality, we assume that d is less than the common length
of the cones in our regular family. Thus, if one picks ζ ∈ µCj ∩ S±, one
sees from (49) upon writing ζ = (y, f±j (y)) for some j and some y ∈ Bj that
ζ ∈ C±θ,z(ξ)(ξ) with ξ = (y,Ψj(y)), whence |h(ζ)| ≤ N±θ,z(ξ). So, if we put ν±

to designate the volume measure on S± and M1 := supj ‖∇f±j ‖L∞(µBj), we
get in view of (22) that∫

µCj∩S± |h|dν
± =

∫
µBj
|h(y, f±j (y))|(1 + |∇f±j |2)1/2dmn(y)

≤ (1 +M2
1 )1/2

∫
µBj

N±θ,zh(y,Ψj(y))(1 + |∇Ψj|2)1/2dmn(y)

= (1 +M2
1 )1/2

∫
µCj∩M |h|dσ.

As the µCj cover M and S±, the previous inequality implies that

‖h‖L1
ν±

(S±) ≤ c‖N±θ,zh‖L1(M) (88) majvalS

where c depends on M, S±, and the regular family of cones. To achieve the
proof it remains for us to show that, for some C depending on S±, we have:

sup{|h(x)| : x ∈ Ω±, d(x,M) > d} ≤ C‖h‖L1
ν±

(S±). (89) majvalBV
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Let Ω0 be the interior of S+ and G(x, x0) the Green function on Ω0 with pole
at x0 ∈ Ω0. As is well-known, (n−2)ωnG(x, x0) = 1/|x−x0|n−1+H(x), where
H is harmonic in Ω0 with boundary values H(ζ) = −(n − 2)ωn/|ζ − x0|n−1

for ζ ∈ S+ and ωn is the surface area of Sn. Since S+ is C∞-smooth, classical
regularity theory (see for example [40, Thm. 8.3]) implies that ∂νG(x, x0) is
a C∞-smooth function of (x, x0) ∈ S+ × Ω0, where ∂ν denotes the exterior
normal derivative on S+. Hence, if we set E0 := {x0 ∈ Ω0 : d(x0,S+) ≥ d/2},
then ∂νG(x, x0) is uniformly bounded on S+ × E0 by some constant C0 and
it follows from the Green formula that |h(x0)| ≤ C0‖h‖L1

ν+ (S+) for x0 ∈ E0.

Because {x ∈ Ω+, d(x,M) > d} ⊂ E1 by construction, we obtain (89) with
superscript “+”. The argument for the superscript “-” is similar, but a minor
adjustment is needed because Ω− is unbounded and we cannot directly use
[40]. Assuming without loss of generality that 0 ∈ Ω+, one way to proceed
is to introduce the inversion I(x) = x/|x|2 mapping Ω− onto a bounded
domain Ω1 ⊂ Rn+1, and the Kelvin transform K[h](x) = |x|1−nh(I(x)) which
is harmonic on Ω1 [6, Thm. 4.7]. Let Ω2 ⊂ Ω− be the exterior of S− and put
Ω3 := I(Ω2), which is a domain with C∞-smooth boundary ∂Ω3, such that
Ω3, ∂Ω3 ⊂ Ω1. If we denote by G2(., x0) and G3(., z0) the Green functions of
Ω2 and Ω3 with poles at x0 and z0 respectively, and if we write ∂νG2(x, x0)
and ∂νG3(ξ, z0) for the normal derivatives at x ∈ S− and ξ ∈ ∂Ω3, we
get from the change of variable formula, since the derivative DI(x) is a
similarity transformation with ratio 1/|x|2 [6, Prop. 4.2], that ∂νG2(x, x0) =
|x0|1−n|x|−(n+1)∂νG3(I(x), I(x0)). Now, if we set E1 := {x ∈ Ω2 : d(x,S−) ≥
d/2}, then I(E1) ⊂ Ω3 is at strictly positive distance from ∂Ω3, so ∂νG3(ξ, z0)
is bounded on ∂Ω3 × I(E1) by classical regularity theory. Thus, ∂νG2(x, x0)
is bounded on S− × E1 and the proof can proceed as before.

7.5. Continuity to the boundary of integrals against harmonic measure

For Ω ⊂ Rn+1 a bounded open set which is regular for the Dirichlet problem
(i.e. whose complement is non-thin at every point of its boundary [4, Thm.
7.5.1]), the harmonic measure ωΩ

z is the Borel probability measure on the
boundary ∂Ω such that, for each continuous function ϕ : ∂Ω → R, the
function uΩ

ϕ(z) :=
∫
ϕdωΩ

z is harmonic in Ω, continuous on Ω, and coincides
with ϕ on ∂Ω, compare Section 4. If ϕ is a bounded Borel function on ∂Ω,
then uΩ

ϕ is still a well-defined harmonic function on Ω, and limz→ξ u
Ω
ϕ(z) =

ϕ(ξ) at every continuity point ξ of ϕ [4, Cor. 6.6.6]. When ϕ is merely
integrable with respect to ωΩ

z (this does not depend on z ∈ Ω), the above-
mentioned continuity property can fail [4, Ex. 6.6.18], but it does hold if Ω
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is the interior of a connected hypersurfaceM with the local Lipschitz graph
property, provided that ϕ ∈ L2(M) (which implies that ϕ ∈ L1(M, ωΩ

z ), by
Lemma 4.2). This continuity property will be proven below.
We shall need the well-known connection between harmonic measure and the
Perron process to solve the Dirichlet problem. More precisely, for f : ∂Ω→
[−∞,+∞] and z ∈ Ω, define

H
Ω

f (z) = inf{u(z) : u superharmonic and bounded below on Ω,
lim infΩ3y→ξ u(y) ≥ f(ξ), all ξ ∈ ∂Ω},

HΩ
f (z) = sup{v(z) : v subharmonic and bounded above on Ω,

lim supΩ3y→ξ v(y) ≤ f(ξ), all ξ ∈ ∂Ω};

(90) PWB

above, a function which is identically +∞ (resp. −∞) is considered to be
superharmonic (resp. subharmonic). Now, for each z ∈ Ω, we get when
f ∈ L1(M, ωz) (see [4, Thm. 6.4.6]):

HΩ
f (z) = H

Ω

f (z) =

∫
fdωΩ

z . (91) Hf

Equation (91) entails that the exact definition of f on a subset of harmonic

measure zero of ∂Ω has no influence on HΩ
f nor H

Ω

f .
Hereafter, we letM be a compact connected hypersurface embedded in Rn+1

with the local Lipschitz graph property, and use the notation of Section 1.6
regarding G-atlases, coordinate cylinders and natural cones. As in Section 4,
we put ω+

z to mean ωΩ+

z with Ω+ the interior ofM, and we write u+
ϕ instead

of uΩ+

ϕ .

conthml2 Lemma 7.11. If ϕ ∈ L2(M) and ϕ is continuous at ξ0 ∈M, then

lim
Ω+3z→ξ0

u+
ϕ (z) = ϕ(ξ0). (92) contirel

Proof. Replacing ϕ with ϕ − ϕ(ξ0), we may assume that ϕ(ξ0) = 0. Let
(Uj, φj) be a G-atlas of M and Vj an open cover such that V j ⊂ Uj. The
coordinate cylinders are of the form Cj := L−1

j (Bj × (aj, bj)), with direc-

tion v−j := L−1
j (0, · · · , 0, 1)t. For ξ ∈ Vj and appropriate θ ∈ (0, π/2), we

denote by Cθ,v+
j

(ξ) ⊂ Ω+ the natural cones of aperture 2θ relative to Uj,

Vj, cf. (19). We also put M := maxj cΨj . Choose j0 such that ξ0 ∈ Vj0
and assume for simplicity that Lj0 = Id, whence v+

j0
= (0, · · · , 0,−1)t. We
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set Mθu
+
ϕ (ξ) := supx∈C

θ,v+
j0

(ξ) |u+
ϕ (x)|. It follows from [10, Thm. 2] that∫

Vj
Mθu

+
ϕdσ ≤ C1‖ϕ‖L2(M) for some C1 = C1(M, Vj0 , θ). Pick r0 > 0 small

enough that, whenever 0 < r ≤ r0, the open doubly truncated right circular
cylinder Oj0(ξ0, r) := B(Pn(ξ0), r) × (aj0 , bj0), having radius r and axis par-
allel to v−j0 passing through ξ0, has its closure contained in Vj0 × [aj0 , bj0 ] and
is such that Oj0(ξ0, r)∩Ω+ is starlike about any point on the axis sufficiently
close to the base B(Pn(ξ0), r) × {aj0}. Such starlikeness certainly holds as
soon as r0 < (bj0−aj0)/M . The boundary Σr of Oj0(ξ0, r)∩Ω+ can be decom-

posed into three parts: (i) the base Σr,1 := B(Pn(ξ0), r)× {aj0} contained in

Ω+; (ii) the base Σr,2 := Oj(ξ0, r) ∩M, contained in M; (iii) the cylindrical
hypersurface Σr,3 := {(z, t) : z ∈ S(Pn(ξ0), r), aj0 < t < Ψj0(z)}, contained
in Ω+. One can see that Oj0(ξ0, r)∩Ω+ has the local Lipschitz graph property.
In the rest of the proof, we put for simplicity O+(ξ0, r) := Oj0(ξ0, r) ∩ Ω+

By [10, Thm.2], we have that
∫
Vj0
|u+
ϕ (ξ − ηen+1)|2dσ(ξ) < c for all η ≤ η0

small enough and some constant c. In another connection, points in Ω+ ∩
Vj0 × (aj0 , bj0) which are not of the form ξ− ηen+1 for some ξ ∈ Vj0 and some
η ≤ η0 remain at distance greater than δ > 0 from M. Hence, as u+

ϕ (x)
is bounded for d(x,M) ≥ δ, it follows that

∫
O+(ξ0,r0)

|u+
ϕ |2dmn+1 < ∞ and

therefore, by Fubini’s theorem,
∫

Σr,3
|u+
ϕ |2dHn <∞ for a.e. r < r0. Fix such

a r and pick ε > 0, together with ρ > 0 so small that B(ξ0, ρ) ∩M ⊂ Σr,2

and |ϕ(ξ)| < ε for ξ ∈ B(ξ0, ρ) ∩M.
Define a function ψ1 on Σr by letting ψ1 = u+

ϕ on Σr,1 ∪ Σr,3 and ψ1 = ϕ on
Σr,2\B(ξ0, ρ) while ψ1 = 0 on Σr,2∩B(ξ0, ρ). Thus, ψ1 lies in L2(Σr,HnbΣr).

For z ∈ O+(ξ0, r), set v1(z) :=
∫

Σr
ψ1dω

O+(ξ0,r)
z , where ω

O+(ξ0,r)
z denotes har-

monic measure on O+(ξ0, r). By construction, v1 is harmonic on O+(ξ0, r).
If we pick z0 ∈ O+(ξ0, r) and consider for z ∈ O+(ξ0, r) the Radon-Nykodim

derivative K(z, .) := dω
O+(ξ0,r)
z /dω

O+(ξ0,r)
z0 which lies in L∞(Σr, ω

O+(ξ0,r)
z0 ) by

Harnack’s inequalities, we may write

v1(z) =

∫
Σr

ψ(ξ)K(z, ξ)dωOj(ξ0,r)z0
(ξ) =

∫
Σr,1∪Σr,3∪(Σr,2\B(ξ0,ρ))

ψ(ξ)K(z, ξ)dωOj(ξ0,r)z0
(ξ),

(93) integcvp

since ψ1 vanishes on Σr,2 ∩ B(ξ0, ρ). Now, let us choose z0 so that O+(ξ0, r)
is starlike about z0. Then, it follows from [34, Lem. 5] that

‖K(z, .)‖
L∞(Σr\B(ξ0,ρ) , ω

O+(ξ0,r)
z0

)
→ 0 when z → ξ0.
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Fom this estimate, we obtain on applying the dominated convergence theorem
in (93) that limO+(ξ0,r)3z→ξ0 v1(z) = 0.
Next, define ψ2 : Σr → R to be ϕ on Σr,2 ∩ B(ξ0, ρ) and 0 elsewhere on

Σr. Letting v2(z) :=
∫

Σr
ψ2dω

O+(ξ0,r)
z , we find since ω

O+(ξ0,r)
z is a probability

measure and |ψ2| < ε that

−ε < lim inf
O+(ξ0,r)3z→ξ0

v2(z) ≤ lim sup
O+(ξ0,r)3z→ξ0

v2(z) < ε.

So, if we put ψ := ψ1 + ψ2 so that ψ = u+
ϕ on Σr,1 ∪ Σr,3 and ψ = ϕ on Σr,2,

we get with v := v1 + v2 =
∫

Σr
ψdω

O+(ξ0,r)
z that

− ε < lim inf
O+(ξ0,r)3z→ξ0

v(z) ≤ lim sup
O+(ξ0,r)3z→ξ0

v(z) < ε. (94) limv

Now, if u is superharmonic and bounded below on Ω+ with lim infΩ+3y→ξ u(y) ≥
ϕ(ξ) for all ξ ∈M, it holds that u ≥ u+

ϕ on Ω+ by (90) and (91). Therefore
lim infO+(ξ0,r)3y→ξ u(y) ≥ ψ(ξ) for all ξ ∈ Σr and hence, by (90) and (91)
again, u ≥ v on O+(ξ0, r). Infimizing over such u, we deduce that u+

ϕ ≥ v on
O+(ξ0, r), and a similar argument dealing with subharmonic functions yields
that also u+

ϕ ≤ v there. Hence, v is the restriction to O+(ξ0, r) of u+
ϕ , so that

(94) implies (92) because ε > 0 was arbitrary.

References

Adams [1] R. Adams and J. Fournier, Sobolev spaces, Academic Press, 2003.

Agranovich [2] M. S. Agranovich, Sobolev spaces, their generalizations, and elliptic
problems in smooth and Lipschitz domains, Springer, 2015.

Amar1 [3] E. Amar, On the Lr Hodge theory in com-
plete non compact Riemannian manifolds, preprint:
https://hal.archives-ouvertes.fr/hal-01168927v3/document.

AGar [4] D.H. Armitage and S.G. Gardiner, Classical Potential Theory,
Springer, 2001.

BeSh [5] C. Bennett and R. Sharpley. Interpolation of Operators, Academic
Press, 1988.

52



ABR [6] S. Axler and P.Bourdon and W. Ramey. Harmonic Function Theory,
Springer, 2001.

BHLSW [7] L. Baratchart and E. Lima and D. Hardin and E.B. Saff and B. Weiss.
Characterizing kernels of operators related to thin plate magnetiza-
tions via generalizations of Hodge decompositions, Inverse Problems,
vol. 29, 2013.

BNPB [8] H. Bhatia and G. Norgard and V. Pascucci and P. T. Bremer. The
Helmoltz-Hodge decomposition-A survey, IEEE Trans. on Visualiza-
tion and Computer Graphics, 19 (8), 2013.

CW [9] R. R. Coifman and G. Weiss. Extensions of Hardy spaces and their
use in analysis, Bull. Amer. Math. Soc., 83 (4), pp 569–645, 1977.

Dah1 [10] B. E. Dahlberg. On the Poisson integral for Lipschitz and C1 domains,
Studia Math. 66, pp. 13–24, 1979.

Dah [11] B. E. Dahlberg. Estimates of harmonic measure, Ark. Rat. Mec. Anal.
65, pp. 278–288, 1977.

DahlbergWN [12] B. E. J. Dahlberg. Weighted norm inequalities for the Lusin area inte-
gral and the nontangential maximal functions for functions harmonic
in a Lipschitz domain, Studia Math. 67, pp. 279-314, 1980.

DahlbergKenig [13] B. E. J. Dahlberg and C. E. Kenig. Hardy spaces and the Neumann
Problem in Lp for Laplace’s equation in Lipschitz domains, Annals
of Mathematics, 125 (3), pp. 437–465, 1987.

JKNTA [14] D. S. Jerison and C. E. Kenig. Boundary behavior of harmonic func-
tions in non-tangentially accessible domains, Advances in Maths., 46,
pp. 80–147, 1982.

Demengel [15] F. Demengel, G. Demengel. Espaces fonctionnels. Utilisation dans la
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