
HAL Id: hal-02941429
https://inria.hal.science/hal-02941429v1

Preprint submitted on 17 Sep 2020 (v1), last revised 20 Jan 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global Linear Convergence of Evolution Strategies on
More Than Smooth Strongly Convex Functions

Youhei Akimoto, Anne Auger, Tobias Glasmachers, Daiki Morinaga

To cite this version:
Youhei Akimoto, Anne Auger, Tobias Glasmachers, Daiki Morinaga. Global Linear Convergence of
Evolution Strategies on More Than Smooth Strongly Convex Functions. 2020. �hal-02941429v1�

https://inria.hal.science/hal-02941429v1
https://hal.archives-ouvertes.fr


GLOBAL LINEAR CONVERGENCE OF EVOLUTION STRATEGIES
ON MORE THAN SMOOTH STRONGLY CONVEX FUNCTIONS

YOUHEI AKIMOTO ∗, ANNE AUGER † , TOBIAS GLASMACHERS ‡ , AND DAIKI

MORINAGA §

Abstract. Evolution strategies (ESs) are zero-order stochastic black-box optimization heuristics
invariant to monotonic transformations of the objective function. They evolve a multivariate normal
distribution, from which candidate solutions are generated. Among different variants, CMA-ES is
nowadays recognized as one of the state-of-the-art zero-order optimizers for difficult problems. Albeit
ample empirical evidence that ESs with a step-size control mechanism converge linearly, theoretical
guarantees of linear convergence of ESs have been established only on limited classes of functions. In
particular, theoretical results on convex functions are missing, where zero-order and also first order
optimization methods are often analyzed. In this paper, we establish almost sure linear convergence
and a bound on the expected hitting time of an ES, namely the (1 + 1)-ES with (generalized) one-
fifth success rule and an abstract covariance matrix adaptation with bounded condition number, on a
broad class of functions. The analysis holds for monotonic transformations of positively homogeneous
functions and of quadratically bounded functions, the latter of which particularly includes monotonic
transformation of strongly convex functions with Lipschitz continuous gradient. As far as the authors
know, this is the first work that proves linear convergence of ES on such a broad class of functions.

Key words. Evolution strategies, Randomized Derivative Free Optimization, Black-box opti-
mization, Linear Convergence, Stochastic Algorithms

AMS subject classifications. 65K05, 90C25, 90C26, 90C56, 90C59

1. Introduction. We consider the unconstrained minimization of an objective
function f : Rd → R without the use of derivatives. We more precisely assume that the
algorithm minimizing the function f sees it as a black-box oracle that can be queried
at points x ∈ Rd and returns as response the function value f(x), but no gradient.
This problem statement is referred to as zero-order black-box optimization [12,53,54]
or derivative-free optimization [16]. This context is particularly useful for solving real-
world applications where the function is computed for instance through a simulation
where an estimate of the gradient is hard to derive or when differentiability cannot
be assumed.

Black-box problems can be advantageously approached by randomized algorithms
that can typically be more robust to noise, non-convexity and irregularities of the
objective function than deterministic algorithms. Recently, there has been a vivid
interest in randomized derivative-free algorithms: direct search methods have been
analyzed assuming that the set of polling directions includes a descent direction with
probability p [26]; randomized trust-region methods have been investigated [9, 27];
randomized model-based method with line search have been analyzed under the as-
sumption that the algorithm under study delivers a sufficiently good model with high
enough probability [13], and a similar analysis was undertaken in [57] with a focus
on line search. Additionally, Nesterov and Spokoiny [55] have analyzed a randomized
method where the directions follow a Gaussian distributions. For strongly-convex
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functions with Lipschitz gradient they obtain a runtime bound of order O
(
d · log(1/ε)

)
instead of O

(
d2 · log(1/ε)

)
for deterministic direct search [44]. The quadratic scal-

ing is due to the problem that finding a suitable descent direction takes linear time.
Note however that the method analyzed in [55] does not assume a black-box setting
and explicitly uses the Lipschitz constant and the target accuracy ε for choosing the
parameters of the algorithm. We refer to [46] for an in-depth survey including the
references of this paragraph and additional ones.

Random Pursuit [62] is another randomized derivative-free method where a line
search is performed starting from an incumbent solution in a direction sampled uni-
formly at random. Stich et al. analyzed the random pursuit with approximate line
search on convex functions, which realizes a geometric decrease of the function value
regret f(xt)− f(x∗) (and hence linear convergence) on strongly convex functions for
exact line search and also for the more realistic case of approximate line search with
bounded relative error. More recently, Golovin et al. [25] analyzed a randomized al-
gorithm where a search direction is sampled from the standard Gaussian. For the
step-size, they consider as approximate line search all possible value of a grid span-
ning an interval with uniform spacing on a log-scale. They show a geometric decrease
of the function value regret, up to a constant defined by the minimum step-size, on
strongly convex functions with Lipschitz smooth gradients.

All of the previously cited studies have either taken well known deterministic
derivative-free algorithms and modified their convergence and complexity analysis
to handle randomized components, or built novel randomized algorithms with a clear
route towards (tractable) convergence proofs and complexity bounds in mind. In some
cases, the analysis concerns parametrized frameworks rather than concrete algorithms
that could be directly implemented and used.

We take here a different approach. We investigate practical algorithms that be-
long to the class of Evolution Strategies (ES) that are among the oldest randomized
derivative-free or zero-order black-box methods [17, 58, 61]. In contrast to previously
cited studies, establishing formal convergence proofs has never been the primary con-
cern when designing ES methods. Consequently, establishing their convergence turns
out to be often a difficult task requiring sometimes to extend current mathematical
frameworks [3, 8, 14].

Nowadays, a specific ES called covariance-matrix-adaptation ES (CMA-ES) [35]
is among the best solvers to address difficult black-box problems. It performs well on
many ill-conditioned, non-convex, non-smooth, and non-separable problems [34, 60]
with various published successful applications in different domains by researchers un-
related to the algorithm designers [5, 11, 21–23, 29, 45, 50, 66, 67]1. The algorithm is
affine-invariant and implements complex adaptation mechanisms for the sampling co-
variance matrix and step-size. It learns second order information of the objective
function [33]. Part of the covariance matrix update derives from a stochastic natu-
ral gradient step of an optimization problem formulated on the statistical manifold
formed by the family of Gaussian distributions [4, 56, 68]2. The CMA-ES should al-
ways be preferred over the ES variant we analyze in this paper for solving real-world

1The pycma python implementation has regularly more than 2000 downloads per day according
to https://pypistats.org/packages/cma as of May 2020.

2This natural gradient should not be confused with the gradient of the objective function. Ad-
ditionally, the vector formed by the update of the mean vector mt+1 − mt is not meant to be
proportional to the gradient of f in mt. Indeed the step-size is typically large compared to what
would be needed to obtain a good approximation of the gradient. This feature helps to solve problems
with local irregularities like noisy functions with noise-to-signal ratio bounded.

https://pypistats.org/packages/cma
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problems. Yet, even the simple ES variants analyzed achieve faster linear convergence
on well-conditioned problems when compared to algorithms with established complex-
ity analysis (see [62, Table 6.3 and Figure 6.1] and [8, Figure B.4] where the random
pursuit algorithm and the (1+1)-ES algorithms are compared, and also Appendix A).

Because Evolution Strategies are important randomized derivative-free algorithms
in practice, it is essential to study them from a theoretical convergence perspective,
which is the aim of this paper.

In this context, we analyze the arguably simplest and oldest adaptive ES, denoted
(1+1)-ES. Its pseudo code is given below:

Algorithm 1.1 (1+1)-ES with 1/5 success rule

1: input m ∈ Rd, σ > 0
2: set α↑ ≈ 1.5, α↓ ≈ (1.5)−1/4

3: while stopping criterion not met do
4: x = m+ σ · N (0, Id) . sample candidate solution following N (m,σ2Id)
5: if f(x) 6 f(m) then
6: m← x . move to the better solution
7: σ ← α↑ σ . increase step-size
8: else
9: σ ← α↓σ . decrease step-size .

Our analysis will also allow to cover an (abstract) adaptation of the covariance
matrix provided the condition number of the matrix stays bounded.

The pseudo-code above shares some similarities with the simplified direct search
whose complexity analysis has been presented in [44]. Yet there are some fundamental
differences that we wish to highlight:

• The algorithm is comparison-based: the decisions to accept a candidate so-
lution are based only on the order relation of f(x) and f(m). In contrast,
in direct search algorithms, the acceptance is based on the sufficient decrease
condition f(x) 6 f(m) − cσ2 where c is a constant which is a parameter of
the algorithm. In ES, sufficient decrease is not guaranteed when accepting
a better solution. On the positive side, the decision is invariant to strictly
increasing transformation of f .

• In contrast to the simplified direct-search algorithm, the step-size can increase
and can thus recover from bad initial choices of the step-size. This recovery is
practically fast. Hence the method does not require any tuning of the initial
parameters to work efficiently.

• Algorithm 1.1 is rotational invariant. In contrast, direction search methods
construct candidate solutions along the vectors of a predefined set. As a
consequence, performance can be very different if the function is separable
with respect to the elements of the predefined set of vectors or not.

The comparison-based nature of the (1+1)-ES is important as it implies invariance
to strictly increasing transformations of the objective function. Invariance properties
naturally add robustness to a method. Also, practically, the method does not require
any tuning of the essential parameters and converges globally, independent of the
initial conditions. The absence of parameters that need problem-specific tuning is
shared by CMA-ES, and it is probably a key to its success. Yet, while powerful in
practice, this property poses great challenges for the analysis because we cannot rely
on sufficient decrease of f .
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Prior theoretical studies of the (1+1)-ES with 1/5 success rule have established
the global linear convergence on differentiable positively homogeneous functions (com-
posed with a strictly increasing function) with a single optimum [7, 8]. Those results
establish the almost sure linear convergence for all initial states (σ and m). They
however do not provide the dependency of the convergence rate with respect to the
dimension. A more specific study on the sphere function f(x) = 1

2‖x‖2 establishes
lower and upper bounds on the expected hitting time of an ε-ball of the optimum in
Θ(log(d‖m0 − x∗‖/ε)), where x∗ is the optimum of the function [2]. Prior to that, a
variant of the (1 + 1)-ES with one-fifth success rule had been analyzed on the sphere
and certain convex quadratic functions establishing bounds on the expected hitting
time or with overwhelming probability in Θ(log(κfd‖m0 − x∗‖/ε)), where κf is the
condition number (the ratio between the greatest and smallest eigenvalues) of the
Hessian [39–42].

Recently, the class of functions where the convergence of the (1+1)-ES was proven
has been extended to continuously differentiable functions. This analysis does not
address the question of linear convergence focusing only on the convergence (which is
possibly sublinear) [24].

In this context, our main objective is to establish linear convergence of a gen-
eralized version of the (1+1)-ES algorithm on a function class which is as wide as
possible. Our main contribution is as follows:

For a generalized version of the (1+1)-ES with one-fifth success rule, we prove
bounds on the expected hitting time akin to linear convergence, i.e., hitting an ε-ball
in Θ(log ‖m0 − x∗‖/ε) iterations on a quite general class of functions. This class of
functions includes all composites of L-smooth strongly convex functions with a strictly
increasing transformation. This latter transformation allows to include some non-
continuous functions, and even functions with non-smooth level sets. We additionally
deduce linear convergence with probability one.

Our analysis relies on finding an appropriate Lyapunov function with lower and
upper-bounded expected drift. It is building on classical fundamental ideas presented
by Hajek [30] and widely used to analyze stochastic hill-climbing algorithms on dis-
crete search spaces [48].

Preliminary versions of this work were published in [2, 52]. Those studies were
concerned with an algorithm without covariance matrix adaptation. Here we extend
the analysis accordingly and also include almost sure convergence results. Addition-
ally the presentation of this paper includes an introduction to the methods analyzed,
put in the context of derivative-free optimization, as well as thorough discussions of
the assumptions and of the obtained results.

This paper is organized as follows. In Section 2 we present the class of algorithms
analyzed, we provide central definitions, establish preliminary results, and finish by
presenting and discussing the class of objective functions under study. In Section 3
we present our main methodology based on drift analysis to prove bounds on the
expected first hitting time of an ε-ball of the optimum. We prove lower-bounds and
upper bounds akin to linear convergence in Section 4.

Notation. Throughout the paper, we use the following notations. The set of
natural numbers {1, 2, . . . , } is denoted N. The real field is denoted by R. Open, closed,
and left open intervals on R are denoted by (·, ·), [·, ·], and (·, ·], respectively. The set
of strictly positive real numbers is denoted by R>. The absolute value on R is denoted
by |·|. The Euclidean d-dimensional real vector space is denoted by Rd. The Euclidean
norm on Rd is denoted by ‖·‖. Open and closed balls with center c and radius r are
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denoted as B(c, r) = {x ∈ Rd : ‖x − c‖ < r} and B̄(c, r) = {x ∈ Rd : ‖x − c‖ 6 r},
respectively. Lebesgue measures on R and Rd are both denoted by the same symbol
µ. A multivariate normal distribution with mean m and covariance matrix Σ is
denoted by N (m,Σ). Its probability measure and its induced probability density
under Lebesgue measure are denoted by Φ(·;m,Σ) and ϕ(·;m,Σ). The indicator
function of a set or condition C is denoted by 1{C}. For a random object X on
some probability space X ∼ P following a probability measure P , the probability and
the expectation are denoted by PrX∼P and EX∼P , and we drop X ∼ P from the
subscripts unless ambiguous. We use Bachmann-Landau notations: o, O, Θ, Ω, ω.

2. Algorithm, Definitions and Objective Function Assumptions. In this
section we present the (1+1)-ESκ with a success-based step-size adaptation and a
covariance matrix adaptation with bounded condition number that we will analyze.
We then introduce preliminary definitions for the analysis and state the objective
function assumptions as well as discuss their relation to typical classes of functions
where numerical optimization algorithms are usually analyzed.

2.1. Algorithm: (1+1)-ES with Success-based Step-size Control. We
analyze in this paper a generalized version of the (1+1)-ES with one-fifth success
rule sketched in the introduction (Algorithm 1.1) which implements one of the oldest
idea to adapt the step-size in randomized optimization methods [17, 58, 61]. The
specific implementation was proposed in [43]. The algorithm analyzed is written in
Algorithm 2.1 where we use notations with a time index that are convenient to analyze
the algorithm. Before to explain the generalization of Algorithm 1.1 considered, we
explain briefly the (1+1)-ES algorithm sketched in the introduction (we use however
notations with a time index). At each iteration, a candidate solution xt is sampled. It
is centered in the current incumbent mt and follows a multivariate normal distribution
with mean vectormt and covariance matrix equal to σ2

t Id where Id denotes the identity
matrix. The candidate solution is accepted, that is mt becomes xt, if and only if xt is
better than mt (i.e. f(xt) 6 f(mt)). In this case, we say that the candidate solution
is successful. The step-size σt is adapted so as to maintain a probability of success
of roughly 1/5. The step-size is increased in case of success (which is an indication
that the step-size is likely to be too small) and decreased otherwise. The decrease
and increase factors are linked such that a probability of success of roughly 1/5 is
maintained. This probability of success has been shown to be close to optimal, which
gives nearly optimal (linear) convergence rate on the sphere function [17, 58]. To do
so, assume an increase factor denoted α↑ and a decrease factor denoted α↓, we want
the following relation to be satisfied:

(2.1)
1

5
log(α↑) +

(
1− 1

5

)
log(α↓) = 1 .

If we set α↑ to be equal to 1.5 like in Line 2 of Algorithm 1.1, then this implies that
α↓ = 1.5−1/4. We will denote as

(2.2) ptarget :=
log(1/α↓)

log(α↑/α↓)
,

the underlying target success probability that we try to maintain, i.e. that satisfies
(2.1) when we replace 1/5 by ptarget. We generalize the simple algorithm above by
replacing the Id matrix for the sampling of candidate solutions by a covariance matrix
Σt to be adapted in the set Sκ of positive-definite symmetric matrices with determi-
nant det(Σ) = 1 and condition number Cond(Σ) 6 κ. We do not assume any specific
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update mechanism for Σ, but we assume that the update of Σ is invariant to any
strictly increasing transformation of f . We call such an update comparison-based
(see Line 11 of Algorithm 2.1). Then, our algorithm behaves exact-equally on f and
on g ◦ f for all strictly increasing functions g : R → R

(
i.e., g(s) Q g(t) ⇔ s Q t

)
.

This defines a class of comparison-based randomized algorithms and we denote it as
(1+1)-ESκ.

Algorithm 2.1 (1+1)-ESκ with success-based step-size adaptation

1: input m0 ∈ Rd, σ0 > 0, Σ0 = I, f : Rd → R, parameter α↑ > 1 > α↓ > 0
2: for t = 1, 2, . . . , until stopping criterion is met do
3: sample xt ∼ mt + σt · N (0,Σt)
4: if f

(
xt
)
6 f

(
mt

)
then

5: mt+1 ← xt . move to the better solution
6: σt+1 ← σt · α↑ . increase the step size
7: Σt+1 ∈ Sκ . adapt the covariance matrix
8: else
9: mt+1 ← mt . stay where we are

10: σt+1 ← σt · α↓ . decrease the step size
11: Σt+1 ∈ Sκ . adapt the covariance matrix

Note that α↑ and α↓ are not meant to be tuned depending on the function prop-
erties. How to choose such constants for Σt = Id is well-known and is related to the
so-called evolution window [59]. The covariance matrix is updated in Sκ. Hereun-
der we write θ = (m,σ,Σ) as the state of the algorithm, θt = (mt, σt,Σt) and the
state-space is denoted as Θ.

Remark that while the algorithm analyzed considers an adaptive covariance ma-
trix, the assumption that the condition number of the matrix should stay bounded is
restrictive and does not allow to encompass the state-of-the-art evolution strategies
that adapt Σt with the covariance matrix adaptation (CMA) mechanism [31,35]. The
resulting algorithm is called CMA-ES. In this case the update of Σt [31, 35] is affine-
invariant which implies that the condition number of Σt cannot be bounded. Another
major difference between the default CMA-ES algorithm and the one analyzed here
relates to the number of sampled solutions at each iteration and the update of mt.
Here we sample one candidate solution whereas λ > 1 are sampled. The update of
the mean also disregards previous solutions and is simply a weighted average of the
µ = bλ/2c best solutions. Yet a version of CMA-ES in the (1+1)-ES setting presented
here has been proposed [38]. It is however not recommended for practical applica-
tions: the default CMA-ES that is sampling λ candidate solutions and where f(mt)
is not monotonous should be preferred.

For the CMA-ES versions mentioned above [31,35, 38], it is empirically observed
that Σt approaches the inverse Hessian ∇2f(mt) of the objective function up to the
scalar factor if the objective function is convex quadratic. Figure 2.1 shows typical
runs of the (1+1)-ES and the (1+1)-CMA-ES on a 10-dimensional ellipsoidal func-
tion with different condition numbers (denoted as κf ) of the Hessian. The runtime
of (1+1)-ES scales linearly with κf (notice that the x-axis is in logarithmic scale),
while the runtime of the (1+1)-CMA-ES does not scale. We take the (1+1)-CMA-ES
algorithm proposed in [6]. The transient time at the beginning where the (1+1)-
CMA-ES adapts Σ is roughly proportional to the logarithm of κf . Once the Hessian
is well approximated by Σ (up to the scaler factor), it approaches the global optimum
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Fig. 2.1: Convergence graphs for the (1+1)-ES and the (1+1)-CMA-ES on 10 di-

mensional ellipsoidal function f(x) = 1
2

∑d
i=1 κ

i−1
d−1

f x2
i with κf = 100, 101, . . . , 106.

The y-axis displays the distance to the optimum and not the function value which
explains the non-monotonous behavior when κf is larger than 1. We employ the
covariance matrix adaptation mechanism proposed by [6], where σ is adapted as in
Algorithm 2.1 with α↑ = e0.1 and α↓ = e−0.025. Note the logarithmic scale of the
time axis of the left plot vs. the linear time axis of the right plot.

geometrically at the same rate for different values of κf .
In our analysis, we do not assume any specific Σ update mechanism, hence it does

not necessarily behave as shown in Figure 2.1. Our analysis is therefore the worst
case analysis (for the upper bound of the runtime) and the best case analysis (for the
lower bound of the runtime) among the algorithms in (1+1)-ESκ.

2.2. Preliminary definitions.

2.2.1. Spatial Suboptimality Function. The algorithms studied are comparison-
based (under the assumption that the update of the covariance matrix is comparison-
based) and thus invariant to strictly increasing transformations of f . If the conver-
gence of the algorithms is measured in terms of f , say by investigating the convergence
or hitting time of the sequence f(mt), this will not reflect the invariance to mono-
tonic transformations of f because the smallest iteration t0 such that f(mt0) 6 ε is
not equal to the smallest iteration t′0 such that g(f(mt′0

)) 6 ε for some ε > 0. For this
reason, we introduce the quality measure called spatial suboptimality function [24]. It
is the dth root of the volume of the sub-levelset where the function value is better or
equal to f(x):

Definition 2.1 (Spatial Suboptimality Function). Let f : Rd → R be a measur-
able function with respect to the Borel σ algebra of Rd (simply referred to as measurable
function in the sequel). Then the spatial suboptimality function fµ : Rd → [0,+∞] is
defined as

(2.3) fµ(x) = d
√
µ (f−1 ((−∞, f(x)])) = d

√
µ
({
y ∈ Rd

∣∣ f(y) 6 f(x)
})

.

Remark that for any f , the suboptimality function fµ is greater or equal to zero. For



8 Y. AKIMOTO, A. AUGER, T. GLASMACHERS AND D. MORINAGA

any f and any strictly increasing function g : Im(f) → R, f and its composite g ◦ f
have the same spatial suboptimality function such that hitting time of fµ smaller than
epsilon will be the same for f or g ◦ f . Moreover, there exists a strictly increasing
function g such that fµ(x) = g(f(x)) holds µ-almost everywhere [24, Lemma 1].

We will investigate the expected first hitting time of ‖mt−x∗‖ to ε > 0. For this,
we will bound the first hitting time of ‖mt−x∗‖ to ε by the first hitting time of fµ(mt)
to a constant times ε. To understand why, consider first a strictly convex quadratic
function f . As is stated formally in Proposition 2.8, we have

√
f(x)− f(x∗) ∝ fµ(x)

for all x ∈ Rd, which is also proven in [1]. This implies that the first hitting time
of fµ(mt) translates to the first hitting time of

√
f(mt)− f(x∗). Moreover, since√

λmin‖x − x∗‖ 6
√
f(x)− f(x∗) 6

√
λmax‖x − x∗‖, where λmin and λmax are the

minimal and maximal eigenvalues of the Hessian of f , it also translates to the first
hitting time of ‖mt−x∗‖. More generally, we will formalize an assumption on f later
on (Assumption A1), which allow us to bound ‖x − x∗‖ by a constant times fµ(x)
from above and below (see (2.11)), implying that the first hitting time of ‖mt − x∗‖
to ε is bounded by that of fµ(mt) to ε times a constant.

2.2.2. Success Probability. The success probability, i.e., the probability of
sampling a candidate solution xt with an objective function better than or equal
to that of the current solution mt, plays an important role in the analysis of the
(1+1)-ESκ with success-based step-size control mechanism. We present here several
useful definitions related to the success probability.

We start with the definition of the success domain with rate r and the success
probability with rate r.3

Definition 2.2 (Success Domain). For a measurable function f : Rd → R and
m ∈ Rd such that fµ(m) <∞, the r-success domain at m with r ∈ [0, 1] is defined as

(2.4) Sr(m) = {x ∈ Rd | fµ(x) 6 (1− r)fµ(m)} .

The probability to sample in the r-success domain is called success probability with
rate r. When r = 0 we simply talk about success probability.

Definition 2.3 (Success Probability). Let f be a measurable function and let
m0 ∈ Rd be the initial search point satisfying fµ(m0) <∞. For any r ∈ [0, 1] and any
m ∈ S0(m0), the success probability with rate r at m under the normalized step-size
σ̄ is defined as

(2.5) psucc
r (σ̄;m,Σ) = Pr

z∼N (0,Σ)
[m+ fµ(m)σ̄z ∈ Sr(m)] .

Definition 2.3 introduces the notion of normalized step-size σ̄ and the success
probability is defined as a function of σ̄ rather than the actual step-size σ = fµ(m) · σ̄.
This is motivated by the fact that as m approaches the global optimum x∗ of f , the
step-size σ needs to shrink for the success probability to be constant. If the objective
function is f(x) = 1

2‖x− x∗‖
2

and the covariance matrix is the identity matrix, then
the success probability is fully controlled by σ̄t = σt/fµ(mt) ∝ σt/‖mt − x∗‖ and is
independent of mt. This statement can be formalized in the following way (the proof
of this Lemma is given in Appendix B.1).

3For r = 0, the success domain S0(m) is not necessarily equivalent to the sub-levelset S′0(m) :=
{x ∈ Rd | f(x) 6 f(m)}, where it always holds that S′0(m) ⊆ S0(m). However, since it is guaranteed
that µ(S0(m) \S′0(m)) = 0 by [24, Lemma 1], due to the absolute continuity of Φ(·; 0,Σ) for Σ ∈ Sκ,
the success probability with rate r = 0 is equivalent to Prz∼N (0,Σ)

[
m+ (fµ(m)/c)σ̄z ∈ S′0(m)

]
.
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Lemma 2.4. If f(x) = 1
2‖x− x∗‖

2
, then

psucc
r (σ̄;m, I) = Pr

z∼N (0,I)
[m+ fµ(m)σ̄z ∈ Sr(m)] = Pr

z∼N (0,I)
[‖e1 + Vdσ̄z‖ 6 (1− r)]

where Vd = π1/2

Γ1/d(d/2+1)
and e1 = (1, 0, . . . , 0).

Therefore, σ̄ is more discriminative than σ itself. In general, the optimal step-size is
not necessarily proportional to neither ‖mt − x∗‖ nor fµ(mt).

Since the success probability under a given normalized step-size depends on m
and Σ, we define the upper and lower success probability as follows.

Definition 2.5 (Lower and Upper Success Probability). Let X ba = {x ∈ Rd :
a < fµ(x) 6 b}. Given the normalized step-size σ̄ > 0, the lower and upper success
probabilities are respectively defined as

plower
(a,b] (σ̄) = inf

m∈X ba
inf

Σ∈Sκ
psucc

0 (σ̄;m,Σ) ,(2.6)

pupper
(a,b] (σ̄) = sup

m∈X ba
sup

Σ∈Sκ
psucc

0 (σ̄;m,Σ) .(2.7)

A central quantity for our analysis is the limit for σ̄ to 0 of the success proba-
bility psucc

0 (σ̄;m,Σ). Intuitively, if this limit is too small for a given m (compared to
ptarget), because the ruling principle of the algorithm is to decrease the step-size if
the probability of success is smaller than ptarget, the step-size will be kept decreas-
ing, causing undesired convergence. Following Glasmachers [24], we introduce the
concepts of p-improbability and p-criticality. They are defined in [24] by the proba-
bility of sampling a better point from the isotropic normal distribution in the limit
of the step-size to zero. Here, we define p-improvability and p-criticality for a general
multivariate normal distribution.

Definition 2.6 (p-improvability and p-criticality). Let f be a measurable func-
tion. The function f is called p-improvable at m ∈ Rd under the covariance matrix
Σ ∈ Sκ if there exists p ∈ (0, 1] such that

(2.8) p = lim inf
σ̄→+0

psucc
0 (σ̄;m,Σ) .

Otherwise, it is called p-critical.

The connection to the classical definition of the critical points for continuously
differentiable functions is summarized in the following proposition, which is an exten-
sion of Lemma 4 in [24], taking a non-identity covariance matrix into account. Its
proof is provided in Appendix B.2.

Proposition 2.7. Let f = g ◦ h be a measurable function where g is any strictly
increasing function and h is continuously differentiable. Then, f is p-improvable with
p = 1/2 at any regular point m where ∇h(m) 6= 0 under any Σ ∈ Sκ. Moreover, if
h is twice continuously differentiable at a critical point m where ∇h(m) = 0 and at
least one eigenvalue of ∇2f(m) is non-zero, under any Σ ∈ Sκ, m is p-improvable
with p = 1 if ∇2h(m) has only non-positive eigenvalues, p-critical if ∇2h(m) has only
non-negative eigenvalues, and p-improvable with

(2.9) p = Pr
z∼N (0,Σ)

(
zT∇2h(m)z 6 0

)
> 0

if ∇2h(x) has at least one strictly negative eigenvalue.



10 Y. AKIMOTO, A. AUGER, T. GLASMACHERS AND D. MORINAGA

2.3. Main Assumptions on the Objective Functions. Given a and b posi-
tive real numbers satisfying 0 6 a < b 6 +∞, and a measurable objective function, we
denote X ba the set of points of the search space with suboptimality function between
a and b, more precisely

X ba = {x ∈ Rd|a < fµ(x) 6 b} .

We pose two core assumptions on the objective functions under which we will de-
rive an upper bound on the expected first hitting time of [0, ε] by f(mt) (Theorem 4.5)
provided a 6 ε 6 fµ(m0) 6 b. First, we require to be able to embed and include balls
of radius scaling with fµ(m) into the sublevel sets of f . We do not require this to
hold on the whole search space but for a set X ba . (Yet we will see below that to obtain
linear convergence we will need that a = 0).

A1 We assume that f is a measurable function and that there exists a > 0 and
b > a such that there exist universal constants C` 6 Cu such that for any
m ∈ X ba , there exist an open ball B` with radius C`fµ(m) and a closed ball
B̄u with radius Cufµ(m) such that B` ⊆ {x ∈ Rd | fµ(x) < fµ(m)} and
{x ∈ Rd | fµ(x) 6 fµ(m)} ⊆ B̄u.

We do not specify the center of those balls that may or may not be centered on one
optimum of the function. We will see in Proposition 4.1 that this assumption allows
to bound plower

(a,b] (σ̄) and pupper
(a,b] (σ̄) by tractable functions of σ̄ which will be essential

for the analysis. The property is illustrated in Figure 4.1.
The second assumption requires that the functions are p-improvable for p which

is lower-bounded uniformly over X ba .
A2 Let f be a measurable function, we assume that there exists X ba and there

exists plimit > ptarget such that for any m ∈ X ba and any Σ ∈ Sκ, the objective
function f is p-improvable for some p > plimit, i.e.,

(2.10) lim inf
σ̄↓0

plower
(a,b] (σ̄) > plimit .

The property is illustrated in Figure 4.2. This assumption implies in particular for
a continuous function that X ba does not contain any local optimum. This latter as-
sumption is required to obtain global convergence [24, Theorem 2] even without any
covariance matrix adaptation (i.e. with κ = 1) and it can be intuitively understood.
If we have a point which is p-improvable with p < ptarget and which is not a local
minimum of the function, then, starting with a small step-size, the success-based step-
size control may keep decreasing the step-size at such a point and the (1+1)-ESκ will
prematurely converge to a point which is not a local optimum.

If A1 is satisfied with balls centered at the optimum x∗ of the function f , then it
is easy to see that for all x ∈ X ba
(2.11) C`fµ(x) 6 ‖x− x∗‖ 6 Cufµ(x) .

If they are not centered at the optimum, we have the one-side inequality ‖x− x∗‖ 6
2Cufµ(x). Hence, the expected first hitting time of fµ(mt) to [0, ε] translates to an
upper bound for the expected first hitting time of ‖mt − x∗‖ to [0, 2Cuε].

Under A1 and A2, an upper bound on the expected first hitting time of [0, ε] by
fµ(mt) will be derived provided a 6 ε 6 fµ(m0) 6 b. Yet, the obtained upper bound
will translate into linear convergence only if we can choose ε as small as possible, that
is on functions where a = 0. Similarly, it will translate as global linear convergence
(i.e. independently of where the starting point m0 is) only if b = ∞. We will also
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derive a lower bound for the expected hitting time which holds for any measurable
function.

We remark that A1 and A2 satisfied for a = 0 allow to include non-smooth
functions with non-convex sublevel sets as illustrated in Figures 4.1 and 4.2.

We now give some examples of functions that satisfy A1 and A2 including function
classes where linear convergence of numerical optimization algorithms are typically
analyzed.

Convex-quadratic functions. We consider composite of convex-quadratic func-
tions as formalized in the next assumption.

A3 We assume that f = g ◦ h where g : Im(h)→ R is strictly increasing and h is
a convex-quadratic function, that is h(x) = 1

2 (x− x∗)TH(x− x∗) where H is
a n× n matrix which is symmetric positive definite.

In the next proposition, we give for a function f satisfying A3, the expression of the
spatial suboptimality function. We also prove that it satisfies A1 and provide tight
bounds for the constants C` and Cu. We explicit that it satisfies A2. We provide its
proof in Appendix B.3.

Proposition 2.8. Let f be a composite of a convex-quadratic function h by a
strictly increasing function g as in A3. Then the spatial suboptimality function fµ(x)
equals

(2.12) fµ(x) = Vd ·
[

2h(x)

det(H)1/d

]1/2

where Vd = π1/2

Γ1/d(d/2+1)
is the dth root of the volume of the d-dimensional unit hyper-

sphere. Assumptions A1 is satisfied for a = 0 and b =∞ with

C` = V −1
d

(
det(H)1/d/λmax(H)

)1/2
and Cu = V −1

d

(
det(H)1/d/λmin(H)

)1/2
.

The function f is also measurable and differentiable satisfying thus A2 for a = 0 and
b =∞.

Convex-quadratic functions are a particular case of strongly-convex and L-smooth
functions discussed in the next section.

Strongly-convex and L-smooth functions. The set of strongly-convex and
L-smooth functions constitutes a function class where the linear convergence of nu-
merical optimization methods in often analyzed. Let us remind that a function h is
L`-strongly convex onM⊆ Rd if it is differentiable and there exists L` > 0 such that
for all x, y ∈M,

h(x) + 〈y − x,∇h(x)〉+
L`
2
‖x− y‖2 6 h(y) .(2.13)

A differentiable function h is Lu-smooth on M if the gradient ∇h(x) is Lipschitz
continuous with Lipschitz constant Lu. If h is Lu-smooth, we have for any x, y ∈M,

h(y) 6 h(x) + 〈y − x,∇h(x)〉+
Lu
2
‖x− y‖2 .(2.14)

We pose the following assumption.
A4 We assume that f = g ◦ h where g : Im(h)→ R is strictly increasing and h is

L`-strongly convex on Rd and Lu-smooth.
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Functions satisfying A4 are measurable as the composition of two measurable func-
tions and they satisfy A1 and A2 for a = 0 and b = ∞. This can be shown as
a consequence of the fact that the functions are then quadratically bounded (see
Lemma 2.10) given in the next paragraph).

Quadratically bounded functions. We remark that (2.11) implied by A1 can
be rewritten into a quadratic upper and lower bound for fµ(x)2, i.e.

1

C2
u

‖x− x∗‖2 6 fµ(x)2 6
1

C2
`

‖x− x∗‖2 .

Conversely, a measurable function which is quadratically bounded will satisfy A1.
Indeed let us pose first the quadratically bounded assumption as follows.

A5 We assume that f = g ◦ h where g is a strictly increasing function and h is
a measurable with the optimum x∗ where h is quadratically bounded around
x∗, i.e.,

L`
2
‖x− x∗‖2 6 h(x)− h(x∗) 6

Lu
2
‖x− x∗‖2(2.15)

for x ∈
{
x : h(x)− h(x∗) ∈

(
0, Lub

2

2V 2
d

]}
with b > 0.

We note that strongly-convex and L-smooth functions are quadratically bounded func-
tions around the optimum x∗ of h where ∇f(x) = 0. The following lemma shows that
A5 implies A1 with a = 0. The proof of the lemma in presented in Appendix B.4.

Lemma 2.9. Let f satisfy A5. Then, f satisfies A1 with a = 0 and b given in A5
and

C` =
1

Vd

√
L`
Lu

and Cu =
1

Vd

√
Lu
L`

.

The assumption of quadratically bounded functions includes non-convex func-
tions. In particular, the function can oscillate and we can have local optima.

As a direct consequence of Proposition 2.7, we know that a continuously dif-
ferentiable function with a unique critical point satisfies A2. Hence a differentiable
quadratically bounded function with a unique optimum x∗ will satisfy both A1 and
A2. We pose this as an assumption.

A6 We assume that f = g ◦ h where g : Im(h) → R is strictly increasing and
h is continuously differentiable and quadratically bounded satisfying (2.15)
around x∗ assumed to be the unique optimum of f .

Combining Proposition 2.7 and Lemma 2.9, functions satisfying A6 satisfy A1 and
A2. Also, since strongly-convex and L-smooth functions are quadratically bounded,
functions satisfying A4 satisfy A1 and A2. We formalize this result in the next lemma.

Lemma 2.10. If A6 holds, then f satisfies A1 and A2 with a = 0 and b given in
A5. Moreover, if A4 holds, then f satisfies A1 and A2 with a = 0 and b =∞.

Positively Homogeneous Functions. A positively homogeneous function h
with a unique optimum x∗ satisfies the following property:

(2.16) h(x∗ + γx) = h(x∗) + γ (h(x∗ + x)− h(x∗))

for γ > 0 The levelsets of a positively homogeneous function are all geometrically
similar around x∗. The sublevel sets can be non-convex such that the function class
includes non quasi-convex functions (see [8, Figure 3.1]). Linear convergence of evo-
lution strategies including the (1+1)-ES has been proven on such functions [7, 8].
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A7 We assume that f = g ◦ h where h is positively homogeneous with a unique
optimum x∗ satisfying (2.16) and continuously differentiable.

Proposition 2.11. Let f be positively homogeneous satisfying A7, then the sub-
optimality function fµ(x) is proportional to h(x) − h(x∗) and satisfies A1 for a = 0
and b =∞ with Cu = sup{‖x− x∗‖ : fµ(x) = 1} and C` = inf{‖x− x∗‖ : fµ(x) = 1}.
It also satisfies A2 for a = 0 and b =∞.

The proof of this proposition is provided in Appendix B.5.

3. Methodology: Additive Drift on Unbounded Continuous Domains.
We analyze the linear convergence by bounding the expected first hitting time of a ball
of radius ε around the optimum. In Section 3.1, we define the first hitting of a process
and connect bounds on this hitting time and linear convergence. In Section 3.2.1
and Section 3.2.2 we present two theorems that translate drift conditions into upper
bounds and lower bounds on the expected first hitting time.

3.1. First Hitting Time. We start with the generic definition of the first hitting
time of a stochastic process {Xt : t > 0}, defined as follows.

Definition 3.1 (First hitting time). Let {Xt : t > 0} be a sequence of real-
valued random variables adapted to the natural filtration {Ft : t > 0} with initial
condition X0 = β0 ∈ R. For β < β0, the first hitting time TXβ of Xt to the set

(−∞, β] is defined as TXβ = inf{t : Xt 6 β}.
The first hitting time is the number of iterations that the stochastic process

requires to reach the target level β < β0 for the first time. In our situation, Xt =
‖mt − x∗‖ measures the distance from the current solution mt to the target point
x∗ (typically, global or local optimal point) after t iterations. Then, β = ε > 0
defines the target accuracy and TXε is the runtime of the algorithm until it finds an
ε-neighborhood B(x∗, ε). The first hitting time TXε is a random variable as mt is a
random variable. In this paper, we focus on the expected first hitting time E[TXε ]. We
want to derive lower and upper bounds on this expected hitting time that relate to
the linear convergence of Xt towards x∗. Such bounds take the following form: There
exist CT , C̃T ∈ R and CR > 0, C̃R > 0 such that for any 0 < ε 6 β0

(3.1) C̃T +
log (‖m0 − x∗‖/ε)

C̃R
6 E[TXε |F0] 6 CT +

log(‖m0 − x∗‖/ε)
CR

.

That is, the time to reach the target accuracy scales logarithmically with the ratio
between the initial accuracy ‖m0 − x∗‖ and the target accuracy ε. The first pair of
constants, CT and C̃T , capture the transient time, which is the time that adaptive
algorithms typically spend for adaptation. The second pair of constants, CR and C̃R,
reflect the speed of convergence (logarithmic convergence rate). Intuitively, assuming
that CR and C̃R are close, the distance to the optimum decreases in each step at a
rate of approximately exp(−CR) ≈ exp(−C̃R).

Alternatively, linear convergence can be defined as the property that: there exits
C > 0 such that

(3.2) lim sup
t→∞

1

t
log

( ‖mt − x∗‖
‖m0 − x∗‖

)
6 −C almost surely.

When we have an equality in the previous statement, we say that exp(−C) is the
convergence rate.4

4The link between (3.1) and (3.2) can be easily understood. Assume a deterministic sequence
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Fig. 3.1: Three runs of (1+1)-ES (α↑ = e0.1 and α↑ = e−0.025) on 10 dimensional

spherical function f(x) = 1
2‖x− x∗‖

2
with initial step-size σ0 = 10−4, 1, and 104 (in

blue, red, green, respectively). Plotted are the distance to the optimum (dotted line),
the step-size (dashed line), and the potential function V (θ) defined in (4.7) (solid line)
with v = 4/d, ` = α−10

↑ , and u = α−10
↓ .

To deal with the stochastic setting, we consider the expected hitting time while
for the asymptotic convergence we consider almost sure results. Upper-bounds on
the hitting time are typically harder to derive than lower-bounds. While upper-
bounds inform us about the (linear) convergence, the lower-bound helps understanding
whether the upper bound is tight.

Figure 3.1 visualizes three different runs of the (1+1)-ES on a function with
spherical level sets with different initial step-sizes. First of all we clearly observe
linear convergence. The first hitting time of B(x∗, ε) scales linearly with log(1/ε) for
a sufficiently small ε > 0. Second, its convergence speed is independent of the initial
condition. Therefore, we expect to have universal constants CR and C̃R independent
of the initial state. Last, depending on the initial step-size, the transient time can
differ. If the initial step-size is too large or too small, it does not produce progress in
terms of ‖mt − x∗‖ until the step-size is well adapted. Therefore, CT and C̃T depend
on the initial condition, with a logarithmic dependency on the initial multiplicative
mismatch.

satisfying (3.2) with a convergence rate exp(−C). Then for all C′ with 0 < C′ < C, there exits τ
such that for all t > τ

log ‖mt − x∗‖ < −tC′ + log ‖m0 − x∗‖
and thus there exists Cτ > 0 such that for all t > 0

log ‖mt − x∗‖ < −tC′ + log ‖m0 − x∗‖+ Cτ .

Then the first hitting time to B(x∗, ε) denoted Tε is upper bounded by T such that −TC′+log ‖m0−
x∗‖ + Cτ = log ε that is T = (log(1/ε) + log ‖m0 − x∗‖ + Cτ )/C′ (this T might not be an integer)
and thus

Tε 6
log(‖x0 − x∗‖/ε) + Cτ

C′
.

Hence we have shown that the asymptotic linear convergence in (3.2) implies the upper bound on
the hitting time given in (3.1).
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3.2. Bounds of the Hitting Time via Drift Conditions. We are going to use
drift analysis that consists in deducing properties on a sequence {Xt : t > 0} (adapted
to a natural filtration {Ft : t > 0}) from its drift defined as E[Xt+1 | Ft] − Xt [30].
Drift analysis has been widely used to analyze hitting times of evolutionary algorithms
defined on discrete search spaces (mainly on binary search spaces). In this context,
specific drift conditions have been derived. Depending on the form of the bound of
the drift, different types of expected first hitting time bounds are available, such as
additive drift [36, 37], variable drift [10, 51] and multiplicative drift [19, 20]. Though
they were developed mainly for finite search spaces, the drift theorems can naturally
be generalized to continuous domains [47,49]. Indeed, Jägersküpper’s work [39,41,42]
are based on the same idea, while the link to the drift analysis is unveiled in the
literature.

Since many drift conditions have been developed for analyzing algorithms on dis-
crete domains, the domain of Xt is often implicitly assumed to be bounded. However,
this assumption is violated in our situation, where we will use Xt = log

(
fµ(mt)

)
as the quality measure, which takes values in R ∪ {−∞}, and is meant to approach
−∞. To see the technical difficulty when the random process is unbounded, consider
a process Xt defined as Xt+1 = Xt − 1/p with probability p < 1 and Xt+1 = Xt

with probability 1 − p. The drift E[Xt+1|Ft] −Xt equals −1 no matter how small p
is. However, it is easy to see that the expected first hitting time of this process can
be arbitrarily large as p is chosen very small, while the expected single step progress
is constant. This example reveals that bounding the drift is not sufficient to derive
the expected first hitting time. This problem does not happen if the domain of Xt

is bounded from below as the maximal decrease of Xt in one step is also bounded.
In general, translating expected progress requires bounding the tail of the progress
distribution, as formalized in [30].

3.2.1. Additive Drift for the Upper Runtime Bound. To overcome the
above mentioned difficulty, we construct a stochastic process {Yt : t > 0} iteratively
as follows: Y0 = X0 and

(3.3) Yt+1 = Yt + max
{
Xt+1 −Xt,−A

}
· 1{TXβ >t} −B · 1{TXβ 6t}

for some A > B > 0 and β < β0 with X0 = β0. It clips Xt+1 −Xt to some constant
−A (A > 0) from below. We introduce the indicator 1{TXβ >t} for a technical reason.

The process disregards progress larger than A, and it fixes the progress of the step
that hits the target set to B. It is formalized in the following theorem, which is our
main mathematical tool to derive an upper bound of the expected first hitting time
of (1+1)-ESκ in the form of Equation (3.1).

Theorem 3.2. Let {Xt : t > 0} be a sequence of real-valued random variables
adapted to a filtration {Ft : t > 0} with X0 = β0 ∈ R. For β < β0, let TXβ =
inf {t : Xt 6 β} be the first hitting time of the set (−∞, β]. Define a stochastic process
{Yt : t > 0} iteratively as (3.3) with Y0 = X0 for some A > B > 0, and let TYβ =
inf {t : Yt 6 β} be the first hitting time of the set (−∞, β]. If Yt is integrable, i.e.
E
[∣∣Yt∣∣] <∞, and

(3.4) E
[
max {Xt+1 −Xt,−A} · 1{TXβ >t}

∣∣∣Ft] 6 −B · 1{TXβ >t} ,
then the expectation of TXβ satisfies

(3.5) E
[
TXβ
]
6 E

[
TYβ
]
6
A+ β0 − β

B
.
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Proof of Theorem 3.2. We consider the stopped process X̄t = Xmin{t,TXβ }
. We

have Xt 6 X̄t for t 6 TXβ and X̄t 6 Ymin{t,TXβ }
for all t > 0. Therefore, we have

TXβ = T X̄β 6 TYβ . Let Ȳt = Ymin{t,TYβ }
. By construction it holds Yt 6 Ȳt for t 6 TYβ

and TYβ = T Ȳβ . Hence, TXβ 6 TYβ 6 T Ȳβ .
We will prove that

(3.6) E[Ȳt+1 | Ft] 6 Ȳt −B · 1{TYβ >t} .

We start from

(3.7) E[Ȳt+1 | Ft] = E[Ȳt+11{TYβ 6t} | Ft] + E[Ȳt+11{TYβ >t} | Ft]

and bound the different terms:

(3.8) E[Ȳt+11{TYβ 6t} | Ft] = E[Ȳt1{TYβ 6t} | Ft] = Ȳt1{TYβ 6t}

where we have used that 1{TXβ >t}, Yt, 1{TYβ >t}, and Ȳt are all Ft-measurable. Also

(3.9) E[Ȳt+11{TYβ >t} | Ft] = E[Yt+1 | Ft]1{TYβ >t}
6 (Yt −B1{TXβ >t} −B1{TXβ 6t})1{TYβ >t} = (Ȳt −B)1{TYβ >t} ,

where we have used condition (3.4). Hence, by injecting (3.8) and (3.9) into (3.7), we
obtain (3.6).

From (3.6), by taking the expectation we deduce

(3.10) E[Ȳt+1] 6 E[Ȳt]−B · Pr[TYβ > t] .

Following the same approach as [49, Theorem 1], since TYβ is a random variable taking

values in N, it can be rewritten as E[TYβ ] =
∑+∞
t=0 Pr[TYβ > t] and thus it holds

(3.11) B · E
[
TYβ
] t̃→∞←− t̃∑

t=0

B · Pr
[
TYβ > t

]
6

t̃∑
t=0

(
E[Ȳt]− E[Ȳt+1]

)
6 E[Ȳ0]− E[Ȳt̃] = β0 − E[Ȳt̃] .

Since Yt+1 > Yt − A, then YTYβ > β − A and given that Ȳt > YTYβ , we deduce that

E[Ȳt̃] > β −A for all t̃, which implies

E
[
TYβ
]
6 (A/B) +B−1 · (β0 − β) .

With E[TXβ ] 6 E[TYβ ] this proves the upper bound.

This theorem can be intuitively understood: we assume for the sake of simplicity a
process Xt such that Xt+1 > Xt − A. Then Equation (3.4) states that the process
progresses in expectation by at least −B. The theorem concludes that the expected
time needed to reach a value smaller than β when started in β0 equals to (β0 − β)/B
(what we would get for a deterministic algorithm) plus A/B. This last term is due
to the stochastic nature of the algorithm. It is minimized if A is as close as possible
to B, which corresponds to a highly concentrated process.
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3.2.2. Additive Drift for the Lower Runtime Bound. Jägersküpper [41,
Theorem 2] established a general lower bound of the expected first hitting time of
the (1+1)-ES. We borrow the same idea to prove the following general theorem for a
lower bound of the expected first hitting time, which generalizes [42, Lemma 12].

Theorem 3.3. Let {Xt : t > 0} be a sequence of real-valued random variables
adapted to a filtration {Ft : t > 0} and integrable such that

X0 = β0, Xt+1 6 Xt, and E[Xt+1 | Ft]−Xt > −C

for C > 0. For β < β0 we define TXβ = min {t : Xt 6 β}. Then the expected hitting
time is lower bounded by

E
[
TXβ
]
> −(1/2) + (4C)−1 · (β0 − β) .

Proof of Theorem 3.3. After T = b(β0−β)/(2C)c iterations it holds E[β0−XT ] 6
C ·T 6 (β0− β)/2. From Markov’s inequality we conclude Pr[β0−XT > β0− β] 6 1

2
and thus Pr[β0−XT 6 β0−β] > 1

2 , which is equivalent to Pr[TXβ > T ] > 1
2 . Applying

the Markov inequality once more we obtain

E[TXβ ] =

∞∑
t=1

Pr
[
TXβ > t

]
>

T∑
t=1

Pr
[
TXβ > t

]
> Pr

[
TXβ > T

]
· T >

T

2
>
β0 − β

4C
− 1

2
.

This completes the proof.

4. Main Result: Expected First Hitting Time Bound. We derive in this
section the expected first hitting time bounds of log‖mt−x∗‖ to (−∞, log ε) by using
the methodology introduced in the previous section under the hypothesis that the
objective functions satisfy Assumptions A1 and A2. For this purpose, after some
preliminary results where we bound the probability of success in Section 4.2, we
define in Section 4.3 a potential function V (θt) such that log fµ(mt) 6 V (θt) for any
θt = (mt, σt,Σt). In Section 4.4, we establish the drift on the potential V (θ) and derive
an upper bound of the expected first hitting time of Xt = V (θt) to (−∞, β]. This
immediately provides the bounds for the expected first hitting time of log fµ(mt) and
log‖mt − x∗‖. Finally in Section 4.5 we derive a general lower bound of the expected
first hitting time of log‖mt − x∗‖ for (1+1)-ESκ with an arbitrary step-size control
mechanism.

4.1. Mathematical Modeling of the Algorithm. In the sequel, we will an-
alyze the process {θt : t > 0} where θt = (mt, σt,Σt) ∈ Rn × R> × Sκ generated by
the (1+1)-ESκ algorithm. We assume from now on that the optimized objective func-
tion f is measurable with respect to the Borel σ-algebra. We equip the state-space
X = Rn × R> × Sκ with its Borel σ-algebra denoted B(X ).

4.2. Preliminaries. We present two preliminary results. In Assumption A1, we
assume that for m ∈ X ba , we can include into the sublevel set S0(m) a ball of radius
C`fµ(m) and embed S0(m) into a ball of radius Cufµ(m). This allows us to upper
bound and lower bound the probability of success for all m ∈ X ba , for all Σ ∈ Sκ by
the probability to sample into balls of radius Cufµ(m) and C`fµ(m) with appropriate
center. From this we can upper-bound pupper

(a,b] (σ̄) by a function of σ̄. Similarly we can

lower-bound plower
(a,b] (σ̄) by a function of σ̄. Its proof is given in Appendix B.6.
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Proposition 4.1. Suppose that f satisfies A1. Consider the lower and upper
success probabilities pupper

(a,b] and plower
(a,b] defined in Definition 2.5, then

pupper
(a,b] (σ̄) 6 κd/2Φ

(
B̄
(

0,
Cu
σ̄κ1/2

)
; 0, I

)
(4.1)

plower
(a,b] (σ̄) > κ−d/2Φ

(
B̄
(

(2Cu − C`)κ1/2

σ̄
e1,

C`κ
1/2

σ̄

)
; 0, I

)
,(4.2)

where e1 = (1, 0, . . . , 0).

We use the previous proposition to establish the next lemma that guarantees the
existence of a finite range of normalized step-size that leads to the success probability
into some range (pu, p`) independent of m and Σ, and provides a lower bound on the
success probability with rate r when the normalized step-size is in the above range.
Its proof is provided in Appendix B.7.

Lemma 4.2. We assume that f satisfies A1 and A2 for some 0 6 a < b 6 ∞.
Then, for any pu and p` satisfying 0 < pu < ptarget < p` < plimit, the constants

σ̄` = sup
{
σ̄ > 0 : plower

(a,b] (σ̄) > p`

}
,(4.3)

σ̄u = inf
{
σ̄ > 0 : pupper

(a,b] (σ̄) 6 pu

}
,(4.4)

exist as positive finite values. Let ` 6 σ̄` and u > σ̄u such that u/` > α↑/α↓. Then,
for r ∈ [0, 1], p∗r defined as

(4.5) p∗r := inf
`6σ̄6u

inf
m∈X ba

inf
Σ∈Sκ

psucc
r (σ̄;m,Σ)

is lower bounded by

p∗r > min
`6σ̄6u

κ−d/2Φ

(
B
((

(2Cu − (1− r)C`)κ1/2

σ̄

)
e1,

(1− r)C`κ1/2

σ̄

)
; 0, I

)
> 0 .

(4.6)

4.3. Potential Function. Lemma 4.2 divides the domain of the normalized
step-size into three disjoint subsets: σ̄ ∈ (0, `) is a too small normalized step-size
situation where we have psucc

0 (σ̄;m,Σ) > p` for all m ∈ X ba and Σ ∈ Sκ; σ̄ ∈ (u,∞)
is a too large normalized step-size situation where we have psucc

0 (σ̄;m,Σ) 6 pu for all
m ∈ X ba and Σ ∈ Sκ; and σ̄ ∈ [`, u] is a reasonable normalized step-size situation where
the success probability with rate r is lower bounded by (4.6). Since ptarget ∈ [pu, p`],
the normalized step-size is supposed to be maintained in the reasonable range.

Our potential function is defined as follows. In light of Lemma 4.2, we can take
` 6 σ̄` and u > σ̄u such that u/` > α↑/α↓. With some constant v > 0, we define our
potential function as
(4.7)

V (θ) = log(fµ(m)) + max

{
0, v log

(
α↑ · ` · fµ(m)

σ

)
, v log

(
σ

α↓ · u · fµ(m)

)}
.

The rationale behind the second term on the RHS is as follows. The second and
third terms inside max are positive only if the normalized step-size σ̄ = σ/fµ(m) is
smaller than `α↑ and greater than uα↓, respectively. The potential value is log fµ(m)
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x*

m

Fig. 4.1: Illustration of property A1. The sampling distribution is indicated by the
mean m and the shaded orange circle, indicating one standard deviation. The blue set
is the sub-levelset S0(m) of points improving upon m. It is enclosed in the red (outer)
ball of radius Cufµ(m) and contains the dark green (inner) ball of radius C`fµ(m).
The shaded light green ball indicates the worst case situation captured by the bound,
namely that the small ball is positioned within the large ball at maximal distance
to m.

if the normalized step-size is in [`α↑, uα↓] and it is penalized if the normalized step-
size is too small or too large. We need this penalization for the following reason. If
the normalized step-size is too small, the success probability is close to 1/2 for non-
critical points, assuming f = g ◦ h where h is a continuously differentiable function
but the progress in per step is very small because the step-size directly controls the
progress for instance measured as ‖mt+1 − mt‖ = σt‖N (0,Σt)‖1{f(mt+1)6f(mt)}. If
the normalized step-size is too large, the success probability is close to zero and
produces no progress with high probability. If we would use log fµ(m) as a potential
function instead of V (θ) then the progress is arbitrarily small in such situations, which
prevents the application of drift arguments. The above potential function penalizes
such situations, and guarantees a certain progress in the penalized quantity since the
step-size will be increased or decreased, respectively, with high probability, leading to
a certain decrease of V (θ). We illustrate in Figure 3.1 that log(fµ(m)) cannot work
alone as potential function while V (θ) does: when we start from a too small or too
large step-size, log(fµ(m)) looks constant (doted line in green and blue). Only when
the step-size is started at 1, we see progress in log(fµ(m)). Also, the step size can
always get arbitrarily worse, with a very small probability, which forces us to handle
the case of badly adapted step size properly. Yet the simulation of V (θ) shows that in
all three situations (small, large and well adapted step-sizes compared to the distance
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x* m

Fig. 4.2: The sampling distribution is indicated by the mean m and the shaded orange
circle, indicating one standard deviation. The blue set is the sub-levelset S0(m) of
points improving upon m. Although the level set has a kink at m, there exists a cone
centered at m covering a probability mass of plimit of improving steps (inside S0(m))
for small enough step size σ (green outline). It contains a smaller cone (red outline)
covering a probability mass of ptarget.

to the optimum), we observe a geometric decrease of V (θ).

4.4. Upper Bound of the First Hitting Time. We are now ready to establish
that the potential function defined in (4.7) satisfies a (truncated)-drift condition from
Theorem 3.2. This will in turn imply an upper bound on the expected hitting time of
fµ(m) to [0, ε] provided a 6 ε. The proof follows the same line of argumentation as the
proof of [2, Proposition 4.2], which was restricted to the case of spherical functions. It
was generalized under similar assumptions as in this paper, but for a fixed covariance
matrix equal to the identity, in [52, Proposition 6]. The detailed proof is given in
Appendix B.8.

Proposition 4.3. Consider the (1+1)-ESκ (Algorithm 2.1) with state θt = (mt, σt,Σt).
Assume that the minimized objective function f satisfies A1 and A2 for some 0 6 a <
b 6 ∞. Let pu and p` be constants satisfying 0 < pu < ptarget < p` < plimit and
p` + pu = 2ptarget. Then, there exists ` 6 σ̄` and u > σ̄u such that u/` > α↑/α↓,
where σ̄` and σ̄u are defined in Lemma 4.2. For any A > 0, taking v satisfying

0 < v < min
{

1, A
log(1/α↓)

, A
log(α↑)

}
, and the potential function (4.7), we have

(4.8) E
[
max{V (θt+1)− V (θt),−A} · 1{mt∈X ba} | Ft

]
6 −B · 1{mt∈X ba}

where

(4.9) B = min

{
A · p∗r − v · log

(
α↑
α↓

)
, v · p` − pu

2
· log

(
α↑
α↓

)}
,

and

p∗r = inf
σ̄∈[`,u]

inf
m∈X ba

inf
Σ∈Sκ

psucc
r (σ̄;m,Σ) with r = 1− exp

(
− A

1− v

)
.
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Moreover, for any A > 0 there exists v such that B < A is positive.

We apply Theorem 3.2 along with Proposition 4.3 to derive the expected first
hitting time bound. To do so, we need to confirm that it satisfies the prerequisite of
the theorem: integrability of the process {Yt : t > 0} defined in (3.3) with Xt = V (θt).

Lemma 4.4. Let {θt : t > 0} be the sequence of parameters θt = (mt, σt,Σt)
defined by the (1+1)-ESκ with the initial condition θ0 = (m0, σ0,Σ0) optimizing a
measurable function f . Let Xt = V (θt) as defined in (4.7) and define the process Yt
as defined in Theorem 3.2. Then, for any A > 0, {Yt : t > 0} is integrable, i.e.,
E[|Yt|] <∞ for each t.

Proof of Lemma 4.4. The drift

Yt+1 = Yt + max
{
V (θt+1)− V (θt),−A

}
· 1{TXβ >t} −B · 1{TXβ 6t}

is by construction bounded by −A from below. It is also bounded by a constant
from above. Indeed, from the proof of Proposition 4.3, it is easy to find the upper
bound, say C, of the truncated one-step change, ∆t in the proof of Proposition 4.3,
without using A1 and A2. Let D = max{A,C}. Then, by recursion, |V (θt)| 6
|V (θ0)|+ |V (θt)− V (θ0)| 6 |Y0|+D · t. Hence E[|Yt|] 6 |Y0|+D · t <∞ for all t.

Finally, we derive the expected first hitting time of log fµ(mt).

Theorem 4.5. Consider the same situation as described in Proposition 4.3. Let
Tε = min{t : fµ(mt) 6 ε} be the first hitting time of fµ(mt) to [0, ε]. Choose a 6 ε <
fµ(mt) 6 b, where a and b appear in Definition 2.5. If m0 ∈ X ba , the first hitting time
is upper bounded by

(4.10) E[Tε] 6
V (θ0)− log(ε) +A

B

for A > B > 0 described in Proposition 4.3, where V (θ) is the potential function
defined in (4.7). Equivalently, we have E[Tε] 6 CT + C−1

R · log(fµ(m0)/ε), where

CT =
A

B
+
v

B
max

{
0, log

(
α↑ · ` · fµ(m0)

σ0

)
, log

(
σ0

α↓ · u · fµ(m0)

)}
CR = B .

Moreover, the above result yields an upper bound of the expected first hitting time of
‖mt − x∗‖ to [0, 2Cuε].

Proof. Theorem 3.2 with Proposition 4.3 and Lemma 4.4 together bounds the
expected first hitting time of V (θt) to (−∞, log(ε)] by the RHS of (4.10) with A and
B as defined in Proposition 4.3. Since log fµ(mt) 6 V (θt), Tε is bounded by the
first hitting time of V (θt) to (−∞, log(ε)]. The inequality is preserved if we take the
expectation. The last claim is trivial from the inequality ‖x−x∗‖ 6 2Cufµ(x), which
holds under A1.

Theorem 4.5 shows an upper bound on the expected hitting time of the (1+1)-ESκ
with success-based step-size adaptation for linear convergence towards the global op-
timum x∗ on functions satisfying A1 and A2 with a = 0. Moreover, with the choice
if b = ∞, this bound holds from all initial search points m0. We state this result in
the following corollary.
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Corollary 4.6 (Global Linear Convergence Upper Bound). Consider the (1+1)-ESκ
algorithm given in Algorithm 2.1. Assume that the minimized objective function f sat-
isfies A1 and A2 for a = 0 and b =∞. Then, for all ε, for all m0 ∈ Rd, the expected
first hitting time Tε = min{t : fµ(mt) 6 ε} satisfies a bound for linear convergence

E[Tε] 6 CT + C−1
R · log(fµ(m0)/ε) ,

where CT and CR are given in Theorem 4.5. Moreover, CT + C−1
R · log(fµ(m0)/ε) is

an upper bound on the expected hitting time of ‖mt − x∗‖ to [0, 2Cuε].

If a > 0, the bound in Theorem 4.5 does not translate into linear convergence, but
we still obtain an upper bound on the expected first hitting time of the target accuracy
ε > a. This is useful for understanding the behavior of (1+1)-ESκ on multimodal
functions, and on functions with degenerated Hessian matrix at the optimum.

4.5. Lower Bound of the First Hitting Time. We derive a general lower
bound of the expected first hitting time of ‖mt − x∗‖ to [0, ε]. The following results
hold for an arbitrary measurable function f and for a (1+1)-ESκ with an arbitrary
σ-control mechanism. The following lemma provides the lower bound of the expected
one-step progress measured by the logarithm of the distance to the optimum.

Lemma 4.7. We consider the process {θt : t > 0} generated by a (1+1)-ESκ algo-
rithm with an arbitrary step-size adaptation mechanism and an arbitrary covariance
matrix update optimizing an arbitrary measurable function f . We assume d > 2
and κt = Cond(Σt) 6 κ. We consider the natural filtration Ft. Then, the expected
single-step progress is lower-bounded by

(4.11) E[min(log(‖mt+1 − x∗‖/‖mt − x∗‖), 0) | Ft] > −κ
d
2
t /d .

Proof of Lemma 4.7. Note first that

log(‖mt+1 − x∗‖/‖mt − x∗‖) = log(‖xt − x∗‖/‖mt − x∗‖)1{f(xt)6f(mt)} .

This value can be positive since f(xt) 6 f(mt) does not imply ‖xt−x∗‖ 6 ‖mt−x∗‖
in general. Clipping the positive part to zero, we obtain a lower bound, which is the
RHS of the above equality times the indicator 1{‖xt−x∗‖6‖mt−x∗‖}. Since the quantity
is non-positive, dropping the indicator 1{f(xt)6f(mt)} only decrease the lower bound.
Hence, we have

min(log(‖mt+1 − x∗‖/‖mt − x∗‖), 0)

> log(‖xt − x∗‖/‖mt − x∗‖)1{‖xt−x∗‖6‖mt−x∗‖} .

Then,

E[min(log(‖mt+1 − x∗‖)− log(‖mt − x∗‖), 0) | Ft]
> E[log(‖xt − x∗‖/‖mt − x∗‖)1{‖xt−x∗‖6‖mt−x∗‖} | Ft] .

We rewrite the lower bound of the drift. The RHS of the above inequality is the
integral of log(‖x−x∗‖/‖mt−x∗‖) in the integral domain B̄(x∗, ‖mt−x∗‖) under the
probability measure Φ

(
·;mt, σ

2
tΣt
)
. Performing a variable change (through rotation

and scaling) so that mt−x∗ becomes e1 = (1, 0, · · · , 0) and letting σ̃t = σt/‖mt−x∗‖,
we can further rewrite it as the integral of log(‖x‖) in B̄(0, 1) under Φ

(
·; e1, σ̃

2
tΣt
)
.
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With κt = Cond(Σt), we have ϕ
(
·; e1, σ̃

2
tΣt
)
6 κ

d
2
t ϕ
(
·; e1, κtσ̃

2
t I
)
, see Lemma C.1.

Altogether, we obtain the lower bound

E[log(‖xt − x∗‖/‖mt − x∗‖)1{‖xt−x∗‖6‖mt−x∗‖} | Ft]

> κ
d
2
t

∫
B̄(0,1)

log(‖x‖)ϕ
(
·; e1, κtσ̃

2
t I
)

dx .

The RHS is equivalent to −κ
d
2
t times the single step progress of the (1+1)-ES on the

spherical function at mt = e1 and σ =
√
κσ̃t.

To further bound the RHS of the above inequality, we adopt the argumentation
of Jägersküpper [41, Theorem 2]. The point is as follows. We rewrite δ = (x− e1)/γt,
where γt =

√
κtσ̃t, then δt is N (0, I) distributed. Now we use the inequality ‖x‖ =

‖e1 +γt ·δ‖ > ‖e1 +γ∗(δ) ·δ‖, where γ∗(δ) = argminγ‖e1 +γ ·δ‖, and we obtain a lower

bound of the RHS of the above inequality as κ
d
2
t

∫
log(‖e1 + γ∗(δ) · δ‖)ϕ(δ; 0, I)dδ.

The integrand of the RHS of the above lower bound amounts to − log(sin(θ)) ·
1{θ6π/2}, where θ ∈ [0, π) is the angle between δ and e1. This easily follows from a

geometric interpretation of the optimal scenario (see [2]). Let Wd =
∫ π/2

0
sind(θ)dθ

denote the Wallis integral. Then the density of θ is (2Wd−2)−1| sin(θ)|d−2. The
integral is written as

−1

2Wd−2

∫ π/2

0

log (sin(θ)) sind−2(θ)dθ = −
(
2(d− 1)2Wd−2

)−1
∫ 1

0

log(r)√
1− r2/(d−1)

dr .

Here we applied the change of variables sin(θ)d−1 = r. When considering r as a

random variable uniformly distributed on [0, 1], then log (r) and 1/
√

1− r2/(d−1) are
positively correlated [65, Chapter 1, eq. (2.1)]. Therefore, the integral on the RHS is
lower bounded by the product of the integrals of the two terms, which reads∫ 1

0

log (r)√
1− r2/(d−1)

dr >
∫ 1

0

log (r) dr

∫ 1

0

√
1

1− r2/(d−1)
dr ,

where the 1st and 2nd integral on the RHS are −1 and (d − 1)Wd−2, respectively.
Using d 6 2(d− 1) for all d > 2 concludes the proof.

The following theorem proves that the expected first hitting time of (1+1)-ESκ is
Ω(log(‖m0−x∗‖/ε)) for any measurable function f , implying that it can not converge
faster than linearly. In case of κ = 1 the lower runtime bound becomes Ω(d·(log(‖m0−
x∗‖/ε))), meaning that the runtime scales linearly with respect to d. The proof is a
direct application of Lemma 4.7 to Theorem 3.3.

Theorem 4.8. We consider the process {θt : t > 0} generated by a (1+1)-ESκ
described in Algorithm 2.1 and assume that f is a measurable function with d > 2.
Let Tε = inf{t : ‖mt − x∗‖ 6 ε} be the first hitting time of [0, ε] by ‖mt − x∗‖. Then,
the expected first hitting time is lower bounded by

E[Tε] > −(1/2) +
d

4κd/2
log(‖m0 − x∗‖/ε) .

The bound holds for arbitrary step-size adaptation mechanisms. If A1 holds, it gives
a lower bound for the expected first hitting time bound of fµ(mt) to [0, 2C`ε].
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Proof of Theorem 4.8. Let Xt = log‖mt − x∗‖ for t > 0. Define Yt iteratively as
Y0 = X0 and Yt+1 = Yt + min(Xt+1−Xt, 0). Then, it is easy to see that Yt 6 Xt and
Yt+1 6 Yt for all t > 0. Note that E[Yt+1 − Yt | Ft] = E[min(Xt+1 − Xt, 0) | Ft] =
E[min(log(‖mt+1−x∗‖/‖mt−x∗‖), 0) | Ft], where the RMS is lower bounded in light
of Lemma 4.7. Then, applying Theorem 3.3, we obtain the lower bound. The last
statement directly follows from ‖x− x∗‖ 6 2C`fµ(x) under A1.

4.6. Almost Sure Linear Convergence. Additionally to the expected first
hitting time bound, we can deduce from Proposition 4.3, almost sure linear conver-
gence as stated in the following proposition.

Proposition 4.9. Consider the same situation as described in Proposition 4.3,
where a = 0 and 0 < b 6∞. Then, for any m0 ∈ X b0 , σ0 > 0 and Σ ∈ Sκ, we have

(4.12) Pr

[
lim sup
t→∞

1

t
log fµ(mt) 6 −B

]
= 1 ,

and

(4.13) Pr

[
lim sup
t→∞

1

t
log ‖mt − x∗‖ 6 −B

]
= 1 ,

where B > 0 is as defined in Proposition 4.3. Hence almost sure linear convergence
holds at a rate exp(−C) such that exp(−C) 6 exp(−B).

Proof of Proposition 4.9. Let V be defined in (4.7). Let Y0 = V (θ0) and Yt+1 =
Yt + max(−A, V (θt+1) − V (θt)). Define Zt = Yt − Et−1[Yt] for t > 0. Then, {Zt} is
a martingale difference sequence on the filtration {Ft} produced by {θt}. Then, we
have 1

t log fµ(mt) 6 1
tV (θt) 6 1

tYt, and we have from Proposition 4.3

Yt = Et−1[Yt] + Zt = Yt−1 + Et−1[Yt − Yt−1] + Zt 6 Yt−1 −B + Zt .

By repeatedly applying the above inequality and dividing it by t, we obtain 1
tYt 6

−B+ 1
tY0 + 1

t

∑t
i=1 Zi, where limt→∞

1
tY0 = 0 and

∑t
i=1 Zi is a martingale sequence.

In light of the strong law of large numbers for martingales [15], if
∑∞
t=1 E[Z2

t ]/t2 <∞,

we have limt→∞
1
t

∑t
i=1 Zi = 0 almost surely. By the definition of V (θt), we have

V (θi)− V (θi−1) 6 v log(α↑/α↓). Hence,

E[Z2
i ] = E[(Yi − Ei−1[Yi])

2] = E[max(−A, V (θi)− V (θi−1))2] 6 max(A, v log(α↑/α↓))
2 .

Therefore, we have

lim sup
t→∞

1

t
log fµ(mt) 6 −B + lim

t→∞

1

t
Y0 + lim

t→∞

1

t

t∑
i=1

Zi = −B a.s.,

which proves (4.12). The proof of (4.13) is then immediate using that ‖x − x∗‖ 6
2Cufµ(x).

4.7. Wrap-up of the Results: Global Linear Convergence. As a corollary
to the lower-bound from Theorem 4.8, the upper bound from Theorem 4.5, Proposi-
tion 4.9 stating the almost sure linear convergence and the fact that different assump-
tions discussed in Section 2.3 imply A1 and A2, we summarize our linear convergence
results in the following theorem.
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Theorem 4.10 (Global Linear Convergence). We consider the (1+1)-ESκ opti-
mizing an objective function f .

(a) If one of the two following conditions holds:
- f satisfies A1 and A2 for a = 0 and plimit > ptarget,
- f is a composite of a quadratically-bounded continuously differentiable

function with a strictly increasing function (i.e. satisfying A6) and ptarget <
1/2,

then, for all m0 in X b0 , σ0 > 0, and Σ0 ∈ Sκ, for all ε, the expected hitting
time E[Tε] of ‖mt − x∗‖ to [0, ε] is Θ

(
log(‖m0 − x∗‖/ε)

)
.

(b) Moreover, if ptarget < 1/2 and one of the following assumption holds
- f is the composite of a convex-quadratic function with a strictly increas-

ing function (i.e. satisfying A3),
- f is the composite of a strongly-convex and smooth function on Rd with

a strictly increasing function (i.e. satisfying A4),
- f is the composite of a positively homogeneous continuously differentiable

function (with unique optimum) with a strictly increasing function (i.e.
satisfying A7),

then, for all m0 in Rd, σ0 > 0, and Σ0 ∈ Sκ, for all ε, the expected hitting
time E[Tε] of ‖mt − x∗‖ to [0, ε] is Θ

(
log(‖m0 − x∗‖/ε)

)
.

In the case (a) for all m0 in X b0 , σ0 > 0, and Σ0 ∈ Sκ and in the case (b) for all m0

in Rd, σ0 > 0, both fµ(mt) and ‖mt − x∗‖ converge almost surely, i.e.

Pr

[
lim sup
t→∞

1

t
log fµ(mt) 6 −B

]
= 1 ,Pr

[
lim sup
t→∞

1

t
log‖mt − x∗‖ 6 −B

]
= 1 ,

where B > 0 is as defined in Proposition 4.3. The convergence rate exp(−C) is thus
upper-bounded by exp(−B).

The linear convergence of the (1 + 1)-ES (with κ = 1) on positively homogeneous
functions satisfying A7 has been previously analyzed [7, 8]. The result is asymptotic
and holds almost surely. It does not imply directly a bound on the expected hitting
time to reach an ε-ball of the optimum. The present results complements that analysis.

4.8. Tightness in the Sphere Function Case. Now we consider a specific
convex quadratic function, namely the sphere function f(x) = 1

2‖x‖
2

where the spa-
tial suboptimality function equals fµ(x) = Vd‖x‖. We have formulated in Theo-
rem 4.10 that the expected hitting time of a ball of radius ε for the (1+1)-ESκ equals
Θ(log ‖m0−x∗‖/ε). Yet this statement does not give information on how the constants
hidden in the Θ-notation scale with the dimension. In particular the convergence rate
of the algorithm is upper-bounded by exp(−B) where B is given in Equation (4.9),
see Theorem 4.5.

In this section, we estimate precisely the scaling ofB with respect to the dimension
and compare it with the general lower bound of the expected first hitting time given
in Theorem 4.8. We then conclude that the bound is tight with respect to the scaling
with d in the case of the sphere function.

Let us assume κ = 1. That is, we consider the (1+1)-ES without covariance
matrix adaptation (Σ = I). Then, plower

(a,b] (σ̄) = pupper
(a,b] (σ̄) = psucc

r (σ̄;m,Σ) = pr(σ̄)

with

pr(σ̄) = Pr
z∼N (0,I)

(‖e1 + Vdσ̄z‖ < (1− r)) = Φ

(
B
(
e1

Vdσ̄
,

1− r
Vdσ̄

))
,(4.14)
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where e1 = (1, 0, . . . , 0). This means that the success probability is solely controlled
by the normalized step-size σ̄.

We first investigate the properties of the success probability, proved in Appen-
dix B.9.

Lemma 4.11. For all d ∈ N and r ∈ [0, 1), pr is positive and continuous. For
r = 0 it is strictly decreasing and thus bijective. For all d ∈ N, the image of σ̄ ∈
R> 7→ p0(σ̄) is (0, 1/2).

We now investigate the asymptotic limit of the success probability for d to infinity,
which is proved in Appendix B.10.

Lemma 4.12. For r = r(d) fulfilling limd→∞ d · r(d) = ρ, the limit plim
ρ (σ̂) :=

limd→∞ pr
(
σ̂
dVd

)
exists, and it equals plim

ρ (σ̂) = Ψ
(
− ρ
σ̂ − σ̂

2

)
, where Ψ is the cumula-

tive density function of the standard normal distribution. For ρ = 0, the function plim
0

is continuous and strictly decreasing and the image of plim
ρ is (0, 1/2).

The following proposition states that the convergence speed is Ω(1/d), hence the
expected first hitting time scales as O(1/d). The proof is provided in Appendix B.11.

Proposition 4.13. For A = 1/d, ptarget ∈ Θ(1) and log(α↑/α↓) ∈ ω(1/d), we
have B ∈ Ω(1/d).

Two conditions on the choice of α↑ and α↓: ptarget = log(1/α↓)/ log(α↑/α↓) ∈
Θ(1) and log(α↑/α↓) ∈ ω(1/d) are understood as follows. The first condition implies
that the target success probability ptarget must be independent of d. In the 1/5 success
rule, α↑ and α↓ are set so that ptarget = 1/5 independent of d. The second condition
implies that the factors of the step-size increase and decrease must be log(α↑) ∈ ω(1/d)
and log(1/α↓) ∈ ω(1/d). Note that on the sphere function the normalized step-size
σ̄ ∝ σ/‖m − x∗‖ is kept around a constant during the search. It implies that the
convergence speed of ‖m−x∗‖ and σ must agree. Therefore the speed of the adaptation
of the step-size must not be too small to achieve Θ(d) scaling of the expected first
hitting time.

Proposition 4.13 and Theorem 4.5 imply E[Tε] ∈ O(d · log(‖m0‖/ε)) and Theo-
rem 4.8 implies E[Tε] ∈ Ω(d · log(‖m0‖/ε)). They yield Tε ∈ Θ(d · log(‖m0‖/ε)). This
result shows i) that the runtime of the (1+1)-ES on the sphere function is proportional
to d as long as log(α↑/α↓) ∈ ω(1/d) and ii) that from our methodology one can derive
a tight bound of the runtime in some cases. The result is formally stated as follows.

Theorem 4.14. The (1+1)-ES described in Algorithm 2.1 with κ = 1 and ptarget <
1/2 converges globally and linearly in terms of log‖mt − x∗‖ from any starting point
m0 ∈ Rd, σ0 > 0, and Σ0 = I on any function f(x) = g(‖x − x∗‖), where g is a
strictly increasing function. Moreover, if p ∈ Θ(1) and log(α↑/α↓) ∈ ω(1/d), the
expected first hitting time Tε of log‖mt − x∗‖ to (−∞, log(ε)] is Θ(d · log(‖m0‖/ε))
and the almost sure convergence rate is upper-bounded by exp(−Θ(1/d)).

Since the lower bound holds for an arbitrary σ-adaptation mechanism, the above
result not only implies that our upper bound is tight, but it also implies that the
success-based σ-control mechanism achieves the best possible convergence rate except
for a constant factor on the spherical function.

5. Discussion. We have established the global linear convergence of the (1+1)-ESκ
almost surely and also expressed as a bound on the expected hitting time of an ε-
neighborhood of the solution. Assumption A1 has been the key to obtaining the
expected first hitting time bound of (1+1)-ESκ in the form of Equation (3.1). The



GLOBAL LINEAR CONVERGENCE OF EVOLUTION STRATEGIES 27

convergence results hold on a wide class of functions. It includes
(i) strongly convex functions with Lipschitz gradient where linear convergence

of numerical optimization algorithm is usually analyzed,
(ii) continuously differentiable positively homogenous functions where previous

linear convergence results had been introduced, and
(iii) functions with non-smooth level sets as illustrated in Figure 4.2.

Because the analyzed algorithms are invariant to strictly monotonic transformations of
the objective functions, all results that hold on f also hold on g◦f where g : Im(f)→ R
is a strictly increasing transformation that can thus introduce discontinuities on the
objective function.

In contrast to the previous result establishing the convergence of CMA-ES [18]
by adding a step to enforce a sufficient decrease (which works well for direct search
methods, but which is unnatural for ESs), we did not need to modify the adaptation
mechanism of the (1+1)-ES to achieve our convergence proofs. We believe that this
is crucial, since it allows our analysis to reflect the main mechanism that make the
algorithm work well in practice.

Theorem 4.14 proves that we can derive a tight convergence rate with Propo-
sition 4.3 on the sphere function in the case where κ = 1, i.e., without covariance
matrix adaptation. This partially supports the utility of our methodology. However,
the derivation of the tight upper bound (Lemmas 4.11 and 4.12 and Proposition 4.13)
relies on the fact that both the level sets of the objective function and the equal-density
curves of the sampling distribution are isotropic, and hence does not generalize imme-
diately. Moreover, the lower bound (Theorem 4.8) seems to be loose even for κ = 1 on
convex quadratic functions, where we empirically observe that the logarithmic con-
vergence rate scales like Θ(1/Cond(∇∇f)), see Figure 2.1a, while its dependency on
the dimension is tight. A better lower bound of the expected first hitting time and a
handy way to estimate the convergence rate are relevant directions of future work.

Our main result in Theorem 4.10 states that (1+1)-ESκ converges linearly. That
is, the convergence rate, exp(−B), is guaranteed to be strictly smaller than one under
A1 and A2. This puts evolution strategies into the same category as many other
direct search methods like direction search [44], the method of Nesterov and Spokoiny
[55], random pursuit [62], and even many gradient-based methods. Furthermore,
evolution strategies enjoy linear scaling with the search space dimension, which is
optimal for comparison-based methods [64]. Moreover, our convergence result is not
only asymptotic in nature. It provides a non-asymptotic bound of the expected first
hitting time.

However, proving the linear convergence of (1+1)-ESκ does not reveal the benefits
of (1+1)-ESκ over the (1+1)-ES without covariance matrix adaptation. The motiva-
tion of the introduction of the covariance matrix is to improve the convergence rate
and to broaden the class of functions on which linear convergence is exhibited. None
of them are achieved in this paper.

On convex quadratic functions, we empirically observe that the covariance ma-
trix approaches a stable distribution that is closely concentrated around the inverse
Hessian up to a scalar factor, and the convergence speed on all convex quadratic
functions is equal to that on the sphere function (see Figure 2.1b). This behavior
is not described by our result. Indeed in this paper, we did not assume any specific
mechanism for the covariance matrix adaptation, and the results therefore hold for
the worst situation, where the covariance matrix is wrongly adapted within Sκ.

Covariance matrix adaptation is also important for optimizing functions with non-
smooth level sets. On continuously differentiable functions, we can always set α↑ and
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α↓ so that p =
log(1/α↓)

log(α↑/α↓)
< plimit = 1/2. This is the rationale behind the 1/5 success

rule, where p = 1/5. Indeed, p = 1/5 is known to approximate the optimal situation on
the sphere function where the expected one-step progress is maximized [58]. Therefore,
one does not need to tune these parameters in a problem-specific manner. However,
if the objective is not continuously differentiable and levelsets are non-smooth, then
plimit is in general smaller than 1/2. For example, it can be as low as plimit = 1/2d on
f(x) = ‖x‖∞ = maxi=1,...,n|xi|. Without an appropriate adaptation of the covariance
matrix the success probability will be smaller than p = 1/5 and one must tune α↑ and
α↓ in order to converge to the optimum, which requires information about plimit. By
adapting the covariance matrix appropriately, the success probability can be increased
arbitrary close to 1/2 (by elongating the variance in the direction of success domain)
and α↑ and α↓ do not require tuning.

To achieve a reasonable convergence rate bound and broaden the class of functions
on which linear convergence is exhibited, one needs to find another potential function
V that may penalize a high condition number Cond(∇∇f(mt) · Σt) and replace the
definitions of pupper and plower accordingly. This point is left for future work.
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[39] J. Jägersküpper, Analysis of a simple evolutionary algorithm for minimization in Euclidean
spaces, Automata, Languages and Programming, (2003), pp. 188–188.
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[63] S. U. Stich, C. L. Müller, and B. Gärtner, Variable metric random pursuit, Mathematical
Programming, 156 (2016), pp. 549–579.

[64] O. Teytaud and S. Gelly, General lower bounds for evolutionary algorithms, in Parallel
Problem Solving from Nature-PPSN IX, Springer, 2006, pp. 21–31.

[65] H. Thorisson, Coupling, Stationarity, and Regeneration, Probability and Its Applications,



GLOBAL LINEAR CONVERGENCE OF EVOLUTION STRATEGIES 31

Springer New York, 2000.
[66] J. Uhlendorf, A. Miermont, T. Delaveau, G. Charvin, F. Fages, S. Bottani, G. Batt,

and P. Hersen, Long-term model predictive control of gene expression at the popula-
tion and single-cell levels, Proceedings of the National Academy of Sciences, 109 (2012),
pp. 14271–14276.

[67] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, Evolving Mario levels in
the latent space of a deep convolutional generative adversarial network, in Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO ’18, 2018, pp. 221–228.

[68] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber, Natu-
ral evolution strategies, The Journal of Machine Learning Research, 15 (2014), pp. 949–980.

Appendix A. Some Numerical Results.
We present experiments with five algorithms on two convex quadratic functions.

We compare (1+1)-ES, (1+1)-CMA-ES, simplified direction search [44], random pur-
suit [62], and gradientless descent [25].

All algorithms were started at the initial search point x0 = 1√
d
(1, . . . , 1) ∈ Rd. We

implemented the algorithms as follows, with their parameters tuned where necessary:

• The ES always uses the setting α↑ = exp(4/d) and α↓ = α
−1/4
↑ for step size

adaptation.
• We set the constant c in the sufficient decrease condition of Simplified Direc-

tion Search to 1
10 , and we employed the standard basis as well as the negatives

of these vectors as candidate directions. In each iteration we looped over the
set of directions in random order. Randomizing the order greatly boosted
performance over a fixed order.

• Random Pursuit was implemented with a golden section line search in the
range [−2σ, 2σ] with a rather loose target precision of σ/2, where σ is either
the initial step size or the length of the previous step.

• For Gradientless Descent we used the initial step size as the maximal step
size and defined a target precision of 10−10. This target is reached by the ES
in all cases.

The experiments are designed to demonstrate several different effects:
• We perform all experiments in d = 10 and d = 50 dimensions to investigate

dimension-dependent effects.
• We investigate best-case performance by running the algorithms on the spher-

ical function ‖x‖2, i.e., on the separable convex quadratic function with min-
imal condition number. The initial step size is set to σ0 = 1. All algorithms
have a budget of 100 · d function evaluations.

• We investigate the dependency of the performance on initial parameter set-
tings by repeating the same experiment as above, but with an initial step size
of σ0 = 1

1000 . All algorithms have a budget of 700 · d function evaluations.
• We investigate the dependence on problem difficulty by running the algo-

rithms on an ellipsoid problem with a moderate condition number of κf = 100.
The eigenvalues of the Hessian are evenly distributed on a log-scale. We use
σ0 = 1 like in the first experiment. All algorithms have a budget of 500 · d
function evaluations.

The experimental results are presented in Figure A.1. We observe only moderate
dimension-dependent effects, besides the expected linear increase of the runtime. We
see robust performance of the ES, in particular with covariance matrix adaptation.
The second experiment demonstrates the practical importance of the ability to grow
the step size: the ES is essentially unaffected by wrong initial parameter settings while
the gradientless descent and the simplified direct search are (which can be understood
directly from the algorithm themselves). This property does not show up in conver-
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Fig. A.1: Comparison of (1+1)-ES with and without covariance matrix adaptation
with three well-analyzed DFO algorithms on two convex quadratic functions. The
top row of plots shows the performance on the sphere function ‖x‖2 in dimensions
10 (left) and 50 (right). The middle row shows the same problem, but the initial
step size is smaller by a factor of 1000 (and the horizontal axis differs), simulating
that the distance to the optimum was under-estimated. The bottom row shows the
performance on the ellipsoid function (defined in Figure 2.1). The plots show the
evolution of the best-so-far function value (on a logarithmic scale), with five individual
runs (thin curves) as well as median performance (bold curves).

gence rates and is therefore often (but not always) neglected in algorithm design.
The last experiment clearly demonstrates the benefit of variable-metric methods like
CMA-ES. It should be noted that variable metric techniques can be implemented into
most existing algorithms. This is rarely done though, with random pursuit being a
notable exception [63].

Appendix B. Proofs.

B.1. Proof of Lemma 2.4.

Proof. If f(x) = 1
2‖x − x∗‖

2
, then we can compute the suboptimality function

in x which is the d-th rooth of the volume of a sphere of radius ‖x − x∗‖. Hence
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fµ(x) =
√
π

Γ(d/2+1)1/d
‖x− x∗‖ = Vd‖x− x∗‖. Then assuming w.l.g. x∗ = 0

Pr
z∼N (0,I)

[m+ fµ(m)σ̄z ∈ Sr(m)] = Pr
z∼N (0,I)

[‖m+ Vd‖m‖σ̄z‖ 6 (1− r)‖m‖](B.1)

= Pr
z∼N (0,I)

[∥∥∥∥ m

‖m‖ + Vdσ̄z

∥∥∥∥ 6 (1− r)
]
.(B.2)

By using the isotropy of the multivariate normal distribution we find that

Pr
z∼N (0,I)

[∥∥∥∥ m

‖m‖ + Vdσ̄z

∥∥∥∥ 6 (1− r)
]

= Pr
z∼N (0,I)

[‖e1 + Vdσ̄z‖ 6 (1− r)] .

B.2. Proof of Proposition 2.7.

Proof. We need to investigate lim infσ→0 Prz∼N (0,Σ) (h(m+ σz) 6 h(m)). We as-
sume first that f is continuously differentiable. From the Taylor’s theorem with La-
grange’s form remainder, we know that for all z, for all σ, there exists cz,σ ∈ [0, 1]
such that

h(m+ σz) = h(m) + σ∇h(m+ cz,σσz)
>z

such that 1{h(m+σz)6h(m)} = 1{∇h(m+cz,σσz)>z60} and thus

Pr
z∼N (0,Σ)

(h(m+ σz) 6 h(m)) =

∫
1{∇h(m+cz,σσz)>z60}pN (0,Σ)(z)dz .(B.3)

For all z, limσ→0∇h(m+ cz,σσz) = ∇h(m) since w 7→ ∇h(w) is continuous. Hence if
∇h(m) 6= 0, then 1{∇h(m+cz,σσz)>z60} converges to 1{∇h(m)>z60} for all z 6= 0 by con-
tinuity of t 7→ 1{t60} for t 6= 0. Since |1{∇h(m+cz,σσz)>z60}pN (0,Σ)(z)| 6 pN (0,Σ)(z),
by the Lebesgue dominated convergence theorem we obtain that

lim
σ→0

Pr
z∼N (0,Σ)

(h(m+ σz) 6 h(m)) =

∫
1{∇h(m)>z60}pN (0,Σ)(z)dz = 1/2 ,

where the latter equality comes from the symmetry of the multivariate normal dis-
tribution. We therefore have shown that if ∇h(m) 6= 0, then m is p-improvable with
p = 1/2.

When ∇h(m) = 0 and h is twice continuously differentiable, then Taylor’s the-
orem with Lagrange’s form remainder implies that for all z, for all σ, there exists
cz,σ ∈ [0, 1] such that

h(m+ σz) = h(m) +
1

2
σ2z>∇2h(m+ cz,σσz)z.

Therefore 1{h(m+σz)6h(m)} = 1{z>∇2h(m+cz,σσz)z60} and thus

Pr
z∼N (0,Σ)

(h(m+ σz) 6 h(m)) =

∫
1{z>∇2h(m+cz,σσz)z60}pN (0,Σ)(z)dz .(B.4)

By continuity of ∇2h, ∇2h(m + cz,σσz) → ∇2h(m) when σ goes to 0. By a change
of variable in the previous integral, we can assume that ∇2h(m) is a diagonal matrix
with diagonal entries (λ1, . . . , λn) (this implies a change of the matrix Σ for integrating
with respect to pN (0,Σ). With an abuse of notation we continue to denote this matrix
Σ).
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We have assumed that at least one λi 6= 0. Hence the set A = {z|z>∇2h(m)z =
0} = {z|∑i λiz

2
i = 0} is of Lebesgue measure zero. For all z ∈ Rn\A, by continuity of

t ∈ R→ 1t60 on R\{0} we have that limσ→0 1{z>∇2h(m+cz,σσz)z60} = 1{z>∇2h(m)z60}.
By the Lebesgue dominated convergence theorem we find that

lim
σ→0

∫
1{z>∇2h(m+cz,σσz)z60}pN (0,Σ)(z)dz =

∫
1{z>∇2h(m)z60}pN (0,Σ)(z)dz ,

=

∫
Rn\A

1{z>∇2h(m)z60}pN (0,Σ)(z)dz

=

∫
Rn\A

1{z>∇2h(m)z<0}pN (0,Σ)(z)dz

Hence, if ∇2f(m) has only non-positive eigenvalue λi 6 0 (in addition to at least one
λi 6= 0), then 1{z>∇2h(m)z60} = 1 and thus

lim
σ→0

∫
1{z>∇2h(m+cz,σσz)z60}pN (0,Σ)(z)dz = 1 ,

such that m is p-improvable with p = 1. If all λi > 0 with one λi > 0, then
1{z>∇2h(m)z<0} = 0 such that m is p-critical.

If ∇2f(m) has one strictly negative eigenvalue, say w.l.g. λ1 < 0 then the set
S = {z :

∑
i λiz

2
i 6 0} has a positive Lebesgue measure, because the set [(1 −

ε)/
√
λ1, (1 + ε)/

√
λ1]× [−ε, ε]× . . .× [−ε, ε] is included in S for small enough ε. Since

the Lebesgue measure and the measure associated with a Gaussian distribution are
equivalent, it holds ∫

1{
∑
i λiz

2
i<0}pN (0,Σ)(z)dz > 0 .

Therefore m is p-improvable with p = Prz∼N (0,Σ)

(
zT∇2h(m)z 6 0

)
> 0.

B.3. Proof of Proposition 2.8.

Proof. By definition fµ(x) is the dth root of the volume of the hyper-ellipsoid
{y : h(y) 6 h(x)}, which is equal to∫

{y:(y−x∗)TH(y−x∗)/26h(x)}
dy = det(H)−1/2

∫
{z:‖z‖262h(x)}

dz

= V dd det(H)−1/2(2h(x))d/2 .

Hence by taking the dth rooth we find (2.12).
We will now prove the expressions for C` and Cu. We first remark that since H

is symmetric positive with λmax(H) and λmin(H) as minimal eigenvalues then

(B.5)
1

2
λmin(H)‖x− x∗‖2 6 h(x) 6

1

2
λmax(H)‖x− x∗‖2 .

Let y ∈ Rd such that ‖y − x∗‖ < C`fµ(x). Then, using the RHS of (B.5) in the
expression of fµ(y) given in (2.12) we find

fµ(y) 6 Vd ·
(
λmax(H)‖y − x∗‖2/ det(H)1/d

)1/2
< Vd ·

(
λmax(H)/det(H)1/d

)1/2
C`fµ(x) = fµ(x) .
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Therefore, {y : ‖y − x∗‖ < C`fµ(x)} ⊂ S0(x). Similarly, we can verify the expression
for Cu.

The above arguments show that A1 holds with a = 0 and b = ∞. Since h is
continuously differentiable, Proposition 2.7 guarantees that A2 holds with the same
a and b. The measurability of f comes from the property that a strictly increasing
function is measurable and h is continuous and thus measurable.

B.4. Proof of Lemma 2.9.

Proof. Since fµ is invariant to g, without loss of generality we assume f(x) =

h(x)− h(x∗) in this proof. Let x be such that f(x) 6 Lub
2

2V 2
d

. Inequality (2.15) implies

that f(y) 6 f(x)⇒ (L`/2)‖y − x∗‖2 6 f(x), meaning

(B.6) {y : f(y) 6 f(x)} ⊆ B̄
(
x∗,

√
f(x)

L`/2

)
.

Since fµ(x) is the dth root of the volume of the left-hand side (LHS) of the above
relation, we find

(B.7) fµ(x) 6 µ
1
d

(
B̄
(
x∗,

√
f(x)

L`/2

))
= Vd

√
f(x)

L`/2
.

Analogously, we obtain

B
(
x∗,

√
f(x)

Lu/2

)
⊆ {y : f(y) < f(x)} .(B.8)

and

(B.9) fµ(x) > Vd

√
f(x)

Lu/2
.

Inequalities (B.6) and (B.9) imply

(B.10) {y : f(y) 6 f(x)} ⊆ B̄
(
x∗,

√
Lu
L`

fµ(x)

Vd

)
.

Analogously, inequalities (B.8) and (B.7) imply

(B.11) B
(
x∗,

√
L`
Lu

fµ(x)

Vd

)
⊆ {y : f(y) < f(x)} .

Since f(x) > Lub
2

2V 2
d
⇒ fµ(x) > b because of (B.9), we find {x : fµ(x) ∈ (0, b]} ⊆{

x : f(x) ∈
(

0, Lub
2

2V 2
d

]}
. This implies A1 for X b0 . This completes the proof.

B.5. Proof of Proposition 2.11.

Proof. We first prove that A1 holds for a = 0 and b =∞ with Cu = sup{‖x−x∗‖ :
fµ(x) = 1} and C` = inf{‖x− x∗‖ : fµ(x) = 1} and they are finite.

It is easy to see that the spatial suboptimality function fµ(x) is proportional to
h(x) − h(x∗). Let fµ(x) = c · (h(x) − h(x∗)) for some c > 0. Then, fµ is also a
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homogeneous function. Since it is homogeneous, A1 reduces to that there are open
and closed balls with radius C` and Cu satisfying the conditions described in the
assumption with R = 1. Such constants are obtained by Cu = sup{‖x−x∗‖ : fµ(x) =
1} and C` = inf{‖x− x∗‖ : fµ(x) = 1}.

Due to the continuity of f there exists an open ball B around x∗ such that
h(x) < h(x∗) + 1/c for all x ∈ B. Then, it holds that fµ(x) < 1 for all x ∈ B. It
implies that C` is no smaller than the radius of B, which is positive. Hence, C` > 0.

We show the finiteness of Cu by a contradiction argument. Suppose Cu = ∞.
Then, there is a direction v such that fµ(x∗ + M · v) 6 1 with an arbitrarily large
M > 0. Since fµ is homogeneous, we have fµ(x∗ + v) 6 1/M and this must hold for
any M > 0. This implies fµ(x∗ + v) = c · (h(x) − h(x∗)) = 0, which contradicts the
assumption that x∗ is the unique global optimum. Hence, Cu <∞.

The above argument proves that A1 holds with the above constants for a = 0 and
b =∞. Proposition 2.7 proves A2.

B.6. Proof of Proposition 4.1.

Proof. For a given m ∈ X ba , there is a closed ball B̄u such that S0(m) ⊆ B̄u, see
Figure 4.1. We have

pupper
(a,b] (σ̄) = sup

m∈X ba
sup

Σ∈Sκ

∫
S0(m)

ϕ

(
x;m, (fµ(m)σ̄)

2
Σ

)
dx

6 sup
m∈X ba

sup
Σ∈Sκ

∫
B̄u
ϕ

(
x;m, (fµ(m)σ̄)

2
Σ

)
dx︸ ︷︷ ︸

(∗1)

.

The integral is maximized if the ball is centered at m. By a variable change (x ←
x−m),

(∗1) 6
∫
‖x‖6Cufµ(m)

ϕ

(
x; 0, (fµ(m)σ̄)

2
Σ

)
dx

=

∫
‖x‖6Cu/σ̄

ϕ(x; 0,Σ)dx

6 κd/2Φ

(
B̄
(

0,
Cu
σ̄κ1/2

)
; 0, I

)
.

Here we used Φ
(
B̄(0, r)

)
; 0,Σ) 6 κd/2Φ

(
B̄
(
0, κ−1/2r

)
; 0, I

)
for any r > 0 (Lemma C.1).

The right-most side (RMS) of the above inequality is independent of m. It proves
(4.1).

Similarly, there are balls B` and B̄u such that B` ⊆ S0(m) ⊆ B̄u. We have

plower
(a,b] (σ̄) = inf

m∈X ba
inf

Σ∈Sκ

∫
S0(m)

ϕ

(
x;m, (fµ(m)σ̄)

2
Σ

)
dx

> inf
m∈X ba

inf
Σ∈Sκ

∫
B`
ϕ

(
x;m, (fµ(m)σ̄)

2
Σ

)
dx︸ ︷︷ ︸

(∗2)

.

The integral is minimized if the ball is at the opposite side of m on the ball B̄u, see
Figure 4.1. By a variable change (moving m to the origin) and letting em = m/‖m‖,
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(∗2) >
∫
‖x−((2Cu−C`)fµ(m))em‖6C`fµ(m)

ϕ

(
x; 0, (fµ(m)σ̄)

2
Σ

)
dx

=

∫
‖x−((2Cu−C`)/σ̄)em‖6C`/σ̄

ϕ(x; 0,Σ)dx

> κ−d/2Φ

(
B̄
((

(2Cu − C`)κ1/2

σ̄

)
em,

C`κ
1/2

σ̄

)
; 0, I

)
.

Here we used Φ
(
B̄(c, r); 0,Σ

)
> κ−d/2Φ

(
B̄(κ1/2c, κ1/2r); 0, I

)
for any c ∈ Rd and r > 0

(Lemma C.1). The RMS of the above inequality is independent of m as its value is
constant over all unit vectors em. Replacing em with e1, we have (4.2). This completes
the proof.

B.7. Proof of Lemma 4.2.

Proof. The upper bound of pupper
(a,b] given in Equation (4.1) is strictly decreasing

in σ̄ and converges to zero when σ̄ goes to infinity. This guarantees the existence of
σ̄u as a finite value. The existence of σ̄` > 0 is obvious under A2. A1 guarantees that
there exists an open ball B` with radius C`(1 − r)fµ(m) such that B` ⊆ {x ∈ Rd |
fµ(x) < (1−r)fµ(m)}. Then, analogously to the proof of Proposition 4.1, the success
probability with rate r is lower bounded by
(B.12)

psucc
r (σ̄;m,Σ) > κ−d/2Φ

(
B
((

(2Cu − (1− r)C`)κ1/2

σ̄

)
e1,

(1− r)C`κ1/2

σ̄

)
; 0, I

)
.

The probability is independent of m, positive, and continuous in σ̄ ∈ [`, u]. Therefore
the minimum is attained. This completes the proof.

B.8. Proof of Proposition 4.3.

Proof. First, we remark that mt ∈ Xa,b is equivalent to the condition a <
fµ(mt) 6 b. If fµ(mt) 6 a or fµ(mt) > b, both sides of (4.9) are zero, hence the
inequality is trivial. In the following we assume that mt ∈ X ba .

For the sake of simplicity we introduce log+(x) = log(x) · 1{x>1}. We rewrite the
potential function as

V (θt) = log (fµ(mt)) + v · log+

(
α↑ · ` · fµ(mt)

σt

)
+ v · log+

(
σt

α↓ · u · fµ(mt)

)
.

(B.13)

The potential function at time t+ 1 can be written as

V (θt+1) = log (fµ(mt+1))(B.14a)

+ v · log+

(
` · fµ(mt+1)

σt

)
1{σt+1>σt}(B.14b)

+ v · log+

(
α↑ · ` · fµ(mt)

α↓ · σt

)
1{σt+1<σt}(B.14c)

+ v · log+

(
α↑ · σt

α↓ · u · fµ(mt+1)

)
1{σt+1>σt}(B.14d)

+ v · log+

(
σt

u · fµ(mt)

)
1{σt+1<σt} .(B.14e)
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We want to estimate the conditional expectation

(B.15) E [max{V (θt+1)− V (θt) , −A} | θt] .

We partition the possible values of θt into three sets: first the set of θt such that
σt < ` · fµ(mt) (σt is small), second the set of θt such that σt > u · fµ(mt) (σt is
large), and last the set of θt such that ` · fµ(mt) 6 σt 6 u · fµ(mt) (reasonable σt). In
the following, we bound (B.15) for each of the three cases and in the end our bound
B will equal the minimum of the three bounds obtained for each case.

Reasonable σt case:
fµ(mt)
σt

∈
[

1
u ,

1
`

]
. In case of success, where 1{σt+1>σt} = 1, we

have fµ(mt+1)/σt+1 6 fµ(mt)/(α↑σt) 6 1/(α↑`), implying that (B.14b) is always 0.
Similarly, in case of failure, fµ(mt+1)/σt+1 = fµ(mt)/(α↓σt) > 1/(α↓u) and we find
that (B.14e) is always zero. We rearrange (B.14c) and (B.14d) into

(B.14c) = v · log+

(
α↑ · ` · fµ(mt)

α↓ · σt

)
1{σt+1<σt} ,

(B.14d) = v ·
[

log

(
α↑ · σt

α↓ · u · fµ(mt)

)
− log

(
fµ(mt+1)

fµ(mt)

)]
1{α↓ufµ(mt+1)

α↑σt
<1

}1{σt+1>σt} .

Then, the one-step change ∆t = V (θt+1)− V (θt) is upper bounded by

∆t 6

(
1− v · 1{α↓ufµ(mt)

α↑σt
<1

} · 1{σt+1>σt}

)
log

(
fµ(mt+1)

fµ(mt)

)
+ v · log+

(
α↑ · ` · fµ(mt)

α↓ · σt

)
· 1{σt+1<σt}

+ v · log+

(
α↑ · σt

α↓ · u · fµ(mt)

)
· 1{σt+1>σt}

6(1− v) log

(
fµ(mt+1)

fµ(mt)

)
+ v · log+

(
α↑ · ` · fµ(mt)

α↓ · σt

)
· 1{σt+1<σt}

+ v · log+

(
α↑ · σt

α↓ · u · fµ(mt)

)
· 1{σt+1>σt} .

The truncated one-step change max{∆t , −A} is upper bounded by

max{∆t , −A} 6(1− v) max

{
log

(
fµ(mt+1)

fµ(mt)

)
, − A

1− v

}
+ v · log+

(
α↑ · ` · fµ(mt)

α↓ · σt

)
· 1{σt+1<σt}

+ v · log+

(
α↑ · σt

α↓ · u · fµ(mt)

)
· 1{σt+1>σt} .

To consider the expectation of the above upper bound, we need to compute the

expectation of the maximum of log
(
fµ(mt+1)
fµ(mt)

)
and − A

1−v . Let a 6 0 and b ∈ R
then max(a, b) = a · 1{a>b} + b · 1{a6b} 6 b · 1{a6b}. Applying this and taking
the conditional expectation, a trivial upper bound for the conditional expectation of

max
{

log
(
fµ(mt+1)
fµ(mt)

)
, − A

1−v

}
is − A

1−v times the probability of log
(
fµ(mt+1)
fµ(mt)

)
being
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no greater than − A
1−v . The latter condition is equivalent to fµ(mt+1) 6 (1−r)·fµ(mt)

corresponding to successes with rate r = 1− exp
(
− A

1−v

)
or better. That is,

(B.16)

(1− v) · E
[
max

{
log

(
fµ(mt+1)

fµ(mt)

)
, − A

1− v

}]
6 −A · psucc

r

(
σt

fµ(mt)
;mt,Σt

)
.

Note also that the expected value of 1{σt+1>σt} is the success probability, namely,

psucc
0

(
σt

fµ(mt)
;mt,Σt

)
. We obtain an upper bound for the conditional expectation of

max{∆t , −A} in the case of reasonable σt as

E [max{∆t , −A}|θt]

6−A · psucc
r

(
σt

fµ(mt)
;mt,Σt

)
+

(
log

(
α↑
α↓

)
+ log

(
` · fµ(mt)

σt

)
︸ ︷︷ ︸

60

)
· v ·

(
1− psucc

0

(
σt

fµ(mt)
;mt,Σt

))

+

(
log

(
α↑
α↓

)
+ log

(
σt

u · fµ(mt)

)
︸ ︷︷ ︸

60

)
· v · psucc

0

(
σt

fµ(mt)
;mt,Σt

)

6−A · p∗r + v · log

(
α↑
α↓

)
.

(B.17)

Small σt case:
fµ(mt)
σt

> 1
` . If `fµ(mt) > σt, the 2nd summand in (B.13) is

positive. Moreover, if σt+1 < σt, we have `fµ(mt+1) = `fµ(mt) > σt > σt+1 and
hence the 2nd summand in (B.13) is positive for V (θt+1) as well. If σt+1 > σt, any
regime can happen. Then,

V (θt+1)− V (θt)

= log

(
fµ(mt+1)

fµ(mt)

)
− v · log

(
α↑ · ` · fµ(mt)

σt

)
+ v · log

(
` · fµ(mt+1)

σt

)
1{ `fµ(mt+1)

σt
>1

}1{σt+1>σt}

+ v · log

(
α↑ · ` · fµ(mt)

α↓ · σt

)
1{α↑`fµ(mt)

α↓σt
>1

}1{σt+1<σt}

+ v · log

(
α↑ · σt

α↓ · u · fµ(mt+1)

)
1{α↓ufµ(mt+1)

α↑σt
<1

}1{σt+1>σt}

= log

(
fµ(mt+1)

fµ(mt)

)[
1 + v ·

(
1{ `fµ(mt+1)

σt
>1

} − 1{α↓ufµ(mt+1)

α↑σt
<1

}) · 1{σt+1>σt}

]
− v · log

(
α↓ · u · fµ(mt)

α↑ · σt

)
1{α↓ufµ(mt+1)

α↑σt
<1

}1{σt+1>σt}

− v · log

(
` · fµ(mt)

σt

)[
1− 1{ `fµ(mt+1)

σt
>1

}1{σt+1>σt} − 1{α↑`fµ(mt)

α↓σt
>1

}1{σt+1<σt}

]
− v ·

(
log(α↑)− log

(
α↑
α↓

)
1{α↑`fµ(mt)

α↓σt
>1

}1{σt+1<σt}

)
.
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On the RMS of the above equality, the first term is guaranteed to be non-positive

since v ∈ (0, 1). The second and third terms are non-positive as well since
α↓ufµ(mt)

α↑σt
>

α↓u
α↑`

> 1 and
`fµ(mt)
σt

> 1. Replacing the indicator 1{α↑`fµ(mt)

α↓σt
>1

} with 1 in the last

term provides an upper bound. Altogether, we obtain

∆t = V (θt+1)− V (θt) 6 −v ·
(
log(α↑)− log(α↑/α↓)1{σt+1<σt}

)
.

Note that the RHS is larger than −A since it is lower bounded by −v · log(α↑) and
v 6 A/ log(α↑). Then, the conditional expectation of max{∆t , −A} is

E [max{∆t , −A}|Ft] 6 −v ·
(

log(α↑/α↓)p
succ
0

(
σt

fµ(mt)
;mt,Σt

)
+ log(α↓)

)
6 −v · (log(α↑/α↓)p` + log(α↓))

6 −v · p` − pu
2

· log

(
α↑
α↓

)
.

(B.18)

Here we used psucc
0

(
σt

fµ(mt)
;mt,Σt

)
> p`.

Large σt case:
fµ(mt)
σt

< 1
u . Since

fµ(mt+1)
σt+1

6 fµ(mt)
α↓σt

< 1
α↓u

, the 3rd summand

in (B.13) is positive in both V (θt) and V (θt+1). For the 2nd summand in (B.13),
recall that α↑`fµ(mt)/σt < α↑`/u 6 α↓ < 1 since we have assumed that u/` >
α↑/α↓. Hence, for V (θt) the 2nd summand in (B.13) is zero. Also, α↑`‖mt+1‖/σt+1 6
α↑`/(α↓u) = (α↑/α↓)`/u > 1 and thus for V (θt+1) the 2nd summand in (B.13) also
equals 0. We obtain

V (θt+1)− V (θt) = (1− v)
(

log (fµ(mt+1))− log (fµ(mt))
)

+ v · log (σt+1/σt)

The first term on the RHS is guaranteed to be non-positive since v < 1, yielding
∆t 6 v · log(σt+1/σt). On the other hand,

v · log(σt+1/σt) = v ·
(
log(α↑)1{σt+1>σt} + log(α↓)1{σt+1<σt}

)
= v ·

(
log(α↑/α↓)1{σt+1>σt} − log(1/α↓)

)
> −v log(1/α↓) > −A ,

where the last inequality comes from the prerequisite v 6 A/ log(1/α↓). Hence,

max{∆t , −A} 6 max{v · log(σt+1/σt),−A} = v log(σt+1/σt) .

Then, the conditional expectation of max{∆t , −A} is

E [max{∆t , −A}|θt] 6 v

(
log(α↓) + log(α↑/α↓)p

succ
0

(
σt

fµ(mt)
;mt,Σt

))
6 v (log(α↓) + log(α↑/α↓)pu)

6 −v · p` − pu
2

· log

(
α↑
α↓

)
.

(B.19)

Here we used psucc
0

(
σt

fµ(mt)
;mt,Σt

)
6 pu.

Conclusion. Inequalities (B.17)–(B.19) together cover all possible cases and we
hence obtain (4.9).
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Finally, we prove the positivity of B for an arbitrary A > 0. Lemma 4.2 guar-
antees the positivity of p∗r for any choice of A since r = 1 − exp(−A/(1 − v)) ∈
(0, 1) for any A > 0 and v < 1. Therefore, A · p∗r > 0 for any A and v 6
min(1, A/ log(1/α↓), A/ log(α↑)). Moreover, for a sufficiently small v, p∗r is strictly
positive for any A > 0. Therefore, one can take a sufficiently small v that satisfies
A · p∗r > v log(α↑/α↓). The first term in the minimum in (4.9) is positive. The second
term therein is clearly positive for v > 0. Hence, their minimum is positive. This
completes the proof.

B.9. Proof of Lemma 4.11.

Proof. In (4.14), for increasing values of σ̄ the ball-shaped integration area shrinks,
and in case of r > 0 it also moves away from the origin. Together with the mono-
tonicity of ϕ w.r.t. ‖z‖ this proves that pr is strictly decreasing. Continuity of pr
follows from the boundedness of ϕ, and positivity from the fact that the integral area
in (4.14) is non-empty and ϕ is positive. This proves the first claim. For r = 0 the
balls are nested. This immediately proves the second claim. The last claim follows
from Propositions 2.7 and 4.1.

B.10. Proof of Lemma 4.12.

Proof. Fix σ̄ > 0. Let Z ∼ N (0, 1) and Yd−1 ∼ χ2
d−1 (χ2 random variable with

d−1 degrees of freedom) be independent. Define Xd = Z+ σ̂
2dZ

2 + σ̂
2dYd−1 + r·d

σ̂ − r2·d
2σ̂

and X = Z + σ̂
2 + ρ

σ̂ . Then, by a simple derivation, we find that pr(σ̂) = Pr[Xd 6 0]

and Ψ
(
− ρ
σ̂ − σ̂

2

)
= Pr[X 6 0], i.e., they are the cumulative densities evaluated at

0. For the sake of simplicity, we denote these cumulative density functions by Fd
and F . The convergence in distribution of a collection of random variables generally
implies that limd→∞ Fd(x) = F (x) for all x where F is continuous. In our case, F
is continuous everywhere. Therefore, we have limd→∞ Fd(0) = F (0) if Xd converges
in distribution to X. The convergence in distribution is implied by the almost sure
convergence, which is proved by the strong law of large numbers of Xd, where Z2/d→
0, Yd−1/d→ 1, r · d→ ρ, and r2 · d→ 0 almost surely. This argument holds for any
σ̂ > 0, resulting in the pointwise convergence limd→∞ pr(σ̂) = plim

ρ (σ̂) = Ψ
(
− ρ
σ̂ − σ̂

2

)
.

The rest of the claims are trivial from the properties of Ψ.

B.11. Proof of Proposition 4.13.

Proof. Consider d > 2. We set A = 1/d. We bound B from below by taking a
specific value for v ∈ (0, min(1, A/ log(1/α↓), A/ log(α↑)) instead of considering sup
for v.

Our candidate is v = A·p′
log(α↑/α↓)

· 2
(2+p`−pu) , where p′ = inf σ̄∈[`,u] pr′(σ̄) and r′ =

1− exp

(
− A

1− 1
d·log(α↑/α↓)

)
. It holds v < 1

d·log(α↑/α↓)
and hence r′ > r, from which we

obtain p′ < p∗.
Now we consider the terms in (4.9). The first term is lower bounded as

A · p∗ − v log(α↑/α↓) =
p′

d

(
p∗

p′
− 2

2 + p` − pu

)
>
p′

d

(
p` − pu

2 + p` − pu

)
,

whereas the second term is

v
p` − pu

2
log

(
α↑
α↓

)
=
p′

d

p` − pu
2 + p` − pu

.
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Therefore, we have

(B.20) B >
p′

d

p` − pu
2 + p` − pu

.

Note that one can take p`−pu ∈ Θ(1) since the only condition is ptarget = (p`+pu)/2 ∈
Θ(1). To obtain B ∈ Ω(1/d), it is sufficient to show p′ ∈ Θ(1) for d→∞.

Fix p` and pu independently of d. In the light of Lemma 4.11, we have that
p0 : R> → (0, 1/2) is continuous and strictly decreasing from 1/2 to 0 for all d ∈ N.
Therefore, for each d ∈ N there exists an inverse map p−1

0 : (0, 1/2) → R>. Define
σ̂d` = d·Vd ·p−1

0 (p`) and σ̂du = d·Vd ·p−1
0 (pu) for each d ∈ N. It follows from Lemma 4.12

that plim
0 is also strictly decreasing, hence invertible. We let σ̂∞` = (plim

0 )−1(p`) and
σ̂∞u = (plim

0 )−1(pu). Because of the pointwise convergence of p0(σ̄ = σ̂/(dVd)) to
plim

0 (σ̂), we have σ̂d` → σ̂∞` and σ̂du → σ̂∞u for d → ∞. Hence, for any û > σ̂∞u and
ˆ̀< σ̂∞` with u/` > α↑/α↓, there exists D ∈ N such that for all d > D we have û > σ̂du
and ˆ̀< σ̂d` . Now we fix û and ˆ̀ in this way. This amounts to selecting u = d · Vd · û
and ` = d · Vd · ˆ̀.

We have limd→∞ d · r′ = 1 since limd→∞ d · log(α↑/α↓) =∞ and hence according
to Lemma 4.12 we have

lim inf
d→∞

p′ = lim inf
d→∞

(
min
σ̄∈[`,u]

{pr′(σ̄)}
)

= lim inf
d→∞

(
min
σ̂∈[ˆ̀,û]

{
pr′

(
σ̂

d · Vd

)})
(?)
= min

σ̂∈[ˆ̀,û]

{
lim
d→∞

(
pr′

(
σ̂

d · Vd

))}
= min
σ̂∈[ˆ̀,û]

Ψ

(
− 1

σ̂
− σ̂

2

)
,

where the equality (?) follows from the pointwise convergence of pr′ to limd→∞ pr′

and the continuity of pr′ and limd→∞ pr′ .
5 This completes the proof.

Appendix C. Technical Lemma.

Lemma C.1. For all Σ ∈ Sκ the multivariate Gaussian density fulfills

κ−d/2ϕ
(
x; 0, κ−1I

)
6 ϕ

(
x; 0,Σ

)
6 κd/2ϕ (x; 0, κI) .

Moreover, it holds

κ−d/2Φ
(
B(κ1/2c, κ1/2r); 0, I

)
6 Φ

(
B(c, r); 0,Σ

)
6 κd/2Φ

(
B(c/κ1/2, r/κ1/2); 0, I

)
.

5Let {fn : n > 1} be a sequence of continuous functions on R and f be a continuous function such
that f is the pointwise limit limn fn(x) = f(x) of the sequence. Since they are continuous, there exist
the minimizers of fn and f in a compact set [`, u]. Let xn = argmin fn(x) and x∗ = argmin f(x),
where argmin is taken over x ∈ [`, u] and we pick one if there exist more than one minimizers.
It is easy to see that fn(xn) 6 fn(x∗), hence lim infn fn(xn) 6 lim infn fn(x∗) = f(x∗). Let
{ni : i > 1} be the sub-sequence of the indices such that lim infn fn(xn) = limi fni (xni ). Since
{xni : i > 1} is a bounded sequence, Bolzano-Weirstraß theorem provides a convergent sub-sequence
{xnik : k > 1} and we denote its limit as x∗. Of course we have lim infn fn(xn) = limk fnik

(xnik
).

Due to the continuity of {fn : n > 1} and the pointwise convergence to f , we have limk fnik
(xnik

) =

limk fnik
(x∗) = f(x∗). Therefore, lim infn fn(xn) = f(x∗) 6 f(x∗). Since x∗ is the minimizer of f

in [`, u] and x∗ ∈ [`, u], it must hold f(x∗) > f(x∗). Hence, lim infn fn(xn) = f(x∗).
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Proof. For Σ ∈ Sκ, we have det(Σ) = 1 and λmax(Σ)/λmin(Σ) 6 κ. Since

det(Σ) = 1 and det(Σ) =
∏d
i=1 λi(Σ), we have λmax(Σ) > 1 > λmin(Σ). There-

fore, we have λmin(Σ) > λmax/κ > κ−1 and λmax(Σ) 6 κλmin(λ) 6 κ. Then we
obtain κ−1xTIx 6 xTΣ−1x 6 κxTIx. With this inequality we have

ϕ
(
x; 0,Σ

)
= (2π)−d/2 exp(−xTΣ−1x/2)

6 (2π)−d/2 exp(−xTIx/(2κ)))

= κd/2(2πκ)−d/2 exp(−xTIx/(2κ)))

= κd/2ϕ
(
x; 0, κI

)
.

Analogously, we obtain ϕ
(
x; 0,Σ

)
> κ−d/2ϕ

(
x; 0, κ−1I

)
. Taking the integral over

B(c, r), we obtain the second statement.
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