T. Lay and H. Kanamori, An Asperity Model of Large Earthquake Sequences, Maurice Ewing Series, pp.579-592, 2013.

L. De-arcangelis, C. Godano, J. R. Grasso, and E. Lippiello, Statistical physics approach to earthquake occurrence and forecasting, Phys. Rep, vol.628, pp.1-91, 2016.

T. Utsu, Y. Ogata, and S. R. Matsu'ura, The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth, vol.43, pp.1-33, 1995.

H. Perfettini and J. Avouac, Postseismic relaxation driven by brittle creep: a possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. J. Geophys. Res.: Solid Earth, vol.109, p.2304, 2004.

H. Perfettini and J. Avouac, Modeling afterslip and aftershocks following the 1992 Landers earthquake, J. Geophys. Res.: Solid Earth, vol.112, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00324504

H. Perfettini, J. Avouac, and J. Ruegg, Geodetic displacements and aftershocks following the 2001 Mw = 8.4 Peru earthquake: implications for the mechanics of the earthquake cycle along subduction zones, J. Geophys. Res.: Solid Earth, vol.110, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00323826

Y. Hsu, Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science, vol.312, pp.1921-1926, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00407597

A. Canitano, Seismicity controlled by a frictional afterslip during a small magnitude seismic sequence (ML < 5) on the Chihshang Fault, Taiwan. J. Geophys. Res.: Solid xpansionwrd=, vol.123, pp.2003-2018, 2018.

H. Perfettini, W. B. Frank, D. Marsan, and M. Bouchon, A model of aftershock migration driven by afterslip, Geophys. Res. Lett, vol.45, pp.2283-2293, 2018.

H. Perfettini, W. B. Frank, D. Marsan, and M. Bouchon, Updip and along-strike aftershock migration model driven by afterslip: application to the 2011 Tohoku-Oki aftershock sequence, J. Geophys. Res.: Solid Earth, vol.124, pp.2653-2669, 2019.

E. Lippiello, G. Petrillo, F. Landes, and A. Rosso, Fault heterogeneity and the connection between aftershocks and afterslip, Bull. Seismol. Soc. Am, vol.109, pp.1156-1163, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02156407

M. Ohnaka, Earthquake source nucleation: a physical model for short-term precursors, Tectonophysics, vol.211, pp.149-178, 1992.

D. A. Dodge, G. C. Beroza, and W. Ellsworth, Foreshock sequence of the 1992 Landers, California, earthquake and its implications for earthquake nucleation, J. Geophys. Res.: Solid Earth, vol.100, pp.9865-9880, 1995.

A. Mignan, Seismicity precursors to large earthquakes unified in a stress accumulation framework, Geophys. Res. Lett, vol.39, p.21308, 2012.

B. C. Papazachos, The time distribution of reservoir-associated foreshocks and its importance to the prediction of the principal shock, Bull. Seismol. Soc. Am, vol.63, pp.1973-1978, 1973.

L. M. Jones and P. Molnar, Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults, J. Geophys. Res.: Solid Earth, vol.84, pp.3596-3608, 1979.

A. Helmstetter and D. Sornette, Foreshocks explained by cascades of triggered seismicity, J. Geophys. Res.: Solid Earth, vol.108, p.2457, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00194803

A. Helmstetter, D. Sornette, and J. Grasso, Mainshocks are aftershocks of conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws, J. Geophys. Res.: Solid Earth, vol.108, p.2046, 2003.

K. R. Felzer, R. E. Abercrombie, and G. Ekström, A common origin for aftershocks, foreshocks, and multiplets, Bull. Seismol. Soc. Am, vol.94, pp.88-98, 2004.

J. L. Hardebeck, K. R. Felzer, and A. J. Michael, Improved tests reveal that the accelerating moment release hypothesis is statistically insignificant, J. Geophys. Res.: Solid Earth, vol.113, p.8310, 2008.

M. Bouchon, Extended nucleation of the 1999 Mw 7.6 Izmit earthquake, Science, vol.331, pp.877-880, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00679411

A. Kato, Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake, Science, vol.335, pp.705-708, 2012.

E. E. Brodsky and T. Lay, Recognizing foreshocks from the 1 april 2014 Chile earthquake, Science, vol.344, pp.700-702, 2014.

E. Lippiello, W. Marzocchi, L. De-arcangelis, and C. Godano, Spatial organization of foreshocks as a tool to forecast large earthquakes, Sci. Rep, vol.2, pp.1-6, 2012.

E. Lippiello, F. Giacco, W. Marzocchi, C. Godano, and L. Arcangelis, Statistical features of foreshocks in instrumental and ETAS catalogs, Pure Appl. Geophys, vol.174, pp.1679-1697, 2017.

E. Lippiello, Spatiotemporal clustering of seismic occurrence and its implementation in forecasting models, Complexity of Seismic Time Series, pp.61-93, 2018.

E. Lippiello, C. Godano, and L. De-arcangelis, The relevance of foreshocks in earthquake triggering: a statistical study, Entropy, vol.21, p.173, 2019.

K. Z. Nanjo, N. Hirata, K. Obara, and K. Kasahara, Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes, Geophys. Res. Lett, vol.39, 2012.

T. Tormann, B. Enescu, J. Woessner, and S. Wiemer, Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake, Nat. Geosci, vol.8, pp.152-158, 2015.

K. Z. Nanjo and A. Yoshida, A b map implying the first eastern rupture of the Nankai trough earthquakes, Nat. Commun, vol.9, p.1117, 2018.

L. Gulia and S. Wiemer, Real-time discrimination of earthquake foreshocks and aftershocks, Nature, vol.574, pp.193-199, 2019.

E. Brodsky, Predicting if the worst earthquake has passed, Nature, vol.574, pp.185-186, 2019.

R. Burrige and L. Knopoff, Model and theoretical seismicity, Bull. Seismol. Soc. Am, vol.57, pp.341-371, 1967.

J. Deng, M. Gurnis, H. Kanamori, and E. Hauksson, Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake, Science, vol.282, pp.1689-1692, 1998.

A. Jagla, E. Landes, F. Rosso, and A. , Viscoelastic effects in avalanche dynamics: a key to earthquake statistics, Phys. Rev. Lett, vol.112, p.174301, 2014.

F. P. Landes, Viscoelastic Interfaces Driven in Dosordered Media, 2016.

J. H. Dieterich, Time-dependent friction as a possible mechanism for aftershocks, J. Geophys. Res, vol.77, pp.3771-3781, 1972.

A. Ruina, Slip instability and state variable friction laws, J. Geophys. Res.: Solid Earth, vol.88, pp.10359-10370, 1983.

M. Chris, Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci, vol.26, pp.643-696, 1998.

B. Gutenberg and C. Richter, Frequency of earthquakes in California, Bull. Seismol. Soc. Am, vol.34, pp.185-188, 1944.

C. H. Scholz, Scaling laws for large earthquakes: consequences for physical models, Bull. Seismol. Soc. Am, vol.72, pp.1-14, 1982.

, Working Group on California Earthquake Probabilities United States Geological Survey. Earthquake probabilities in the San Fancisco Bay Region, 2002.

P. Bak and C. Tang, Earthquakes as a self-organized critical phenomenon, J. Geophys. Res.: Solid Earth, vol.94, pp.15635-15637, 1989.

P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: an explanation of the 1/f noise, Phys. Rev. Lett, vol.59, pp.381-384, 1987.

Z. Olami, H. J. Feder, and K. Christensen, Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett, vol.68, pp.1244-1247, 1992.

H. Kawamura, T. Hatano, N. Kato, S. Biswas, and B. K. Chakrabarti, Statistical physics of fracture, friction, and earthquakes, Rev. Mod. Phys, vol.84, pp.839-884, 2012.

A. M. Freed, Earthquake triggering by static, dynamic, and postseismic stress transfer, Annu. Rev. Earth Planet. Sci, vol.33, pp.335-367, 2005.

H. Nakanishi, Earthquake dynamics driven by a viscous fluid, Phys. Rev. A, vol.46, pp.4689-4692, 1992.

S. Hainzl, G. Zöller, and J. Kurths, Similar power laws for foreshock and aftershock sequences in a spring-block model for earthquakes, J. Geophys. Res.: Solid Earth, vol.104, pp.7243-7253, 1999.

J. Pelletier, Spring-block models of seismicity: Review and analysis of a structurally heterogeneous model coupled to a viscous asthenosphere, GeoComplexity and the Physics of Earthquakes Geophysical Monograph, pp.120-128, 2000.

T. Mori and H. Kawamura, Spatiotemporal correlations of earthquakes in the continuum limit of the one-dimensional Burridge-Knopoff model, J. Geophys. Res.: Solid Earth, vol.113, p.11305, 2008.

J. Kazemian, K. F. Tiampo, W. Klein, and R. Dominguez, Foreshock and aftershocks in simple earthquake models, Phys. Rev. Lett, vol.114, p.88501, 2015.

L. E. Aragón, E. A. Jagla, and A. Rosso, Seismic cycles, size of the largest events, and the avalanche size distribution in a model of seismicity, Phys. Rev. E, vol.85, p.46112, 2012.

E. A. Jagla, Realistic spatial and temporal earthquake distributions in a modified Olami-Feder-Christensen model, Phys. Rev. E, vol.81, p.46117, 2010.

E. A. Jagla and A. B. Kolton, A mechanism for spatial and temporal earthquake clustering, J. Geophys. Res.: Solid Earth, vol.115, p.5312, 2010.

E. A. Jagla, Delayed dynamic triggering of earthquakes: evidence from a statistical model of seismicity, Europhys. Lett.), vol.93, p.19001, 2011.

E. A. Jagla, Forest-fire analogy to explain the b value of the Gutenberg-Richter law for earthquakes, Phys. Rev. Lett, vol.111, p.238501, 2013.

E. A. Jagla, Aftershock production rate of driven viscoelastic interfaces, Phys. Rev. E, vol.90, p.42129, 2014.

F. Landes, A. Rosso, and E. A. Jagla, Frictional dynamics of viscoelastic solids driven on a rough surface, Phys. Rev. E, vol.92, p.12407, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01180575

E. Lippiello, F. Giacco, W. Marzocchi, C. Godano, and L. De-arcangelis, Mechanical origin of aftershocks. Sci. Rep, vol.5, pp.1-6, 2015.

F. P. Landes and E. Lippiello, Scaling laws in earthquake occurrence: Disorder, viscosity, and finite size effects in olami-feder-christensen models, Phys. Rev. E, vol.93, p.51001, 2016.

X. Zhang and R. Shcherbakov, Power-law rheology controls aftershock triggering and decay, Sci. Rep, vol.6, p.36668, 2016.

D. T. Trugman and Z. E. Ross, Pervasive foreshock activity across Southern California, Geophys. Res. Lett, vol.46, pp.8772-8781, 2019.

N. Wetzler, T. Lay, E. E. Brodsky, and H. Kanamori, Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes, Sci. Adv, vol.4, p.3225, 2018.

T. Utsu, Aftershocks and earthquake statistics (ii)-further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences, J. Fac. Sci. Hokkaido Univ., Ser. VII, vol.3, pp.197-266, 1970.

A. Helmstetter, Is earthquake triggering driven by small earthquakes?, Phys. Rev. Lett, vol.91, p.58501, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00194380

D. Amitrano, Brittle-ductile transition and associated seismicity: experimental and numerical studies and relationship with the b value, J. Geophys. Res.: Solid Earth, vol.108, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00173129

W. Goebel, T. H. Schorlemmer, D. Becker, T. W. Dresen, G. Sammis et al., Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments, Geophys. Res. Lett, vol.40, pp.2049-2054, 2013.

D. Schorlemmer and W. M. Wiemers, Variations in earthquake-size distribution across different stress regimes, Nature, vol.437, pp.539-542, 2005.

B. Papazachos, Foreshocks and earthquake prediction, Tectonophysics, vol.28, pp.213-226, 1975.

Y. Y. Kagan and L. Knopoff, Statistical study of the occurrence of shallow earthquakes, Geophys. J. R. Astron. Soc, vol.55, pp.67-86, 1978.

M. Baiesi and M. Paczuski, Scale-free networks of earthquakes and aftershocks, Phys. Rev. E, vol.69, p.66106, 2004.

M. Baiesi and M. Paczuski, Complex networks of earthquakes and aftershocks, Nonlinear Process. Geophys, vol.12, pp.1-11, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00302421

E. Lippiello, L. De-arcangelis, and C. Godano, Role of static stress diffusion in the spatiotemporal organization of aftershocks, Phys. Rev. Lett, vol.103, p.38501, 2009.