, Turbulent kinetic energy budget at three locations, vol.9

S. Acharya, S. Dutta, T. Myrum, and R. Baker, Turbulent flow past a surface-mounted two-dimensional rib, Journal of Fluids Engineering, vol.116, pp.238-246, 1994.

R. Adrian and J. Westerweel, Particle image velocimetry, 2011.

A. Al-homoud and M. Hondzo, Energy dissipation estimates in oscillating grid setup: LDV and PIV measurements, Environmental Fluid Mechanics, vol.7, pp.143-158, 2007.

K. Blackman, L. Perret, I. Calmet, and C. Rivet, Turbulent kinetic energy budget in the boundary layer developing over an urban-like rough wall using PIV, Physics of Fluids, vol.29, p.85113, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01634889

I. P. Castro, H. Cheng, R. , and R. , Turbulence over urbantype roughness: Deductions from wind-tunnel measurements, Boundary layer Meteo, vol.118, pp.109-131, 2006.

S. Dey, S. Sarkar, S. Bose, S. Tait, and O. Castro-orgaz, Wallwake flows downstream of a sphere placed on a plane rough wall, J. Hydraulic Eng, vol.137, issue.10, pp.1173-1189, 2011.

D. Medina, O. Schmitt, F. Calif, R. Germain, G. Gaurier et al., Correlation between synchronised power and flow measurements, a way to characterize turbulent effects on a marine current turbine, Proceedings of the 11th European Wave and Tidal Energy Conference, 2015.

. Edf, Énergies marines hydrolienne et houlomotrice, 2010.

A. Gabriele, A. Nienow, and M. Simmons, Use of angle resolved PIV to estimate local specific energy dissipation rates for up-and downpumping pitched blade agitators in a stirred tank, Chemical Engineering Science, vol.64, pp.126-143, 2009.

J. Hinze, Turbulence. 2nd Edition, 1975.
URL : https://hal.archives-ouvertes.fr/insu-01344576

M. Ikhennicheu, Étude expérimentale de la turbulence dans les zones a forts courants et de son impact sur les hydroliennes, 2019.

M. Ikhennicheu, P. Druault, B. Gaurier, G. , and G. , An experimental study of influence of bathymetry on turbulence at a tidal stream site, Proceedings of the 12th European Wave and Tidal Energy Conference, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02140512

M. Ikhennicheu, B. Gaurier, G. Germain, P. Druault, G. Pinon et al., Experimental study of the wall-mounted cylinder wake effects on a tidal turbine behaviour compared to free stream turbulence, Proceedings of the 13th European Wave and Tidal Energy Conference, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02570118

M. Ikhennicheu, G. Germain, P. Druault, and B. Gaurier, Experimental investigation of the turbulent wake past real seabed elements for velocity variations characterization in the water column, International Journal of Heat and Fluid Flow, vol.78, p.108426, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02285983

M. Ikhennicheu, G. Germain, P. Druault, and B. Gaurier, Experimental study of coherent flow structures past a wall-mounted square cylinder, Ocean Engineering, vol.182, pp.137-146, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02140518

F. Khan, Investigation of turbulent flows and instabilities in a stirred vessel using particle image velocimetry, 2005.

A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Doklady Akademii Nauk, vol.30, pp.9-13, 1941.

X. Liu and F. Thomas, Measurement of the turbulent kinetic energy budget of a planar wake flow in pressure gradients, Experiments in Fluids, vol.37, pp.469-482, 2004.

C. Meinhart, A. Prasad, A. , and R. , A parallel digital processor system for particle image velocimetry, Measurement Science Technology, vol.4, pp.619-626, 1993.

P. Mercier, Modélisation de la turbulence engendrée par la morphologie du fond marin dans le Raz-Blanchard: Approche locale LBM-LES, 2019.

P. Mercier, M. Ikhennicheu, S. Guillou, G. Germain, E. Poizot et al., The merging of kelvinhelmholtz vortices into large coherent flow structures in a high Reynolds number flow past a wall-mounted square cylinder, Ocean Engineering, vol.204, pp.0-00, 2020.

L. Myers and A. Bahaj, Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race, Renewable Energy, vol.30, pp.1713-1731, 2005.

V. K. Natrajan and K. T. Christensen, The role of coherent structures in subgridscale energy transfer within the log layer of wall turbulence, Physics of Fluids, p.18, 2006.

P. Ouro and T. Stoesser, Impact of environmental turbulence on the performance and loadings of a tidal stream turbine. Flow, Turbulence and Combustion, p.102, 2018.

P. Panigrahi, Piv investigation of flow behind surface mounted detached square cylinder, Journal of Fluids Engineering, vol.131, pp.1-16, 2009.

P. Panigrahi, A. Schroeder, and J. Kompenhans, Turbulent structures and budgets behind permeable ribs, Experimental Thermal and Fluid Science, vol.32, pp.1011-1033, 2008.

S. Pope, Turbulent flows, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00712179

A. Ricardo, K. Koll, M. Franca, A. Schleiss, and R. Ferreira, The terms of turbulent kinetic energy budget within random arrays of emergent cylinders, Water resources research, vol.50, pp.4131-4148, 2014.

P. Saarenrinne and M. Piirto, Turbulent kinetic energy dissipation rate estimate from piv velocity vector fields, Experiments in Fluids, vol.29, pp.300-307, 2000.

M. Shah and M. Tachie, Flow relaxation past a transverse square rib in pressure gradients, AIAA Journal, issue.7, p.46, 2008.

J. Sheng, H. Meng, and R. Fox, A large eddy PIV method for turbulence dissipation rate estimation, Chemical Engineering Science, vol.55, pp.4423-4434, 2000.

J. Smagorinsky, General circulation experiments with the primitive equations, Monthly Weather Review, vol.91, pp.99-164, 1963.

H. Tennekes and J. Lumley, A first course in turbulence, 1972.

J. Westerweel and F. Scarano, Universal outlier detection for PIV data, Experiments in Fluids, vol.39, pp.1096-1100, 2005.

D. Zaripov, R. Li, and N. Dushin, Dissipation rate estimation in the turbulent boundary layer using high-speed planar particle image velocimetry, Experiments in Fluids, vol.60, p.18, 2019.