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Improved Sleeping Bandits with Stochastic Actions Sets
and Adversarial Rewards

Aadirupa Saha 1 Pierre Gaillard 2 Michal Valko 3

Abstract
In this paper, we consider the problem of sleeping
bandits with stochastic action sets and adversarial
rewards. In this setting, in contrast to most work
in bandits, the actions may not be available at all
times. For instance, some products might be out
of stock in item recommendation. The best exist-
ing efficient (i.e., polynomial-time) algorithms for
this problem only guarantee an O(T 2/3) upper-
bound on the regret. Yet, inefficient algorithms
based on EXP4 can achieve O(

√
T ). In this pa-

per, we provide a new computationally efficient
algorithm inspired by EXP3 satisfying a regret
of order O(

√
T ) when the availabilities of each

action i ∈ A are independent. We then study
the most general version of the problem where
at each round available sets are generated from
some unknown arbitrary distribution (i.e., with-
out the independence assumption) and propose an
efficient algorithm with O(

√
2KT ) regret guaran-

tee. Our theoretical results are corroborated with
experimental evaluations.

1. Introduction
The problem of standard multiarmed bandit (MAB) is well
studied in machine learning (Auer, 2000; Vermorel & Mohri,
2005) and used to model online decision-making problems
under uncertainty. Due to their implicit exploration-vs-
exploitation tradeoff, bandits are able to model clinical trials,
movie recommendations, retail management job schedul-
ing etc., where the goal is to keep pulling the ‘best-item’
in hindsight through sequentially querying one item at a
time and subsequently observing a noisy reward feedback
of the queried arm (Even-Dar et al., 2006; Auer et al., 2002a;
Auer, 2002; Agrawal & Goyal, 2012; Bubeck et al., 2012).
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However, in various real world applications, the decision
space (set of arms A) often changes over time due to un-
availability of some items etc. For instance, in retail stores
some items might go out of stock, on a certain day some
websites could be down, some restaurants might be closed
etc. This setting is known as sleeping bandits in online
learning (Kanade et al., 2009; Neu & Valko, 2014; Kanade
& Steinke, 2014; Kale et al., 2016), where at any round the
set of available actions could vary stochastically based on
some unknown distributions over A (Neu & Valko, 2014;
Cortes et al., 2019) or adversarially (Kale et al., 2016; Klein-
berg et al., 2010; Kanade & Steinke, 2014). Besides the
reward model, the set of available actions could also vary
stochastically or adversarially (Kanade et al., 2009; Neu &
Valko, 2014). The problem is known to be NP-hard when
both rewards and availabilities are adversarial (Kleinberg
et al., 2010; Kanade & Steinke, 2014; Kale et al., 2016). In
case of stochastic rewards and adversarial availabilities the
achievable regret lower bound is known to be Ω(

√
KT ), K

being the number of actions in the decision space A = [K].
The well studied EXP4 algorithm does achieve the above op-
timal regret bound, although it is computationally inefficient
(Kleinberg et al., 2010; Kale et al., 2016). However, the best
known efficient algorithm only guarantees an Õ((TK)2/3)
regret,1 which is not matching the lower bound both in K
and T (Neu & Valko, 2014).

In this paper we aim to give computationally efficient and
optimal O(

√
T ) algorithms for the problem of sleeping

bandits with adversarial rewards and stochastic availabilities.
Our specific contributions are as follows:

Contributions

• We identified a drawback in the (sleeping) loss es-
timates in the prior work for this setting and gave an
insight and margin for improvement over the best know
rate (Section 3).

• We first study the setting when the availabilities of each
item i ∈ A are independent and propose an EXP3-
based algorithm (Alg. 1) with an O(K2

√
T ) regret

guarantee (Theorem 2, Sec. 3).

• We next study the problem when availabilities are not

1Õ(·) notation hides the logarithmic dependencies.
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independent and give an algorithm with an O(
√

2KT )
regret guarantee (Sec. 4).

• We corroborated our theoretical results with empirical
evidence (Sec. 5).

2. Problem Statement
Notation. We denote by [n] := {1, 2, . . . , n}. 1(·) denotes
the indicator random variable which takes value 1 if the
predicate is true and 0 otherwise. Õ(·) notation is used to
hide logarithmic dependencies.

2.1. Setup

Suppose the decision space (or set of actions) is [K] :=
{1, 2, . . . ,K} with K distinct actions, and we consider a
T round sequential game. At each time step t ∈ [T ], the
learner is presented a set of available actions at round t,
say St ⊆ [K], upon which the learner’s task is to play an
action it ∈ St and consequently suffer a loss `t(it) ∈ [0, 1],
where `t := [`t(i)]i∈[K] ∈ [0, 1]K denotes the loss of the
K actions chosen obliviously independent of the available
actions St at time t. We consider the following two types of
availabilities:

Independent Availabilities. In this case we assume that
the availability of each item i ∈ [K] is independent of the
rest [K]\{i}, such that at each round item i ∈ [K] is drawn
in set St with probability ai ∈ [0, 1], or in other words, for
all item i ∈ [K], 1(i ∈ St) ∼ Ber(ai), where availabil-
ity probabilities {ai}i∈[K] are fixed over time intervals t,
independent of each other, and unknown to the learner.

General Availabilities. In this case each Sts is drawn
iid from some unknown distribution P over subsets {S ⊆
[K], |S| ≥ 1} with no further assumption made on the
properties of P . We denote by P (S) the probability of
occurrence of set S.

Analyses with independent and general availabilities are
provided respectively in Sec. 3 and 4.

2.2. Objective

We define by a policy π : 2[K] 7→ [K] to be a mapping from
a set of available actions/experts to an item.

Regret definition The performance of the learner, measured
with respect to the best policy in hindsight, is defined as:

RT = max
π:2[K] 7→[K]

E

[ T∑
t=1

`t(it)−
T∑
t=1

`t(π(St))

]
, (1)

where the expectation is taken w.r.t. the availabilities and
the randomness of the player’s strategy.
Remark 1. One obvious regret lower bound of the above
objective is Ω(

√
KT ), which follows from the bound of stan-

dard MAB with adversarial losses (Auer et al., 2002a) for
the special case when all the items are available at all times
(even for availability-independent case). Interestingly, for a
harder Sleeping-Bandits setting with adversarial availabili-
ties the lower bound is Ω(K

√
T ) (Kleinberg et al., 2010),

even for which no computationally efficient algorithm is
known till date (EXP4 is the only algorithm which achieves
the regret but it is computationally inefficient). Thus the in-
teresting question to answer here is if for our setup–that lies
in the middle-ground of (Auer et al., 2002a) and (Kleinberg
et al., 2010)–is it possible to attend the O(K

√
T ) learn-

ing rate? Here lies the primary objective of this work. To
the best of our knowledge, there is no existing algorithm
which are known to achieve this optimal rate and the best
known efficient algorithm is only guaranteed to yield an
Õ((TK)2/3) regret (Neu & Valko, 2014).

3. Proposed algorithm: Independent
Availabilities

In this section we propose our first algorithm for the problem
(Sec. 2), which is based on a variant of thr EXP3 algorithm
with a ‘suitable’ loss estimation technique. Thm. 2 proves
the optimality of its regret performance.

Algorithm description. Similar to EXP3 algorithm, at
every round t ∈ [T ] we maintain a probability distribution
pt over the arm set [K] and also the empirical availability
of each item âti = 1

t

∑t
τ=1 1(i ∈ Sτ ) . Upon receiving the

available set St, the algorithm redistributes pt only on the
set of available items St, say qt, and plays an item it ∼ qt.
Subsequently the environment reveals the loss `t(it), and
we update the distribution pt+1 using exponential weights
on the loss estimates for all i ∈ [K]

̂̀
t(i) =

`t(i)1(i = it)

q̄t(i) + λt
, (2)

where λt is a scale parameter and q̄t(i) (see definition (3)) is
an estimation of PrSt,it

(
it = i

)
, the probability of playing

arm i at time t under the joint uncertainty in availability of i
(due to St ∼ P) and the randomness of EXP3 algorithm
(due to it ∼ pt).

New insight compared to existing algorithms. It is crucial to
note that one of our main contributions lies in the loss esti-
mation technique ̂̀t in (2). The standard loss estimates used
by EXP3 (see (Auer et al., 2002b)) are of the form ̂̀

t(i) =
`t(i)1(i = it)/pt(i). Yet, because of the unavailable ac-
tions, the latter is biased. The solution proposed by (Neu
& Valko, 2014) (see Sec. 4.3) consists of using unbiased
loss estimates of the form ̂̀

t(i) = `t(i)1(i = it)/(p̂t(i)âti)
where âti and p̂t(i) are estimates for the availability prob-
ability ai and for the weight pt(i) respectively. The sub-
optimal O(T 2/3) of their regret bound resulted from this
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Algorithm 1 Sleeping-EXP3
1: Input:
2: Item set: [K], learning rate η, scale parameter λt
3: Confidence parameter: δ > 0
4: Initialize:
5: Initial probability distribution p1(i) = 1

K , ∀i ∈ [K]
6: while t = 1, 2, . . . do
7: Define qSt (i) := pt(i)1(i∈S)∑

j∈S pt(j)
, ∀i ∈ [K], S ⊆ [K]

8: Receive St ⊆ [K]
9: Sample it ∼ qStt

10: Receive loss `t(it)
11: Compute: âti =

∑t
τ=1 1(i∈Sτ )

t

12: Pâ(S) = ΠK
i=1â

1(i∈S)
ti (1− âti)1−1(i∈S)

13: q̄t(i) =
∑
S∈2[K] Pâ(S)qSt (i)

14: Estimate loss: ̂̀t(i) = `t(i)1(i=it)
q̄t(i)+λt

, ∀i ∈ [K]

15: Update pt+1(i) = pt(i)e
−η ̂̀

t(i)∑K
j=1 pt(i)e

−η ̂̀
t(j)

, ∀i ∈ [K]

16: end while

separated estimation of p̂t(i) and âti, which leads to a high
variance in the analysis because p̂t(i) = 0 whenever i /∈ St.

We circumvent this problem by estimating them jointly as

q̄t(i) :=
∑

S∈2[K]

Pâ(S)qSt (i) , (3)

where Pât(S) = ΠK
i=1â

1(i∈S)
ti (1 − âti)1−1(i∈S) is the em-

pirical probability of the availability of set S, and for all
i ∈ [K]

qSt (i) :=
pt(i)1(i ∈ S)∑

j∈S pt(j)
, (4)

is the redistributed mass of pt on support set S. As shown in
Lem. 1, q̄t(i) is a good estimate for q∗t (i) = ES∼a

[
qSt (i)

]
,

which is the conditional probability of playing action it = i
at time t. It turns out that q̄t(i) is much more stable than
p̂t(i)âti and therefore implies better variance control in
the regret analysis. This improvement finally leads to the
optimal O(

√
T ) regret guarantee (Thm. 2). The complete

algorithm is given in Alg. 1.

The first crucial result we derive towards proving Thm. 2 is
the following concentration guarantees on q̄t:
Lemma 1 (Concentration of q̄t). Let t ∈ [T ] and δ ∈ (0, 1).
Let q∗t (i) = ES∼a

[
qSt (i)

]
and q̄t as defined in Equation (3).

Then, with probability at least 1− δ,

|q∗t (i)− q̄t(i)| ≤ 2K

√
2 log(K/δ)

t
+

8K log(K/δ)

3t
, (5)

for all i ∈ [K].

Using the result of Lem. 1, the following theorem analyses
the regret guarantee of Sleeping-EXP3 (Alg. 1).

Theorem 2 (Sleeping-EXP3: Regret Analysis). Let T ≥ 1.
The sleeping regret incurred by Sleeping-EXP3 (Alg. 1) can
be bounded as:

RT = max
π:2[K] 7→[K]

E

[ T∑
t=1

`(it)−
T∑
t=1

`(π(St))

]
≤ 16K2

√
T lnT + 1 ,

for the parameter choices η =
√

(logK)/(KT ), δ =
K/T 2, and

λt = min

{
2K

√
2 log(K/δ)

t
+

8K log(K/δ)

3t
, 1

}
.

Proof. (sketch) Our proof is developed based on the stan-
dard regret guarantee of the EXP3 algorithm for the classical
problem of multiarmed bandits with adversarial losses (Auer
et al., 2002b; Auer, 2002). Precisely, consider any fixed set
S ⊆ [K], and suppose we run EXP3 algorithm on the set
S, over any nonnegative sequence of losses ̂̀1, ̂̀2, . . . ̂̀T
over items of set S, and consequently with weight updates
qS1 ,q

S
2 , . . .q

S
T as per the EXP3 algorithm with learning rate

η. Then from the standard regret analysis of the EXP3 algo-
rithm (Cesa-Bianchi & Lugosi, 2006), we get that for any
i ∈ S:

T∑
t=1

〈
qSt ,

̂̀
t

〉
−

T∑
t=1

̂̀
t(i) ≤

logK

η
+ η

T∑
t=1

∑
k∈S

qSt (k)̂̀t(k)2 .

Let π∗ : S 7→ [K] be any strategy. Then, applying the
above regret bound to the choice i = π∗(S) and taking the
expectation over S ∼ Pa and over the possible randomness
of the estimated losses, we get

T∑
t=1

E
[〈
qSt ,
̂̀
t

〉]
−

T∑
t=1

E
[̂̀
t(π
∗(S))

]
≤

logK

η
+ η

T∑
t=1

E

[∑
k∈S

qSt (k)̂̀t(k)2

]
. (6)

Now towards proving the actual regret bound of Sleeping-
EXP3 (recall the definition from Eqn. (1)), we first need
to establish the following three main sub-results that relate
the different expectations of Inequality (6) with quantities
related to the actual regret (in Eqn. (1)).

Lemma 3. Let δ ∈ (0, 1). Let t ∈ [T ]. Define qSt as in (4)
and ̂̀t as in (2). Assume that it is drawn according to qStt
as defined in Alg. 1. Then,

E
[
`t(it)

]
≤ E

[〈
qSt ,

̂̀
t

〉]
+ 2Kλt +

δ

λt
,

for λt = 2K
√

2 log(K/δ)
t + 8K log(K/δ)

3t .
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Lemma 4. Let δ ∈ (0, 1). Let t ∈ [T ]. Define ̂̀t as in (2)
and assume that it is drawn according to qStt as defined in
Alg. 1. Then for any i ∈ [K],

E
[̂̀
t(i)
]
≤ `t(i) +

δ

λt
,

for λt = 2K
√

2 log(K/δ)
t + 8K log(K/δ)

3t .

Lemma 5. Let δ ∈ (0, 1). Let t ∈ [T ]. Define qSt as in (4)
and ̂̀t as in (2). Then,

E

[∑
i∈S

qSt (i)̂̀t(i)2

]
≤ K +

δ

λ2
t

.

for λt = 2K
√

2 log(K/δ)
t + 8K log(K/δ)

3t .

With the above claims in place, we are now proceed to
prove the main theorem: Let us denote the best policy
π∗ := arg minπ:2[K] 7→[K]

∑T
t=1 ESt∼Pa [`(π(St))]. Now,

recalling from Eqn. (1), the actual regret definition of
our proposed algorithm, and combining the claims from
Lem. 3, 4, we first get:

RT (Sleeping-EXP3) =

T∑
t=1

E
[
`t(it)− `t(π∗(St))

]
≤ 2K

T∑
t=1

λt + 2

T∑
t=1

δ

λt
+

T∑
t=1

E
[〈
qSt ,

̂̀
t

〉
− ̂̀t(π∗(S))

]
.

Then, we can further upper-bound the last term on the right-
hand-side using Inequality (6) and Lem. 5, which yields

RT (Sleeping-EXP3)

≤ 2K

T∑
t=1

λt + 2

T∑
t=1

δ

λt
+

logK

η
+ ηKT + η

T∑
t=1

δ

λ2
t

≤ logK

η
+ ηKT + 2K

T∑
t=1

λt + 3

T∑
t=1

δ

λ2
t

, (7)

where in the last inequality we used that η ≤ 1 and λt ≤ 1.
Otherwise, we can always choose min{1, λt} instead of λt
in the algorithm and Lem. 1 would still be satisfied.

The proof is concluded by replacing λt = 2K
√

2 log(K/δ)
t +

8K log(K/δ)
3t and by bounding the two sums as follows:

T∑
t=1

λt ≤ 2K

√
2 log

(K
δ

)
T +

8K

3
log
(K
δ

)
(1 + log T )

and using λt ≥ 2K
√

2 log(K/δ)/t, we have

T∑
t=1

1

λ2
t

≤ 1

8K2 log(K/δ)

T∑
t=1

t ≤ T 2

8K2 log(K/δ)
≤ T 2

8K2
.

Then, using δ := K/T 2, log(K/δ) = 2 log(T ), we can
further upper-bound:

∑T
t=1 λt ≤ 4K

√
T log T + 8K

3 (1 +

log T )(log T ) ≤ 7K
√
T log T , and 3

∑T
t=1

δ
λ2
t
≤ 3

8K ≤ 1.

Thus, upper-bounding the two sums into (7), we get

RT (Sleeping-EXP3) ≤ logK

η
+ηKT+14K2

√
T log T+1 .

Optimizing η =
√

(logK)/KT and upper-bounding√
KT logK ≤ K2

√
T , finally concludes the proof.

The above regret bound is of order Õ(K2
√
T ), which is

optimal in T , unlike any previous work which could only
achieve Õ((KT )2/3) regret guarantees (Neu & Valko, 2014)
at best. Thus our regret guarantee is only suboptimal in
terms of K, as the lower bound of this problem is known to
be Ω(

√
KT ) (Kleinberg et al., 2010; Kanade et al., 2009).

However, it should be noted that in our experiments (see
Figure 4), the dependence of our regret on the number of
arms behaves similarly to other algorithms although their
theoretical guarantees expect better dependencies onK. The
sub-optimality could thus be an artifact of our analysis, but
despite our efforts, we have not been able to improve it. We
think this may come from our proof of Lem. 1, in which we
see two gross inequalities that may cost us this dependence
on K. First, the proof upper-bounds |q(S)

t (i)| ≤ 1, while
in average over i and S the latter is around 1/K. Yet,
dependence problems condemn us to use this worst-case
upper-bound. Secondly, the proof uses uniform bounds of
|ai − âti| over i = 1, . . . ,K when the estimation errors
could offset each other.

Note also that the regret bound in the theorem is worst-case.
An interested direction for future work would be to study
whether it is possible to derive an instance-dependent bound,
based on the ai instances. Typically, K could be replaced
by the expected number of active experts. A first step in
this direction would be to start from Inequality (15) in the
proof of Lem. 1 and try to keep the dependence on the ai
distribution along the proof.

Finally, note that the algorithm only requires the beforehand
knowledge of the horizon T to tune its hyper-parameter.
However, the latter assumption can be removed by using
standard calibration techniques such as the doubling trick
(see (Cesa-Bianchi & Lugosi, 2006)).

3.1. Efficient Sleeping-EXP3: Improving Computational
Complexity

Thm. 2 shows the optimality of Sleeping-EXP3 (Alg. 1), but
its one limitation lies in computing the probability estimates

q̄t(i) :=
∑

S∈2[K]

Pâ(S)qSt (i),∀i ∈ [K],
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which requires O(2K) computational complexity per round.

In this section we show how to get around with this problem
just by approximating q̄t(i) by an empirical estimate

q̃t(i) :=
1

t

t∑
τ=1

q
S

(τ)
t
t (i) , (8)

where S
(1)
t , S

(2)
t , . . . S

(t)
t are t independent draws from

the distribution Pâ, i.e. Pât(S) := ΠK
i=1â

1(i∈S)
ti (1 −

âti)
1−1(i∈S) for any S ⊆ [K] (recall the notation from

Sec. 3). The above trick proves useful with the crucial obser-

vation that qS
(1)
t
t (i), q

S
(2)
t
t (i), . . . q

S
(T )
t
t (i) are independent of

each other (given the past) and that each qS
(τ)
t
t (i) are unbi-

ased estimated of q̄t(i). That is, Eât [q
S

(τ)
t
t (i)] = q̄t(i), ∀i ∈

[K], τ ∈ [t]. By classical concentration inequalities, this
precisely leads to fast concentration of q̃t(i) to q̄t(i) which
in turn concentrates to q∗t (i) (by Lem. 1). Combining these
results, thus one can obtain the concentration of q̃t(i) to
q∗t (i) as shown in Lem. 6.

Lemma 6 (Concentration of q̃t(i)). Let t ∈ [T ] and
δ ∈ (0, 1). Let q∗t (i) = ES∼a

[
qSt (i)

]
and q̃t as defined

in Equation (8). Then, with probability at least 1− δ,

|q∗t (i)− q̃t(i)| ≤ 4K

√
log(2K/δ)

t
+

8K log(2K/δ)

3t
,

for all i ∈ [K].

Remark 2. Note that for estimating q̃t, we can not use
the observed sets S1, S2 . . . , St, instead of resampling
S

(1)
t , S

(2)
t . . . , S

(t)
t again–this is because in that case the re-

sulting numbers qS1
t (i), qS2

t (i), . . . qStt (i) would no longer
be independent, and hence can not derive the concentration
result of Lem. 6 (see proof in Appendix A.3 for details).

Using the result of Lem. 6, we now derive the following
theorem towards analyzing the regret guarantee of the com-
putationally efficient version of Sleeping-EXP3.

Theorem 7 (Sleeping-EXP3 (Computationally efficient ver-
sion): Regret Analysis). Let T ≥ 1. The sleeping regret
incurred by the efficient approximation of Sleeping-EXP3
(Alg. 1) can be bounded as:

RT ≤ 20K2
√
T log T + 1 ,

for the parameter choices η =
√

logK
KT , δ = 2K/T 2 and

λt := 4K
√

log(2K/δ)/t+ 8K log(2K/δ)/3t.

Furthermore, the per-round time and space complexities of
the algorithm are O(tK) and O(K) respectively.

Proof. (sketch) The regret bound can be proved using sim-
ilar steps as described for Thm. 2, except now we replace
the concentration result of Lem. 6 in place of Lem. 1.

Computational complexity: At any round t ≥ 1, the algo-
rithm requires only an O(K) cost to update âti, ̂̀t(i) and
pt+1(i), ∀i ∈ [K]. Resampling t subsets S(τ)

t and comput-

ing {qS
(τ)
t
t (i)}i∈[K] requires another O(tK) cost, resulting

in the claimed computational complexity.

Spatial complexity: We only need to keep track of ât ∈
[0, 1]K and pt ∈ [0, 1]K making the total storage complex-
ity justO(K) (noting q̃t can be computed sequentially).

4. Proposed algorithm: General Availabilities
Setting. In this section we assume general subset avail-
abilities (see Sec. 2).

Algorithm 2 Sleeping-EXP3G
1: Input:
2: Learning rate η > 0, scale parameter λt
3: Confidence parameter: δ > 0
4: Initialize:
5: Initial probability distribution p1(i) = 1

K , ∀i ∈ [K]
6: while t = 1, 2, . . . do
7: Receive St
8: Compute qt(i) = pt(i)1(i∈St)∑

j∈St
pt(j)

, ∀i ∈ [K]

9: Sample it ∼ qt
10: Receive loss `t(it)
11: Compute: q̄t(i) := 1

t

∑t
τ=1 q

Sτ
t (i)

12: Estimate loss bound ̂̀t(i) = `t(i)1(i=it)
q̄t(i)+λt

13: Update pt+1(i) = pt(i)e
−η ̂̀

t(i)∑K
j=1 pt(i)e

−η ̂̀
t(j)

, ∀i ∈ [K]

14: end while

4.1. Proposed Algorithm: Sleeping-EXP3G

Main idea. By and large, we use the same EXP3 based
algorithm as proposed for the case of independent availabil-
ities, the only difference lies in using a different empirical
estimate

q̄t(i) :=
1

t

t∑
τ=1

qSτt (i) . (9)

In hindsight, the above estimate q̄t(i) is equal to the expec-
tation ES∼P̂t [q

S
t ], i.e., q̄t(i) =

∑
S∈2[K] P̂ (S)qSt (i), where

P̂t(S) := 1
t

∑t
τ=1 1(Sτ = S) is the empirical probability

of set S at time t. The rest of the algorithm proceeds the
same as Alg. 1, the complete description is given in Alg. 2.

4.2. Regret Analysis

We first analyze the concentration of q̄t(i)–the empirical
probability of playing item i at any round t, and the result
goes as follows:

Lemma 8 (Concentration of q̄t(i)). Let t ∈ [T ]. Let
q∗t (i) = ES∼a

[
qSt (i)

]
, and define q̄t(i) as in Equation (9).
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Then, with probability at least (1− δ),

|q∗t (i)− q̄t(i)| ≤
√

2K+1

t
ln

2K

δ
+

2K+1

3t
ln

2K

δ
,

for all i ∈ [K].

Using Lem. 8 we now analyze the regret bound of Alg. 2.

Theorem 9 (Sleeping-EXP3G: Regret Analysis). Let T ≥ 1.
Suppose we set η =

√
(logK)/(KT ), δ = 2K/T 2, and

λt =
√

(2K+1/t) ln(2K/δ) + 2K+1 ln(2K/δ)/(3t). Then,
the regret incurred by Sleeping-EXP3G (Alg. 2) can be
bounded as:

RT ≤ K
√

2K+4T log T +K2K+3(log T )2 .

Furthermore, the per-round space and time complexities of
the algorithm are O(tK).

Proof. (sketch) The proof proceeds almost similar to the
proof of Thm. 2 except now the corresponding version of
the main lemmas, aka. Lem. 3,4, and 5 are satisfied but for

λt =
√

2K+1

t ln 2K

δ + 2K+1

3t ln 2K

δ , since here we need to
use the concentration Lem. 8 instead of Lem. 1.

Similar to the proof of Thm. 2 and following the same
notation, we first combine claims from Lem. 3, 4 to get:

RT (Sleeping-EXP3G) =

T∑
t=1

E
[
`t(it)− `t(π∗(St))

]
≤

T∑
t=1

E
[〈
qSt ,

̂̀
t

〉
+ 2Kλt +

2δ

λt

]
−E[̂̀t(π∗(St))]

(a)

≤ logK

η
+ η

T∑
t=1

E

[∑
k∈S

qSt (k)̂̀t(k)2

]

+ 2

T∑
t=1

(
Kλt +

δ

λt

)
(b)

≤ logK

η
+ ηKT +

T∑
t=1

(
2Kλt +

2δ

λt
+
ηδ

λ2
t

)
≤ logK

η
+ ηKT +

T∑
t=1

(
2Kλt +

3δ

λ2
t

)
,

where Inequality (a) and (b) respectively follow from (6)
and Lem. 5. The last inequality holds because η ≤ 1 and
λt ≤ 1. To conclude the proof, it now only remains to
compute the sums and to choose the parameters δ = 2K/T 2

and η =
√

(logK)/KT . Using λt ≥
√

2K+1/t, we have∑T
t=1

δ
λ2
t
≤ δT 2

2K+1 ≤ 1, and since log(2K/δ) = 2 log T , we
further have

λt =

√
2K+1

t
lnT +

2K+1

3t
lnT

which entails:

T∑
t=1

λt ≤
√

2K+1T log T +
2K+1

3
(log T )(1 + log T )

≤
√

2K+1T log T + 2K+2(log T )2.

Finally, substituting η and the above bounds in the regret
upper-bound yields the desired result.

Complexity analysis. The only difference with Alg. 1 lies
in computing q̄t(i). Following a similar argument given for
proving the computational complexity of Thm. 7, this can
also be performed with a computational cost of O(tK). Yet,
now the algorithm specifically needs to keep in memory
the empirical distribution of S1, . . . , St and thus a space
complexity of O(K + min{tK, 2K}) is required.

Our regret bound in Thm. 9 has the optimal
√
T

dependency—to the best of our knowledge, Sleeping-
EXP3G (Alg 2) is the first computationally efficient al-
gorithm to achieve O(

√
T ) guarantee for the problem of

Sleeping-Bandits. Of course the EXP4 algorithm is known
to attain the optimal O(

√
KT ) regret bound, however it is

computationally infeasible (Kleinberg et al., 2010) due to
the overhead of maintaining a combinatorial policy class.

Yet, on the downside, it is worth pointing out that the regret
bound of Thm. 9 only provides a sublinear regret in the
regime 2K ≤ O(T ), in which case algorithms such as EXP4
can be efficiently implemented. However, we still believe
our algorithm to be an interesting contribution because it
completes another side of the computational-performance
trade-off. It is possible to move the exponential dependence
on the number of experts from the computational complexity
to the regret bound.

Another argument in favor of this algorithm is that it pro-
vides an efficient alternative algorithm to EXP4 with regret
guarantees in the regime 2K ≤ O(T ). In the other regime,
though we could not prove any meaningful regret guarantee,
Alg. 4.1 performs very well in practice as shown by our
experiments. We believe the 2K constant in the regret to be
an artifact of our analysis. However, removing it seems to
be highly challenging due to dependencies between qSt and
S1, . . . , St. An analysis of the concentration of q̄t (defined
in (9)) to q∗t without exponential dependence on K proved
to be particularly complicated. We leave this question for
future research.

5. Experiments
In this section we present the empirical evaluation of our
proposed algorithms (Sec. 3 and 4) comparing their perfor-
mances with the two existing sleeping bandit algorithms
that apply to our problem setting, i.e. for adversarial losses
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Figure 1. Regret vs Time: Independent availabilities

and stochastic availabilities. Thus we report the comparative
performances of the following algorithms:

1. Sleeping-EXP3: Our proposed Alg. 1 (the efficient
version as described in Sec. 3.1).

2. Sleeping-EXP3G: Our proposed Alg. 2.
3. Sleeping-Cat: The algorithm proposed by (Neu &

Valko, 2014) (precisely their Algorithm for semi-bandit
feedback in Sec. 4.3).

4. Bandit-SFPL: The algorithm proposed by (Kanade
et al., 2009) (see Fig. 3, BSFPL algorithm, Sec. 2).

Performance Measures. In all cases, we report the cumula-
tive regret of the algorithms for T = 5000 time steps, each
averaged over 50 runs. In the following subsections, we
analyze our experimental evaluations for both independent
and general (non-independent) availabilities.

5.1. Independent Availabilities

In this case the item availabilities are assumed to be inde-
pendent at each round (description in Sec. 2).

Environments. We consider K = 20 and generate the
probabilities of item availabilities {ai}i∈[K] independently
and uniformly at random from the interval [0.3, 0.9]. We
use the following loss generation techniques: (1) Switching
loss or SL(τ ). We generate the loss sequence such that the
best performing expert changes after every τ length epochs.
(2) Markov loss or ML(p). Similar to the setting used in
(Neu & Valko, 2014), losses for each arm are constructed as
random walks with Gaussian increments of standard devia-
tion p, initialized uniformly on [0, 1] such that losses outside
[0, 1] are truncated. The explicit values used for τ and p
are specified in the corresponding figures. The algorithm
parameters η, λt, δ are set as defined in Thm7.

Remarks. From Fig. 1 it clearly shows that regret bounds
of our proposed algorithm Sleeping-EXP3 and Sleeping-
EXP3G outperform the other two due to their orderwise
optimal O(

√
T ) regret performance (see Thm. 2 and 9).

In particular, Bandit-SFPL performs the worst due to its
initial O(T 4/5) exploration rounds and uniform exploration
phases thereafter. Sleeping-Cat gives a much competitive
regret bound compared to Bandit-SFPL however, still lags
behind due to the O(T 2/3) regret guarantee (see Sec. 3.1

for a detailed explanation).

Figure 2. Final regret (at round T ) vs availability probabilities((a))

5.2. Regret vs Varying Availabilities.

We next conduct a set of experiments to compare the regret
performances of the algorithms with varying availability
probabilities: For this we assign same availability ai = a ∈
[0.1] to every item i ∈ [K] for a = 0.3, 0.5, 0.7, 0.9 and
plot the final cumulative regret of each algorithm.

Remarks From Fig. 2, we again note our algorithms out-
perform the other two by a large margin for almost every p.
The performance of BSFPL is worse, it steadily decreases
with increasing availability probability due to the explicit
O(T 4/5) exploration rounds in the initial phase of BSFPL,
and even thereafter it keeps on suffering the loss of the
uniform policy scaled by the exploration probability.

5.3. Correlated (General) Availabilities

We now assess the performances when the availabilities of
items are dependent (description in Sec. 2).

Environments. To enforce dependencies of item availabili-
ties we generate each set St by drawing a random sample
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Figure 3. Regret vs time: General availabilities

Figure 4. Final regret (at round T ) vs item size (K)

from a Gaussian(µ,Σ) such that µi = 0, ∀i ∈ [K], and Σ
is some randomK×K positive definite matrix, e.g. block di-
agonal matrix with strong correlations among certain groups
of items. More precisely, at each round t, we first sample
a random K-vector, say vt, from Gaussian(µ,Σ) and we
set St = i ∈ [K]|vt(i) > 0, i.e. St includes all those items
whose corresponding coordinates are non-negative–this thus
enforces item dependencies in the resulted St if Σ is block
diagonal (or any correlation matrix). To generate the loss
sequences, we use similar techniques described in Sec. 5.1.
The algorithm parameters are set as defined in Thm9.

Remarks. From Fig. 3 one can again verify the superior per-
formance of our algorithms over Sleeping-Cat and Bandit-
SFPL, however the effect is only visible for large T as for
smaller time steps t, the O(2K) terms dominates the regret
performance, but as t shoots higher our optimalO(

√
T ) rate

outperforms the suboptimal O(T 2/3) and O(T 4/5) rates of
Sleeping-Cat and Bandit-SFPL respectively.

5.4. Regret vs Varying Item-size (K).

Finally we also conduct a set of experiments changing the
item set size K over a wide range (K = 10 to 4000). We
report the final cumulative regret of all algorithms vs. K for
different switching loss sequence for both independent and
general availabilities, as specified in Fig. 4.

Remark. Fig. 4 shows that the regret of each algorithm
increases withK, as expected. As before the other two base-
lines perform suboptimally in comparison to our algorithms,
however the interesting thing to note is the relative per-
formance of Sleeping-EXP3 and Sleeping-EXP3G—as per
Thm. 2 and 9, Sleeping-EXP3 must outperform Sleeping-
EXP3G with increasing K, however the effect does not

seem to be so drastic experimentally, possibly revealing the
scope of improving Thm. 9 in terms of a better dependency
in K.

6. Conclusion and Future Work
We have presented a new approach that brought an improved
rate for the setting of sleeping bandits with adversarial losses
and stochastic availabilities including both minimax and
instance-dependence guarantees. While our bounds guaran-
tee a regret of Õ(

√
T ), there are several open questions be-

fore the studied setting can be considered as closed. Firstly,
for the case of independent availabilities, we provide a regret
guarantee of Õ(K2

√
T ), leaving open whether Õ(

√
KT )

is possible as in the standard non-sleeping setting. Sec-
ondly, while we provided computationally efficient (i.e.,
with per-round complexity of order O(tK)) Sleeping-EXP3,
for the case of general availabilities and provided instance
dependent regret guarantees for it, the worst case regret
guarantee still amounts to Õ(

√
2KT ). Therefore, it is still

unknown if for the general availabilities we can get an al-
gorithm that would be both computationally efficient and
have Õ(poly(K)

√
T ) regret guarantee in the worst case.

We would like to point out that the new techniques could be
potentially used to provide new algorithms and guarantees
in settings with similar challenges as in sleeping bandits,
such as rotting or dying bandits. Finally, having algorithms
for sleeping bandits with Õ(

√
T ) regret guarantees, opens a

way to deal with sleeping constraints in more challenging
structured bandits with large or infinite number of arms and
having the regret guarantee depend not on number of arms
but rather some effective dimension of the arms’ space.
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Supplementary: Improved Sleeping Bandits with Stochastic Actions Sets
and Adversarial Rewards

A. Appendix for Sec. 3
A.1. Proof of Lem. 1

Lemma 1 (Concentration of q̄t). Let t ∈ [T ] and δ ∈ (0, 1). Let q∗t (i) = ES∼a
[
qSt (i)

]
and q̄t as defined in Equation (3).

Then, with probability at least 1− δ,

|q∗t (i)− q̄t(i)| ≤ 2K

√
2 log(K/δ)

t
+

8K log(K/δ)

3t
, (5)

for all i ∈ [K].

Proof. Let t ∈ [T ] and δ ∈ (0, 1). We start by noting the concentration of âti = 1
t

∑t
τ=1 1(i ∈ Sτ ) to ai for all i ∈ [K].

By Bernstein’s inequality together with a union bound over i = 1, . . . ,K: with probability at least 1− δ, for all i ∈ [K]

|ai − âti| <

√
2ai(1− ai) ln K

δ

t
+

2 ln K
δ

3t
. (10)

Then, β = 2 log(K/δ), using the definitions of Pât(S) = ΠK
i=1â

1(i∈S)
ti (1− âti)1−1(i∈S) and Pa(S) = ΠK

i=1a
1(i∈S)
i (1−

ai)
1−1(i∈S), we get

|Pât(S)− Pa(S)| = Pa(S)

∣∣∣∣Pât(S)

Pa(S)
− 1

∣∣∣∣ = Pa(S)

∣∣∣∣ΠK
i=1

(
âti
ai

)Si(1− âti
1− ai

)1−Si
− 1

∣∣∣∣
= Pa(S)

∣∣∣∣ΠK
i=1

(
âti − ai
ai

+ 1

)Si(ai − âti
1− ai

+ 1

)1−Si
− 1

∣∣∣∣
≤ Pa(S)

(
ΠK
i=1

(
|âti − ai|

ai
+ 1

)Si( |ai − âti|
1− ai

+ 1

)1−Si
− 1

)
, (11)

where the last inequality is because for any ε1, . . . , εK ∈ [−1, 1]K∣∣∣∣∣
K∏
i=1

(1 + εi)− 1

∣∣∣∣∣ = max

{
K∏
i=1

(1 + εi)− 1, 1−
K∏
i=1

(1 + εi)

}

≤ max

{
K∏
i=1

(
1 + |εi|

)
− 1, 1−

K∏
i=1

(
1− |εi|

)}

≤
K∏
i=1

(
1 + |εi|

)
− 1 .

Hence, denoting

Zi :=

(
1 +

√
β(1− ai)

ait
+

β

3ait

)Si(
1 +

√
βai

(1− ai)t
+

β

3(1− ai)t

)1−Si
,

and using Bernstein’s inequality (10), with probability 1− δ, we have

|Pât(S)− Pa(S)| ≤ Pa(S)

(
K∏
i=1

Zi − 1

)
. (12)
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Therefore,

|q∗t (i)− q̄t(i)| =
∣∣∣∣ ∑
S∈2[K]

qSt (i)
(
Pa(S)− Pât(S)

)∣∣∣∣ ← By definition (3)

≤
∑

S∈2[K]

qSt (i)
∣∣Pa(S)− Pât(S)

∣∣
≤

∑
S∈2[K]

Pa(S)

(
K∏
i=1

Zi − 1

)
← From (12) and |qSt (i)| ≤ 1

= ES∼Pa

[
K∏
i=1

Zi

]
− 1 . (13)

But by independence of the Zi, we know

ES∼Pa

[
K∏
i=1

Zi

]
=

K∏
i=1

ES∼Pa

[
Zi
]
. (14)

Now, computing each expectation

ES∼Pa

[
Zi
]

= ESi∼ai

(1 +

√
β(1− ai)

ait
+

β

3ait

)Si(
1 +

√
βai

(1− ai)t
+

β

3(1− ai)t

)1−Si


= ai

(
1 +

√
β(1− ai)

ait
+

β

3ait

)
+ (1− ai)

(
1 +

√
βai

(1− ai)t
+

β

3(1− ai)t

)
≤ 1 + 2

√
βai(1− ai)

t
+

2β

3t
(15)

≤ 1 +

√
β

t
+

2β

3t
.

Therefore, combining with Inequalities (13) and (14), it yields using 1 + x ≤ ex for x ≥ 0,

|q∗t (i)− q̄t(i)| ≤
(

1 +

√
β

t
+

2β

3t

)K
− 1 ≤ eK

√
β
t + 2Kβ

3t − 1 .

Then, assuming t ≥ 25βK2/9, we have

K

√
β

t
+

2Kβ

3t
≤ 1

which implies since ex ≤ 1 + 2x for all 0 ≤ x ≤ 1 and replacing β = 2 log(K/δ)

|q∗t (i)− q̄t(i)| ≤ 2K

√
2 log(K/δ)

t
+

8K log(K/δ)

3t
.

If t ≤ 15βK2/9, then,

|q∗t (i)− q̄t(i)| ≤ 1 ≤ 4K

3

√
log(1/δ)

t
.

Therefore, for all δ ∈ (0, 1), with probability at least 1− δ, for all 1 ≤ i ≤ K

|q∗t (i)− q̄t(i)| ≤ 2K

√
2 log(K/δ)

t
+

8K log(K/δ)

3t
.
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A.2. Proof of Thm. 2

Theorem 2 (Sleeping-EXP3: Regret Analysis). Let T ≥ 1. The sleeping regret incurred by Sleeping-EXP3 (Alg. 1) can be
bounded as:

RT = max
π:2[K] 7→[K]

E

[ T∑
t=1

`(it)−
T∑
t=1

`(π(St))

]
≤ 16K2

√
T lnT + 1 ,

for the parameter choices η =
√

(logK)/(KT ), δ = K/T 2, and

λt = min

{
2K

√
2 log(K/δ)

t
+

8K log(K/δ)

3t
, 1

}
.

Proof. Consider any fixed set S ⊆ [K], and suppose we run EXP3 algorithm on the set S, over any nonnegative sequence of
losses ̂̀1, ̂̀2, . . . ̂̀T over items of set S, and consequently with weight updates qS1 ,q

S
2 , . . .q

S
T where as per EXP3 algorithm

qSt (i) =
e−η

∑t−1
τ=1

̂̀
τ (i)∑

j∈S e
−η

∑t−1
τ=1

̂̀
τ (j)

, i ∈ S (16)

η > 0 being the learning rate of the EXP3 algorithm. Note here that for the analysis, we assume for this hypothetical EXP3
algorithm which plays on actions in S only, the available sets are fixed to S for all t ∈ [T ]. We also consider that qSt (i) = 0
for i /∈ S.

Then from the standard regret analysis of the EXP3 algorithm it is known that (Cesa-Bianchi & Lugosi, 2006) for all i ∈ S

T∑
t=1

〈
qSt ,

̂̀
t

〉
−

T∑
t=1

̂̀
t(i) ≤

logK

η
+ η

T∑
t=1

∑
k∈S

qSt (k)̂̀t(k)2 .

Let π∗ : S 7→ [K] be any strategy. Then, applying the above regret bound to the choice i = π∗(S) and taking the expectation
over S ∼ Pa and over the possible randomness of the estimated losses, we get

T∑
t=1

E
[〈
qSt ,

̂̀
t

〉]
−

T∑
t=1

E
[̂̀
t(π
∗(S))

]
≤ logK

η
+ η

T∑
t=1

E

[∑
k∈S

qSt (k)̂̀t(k)2

]
. (17)

Note that we did not make any assumptions on the estimated losses yet expect non-negativity.

For simplicity we abbreviate S ∼ Pa as S ∼ a henceforth. We denote the sigma algebra generated by the history of
outcomes till time t (i.e. {iτ , Sτ}tτ=1) by Ht. Then recall from Eqn. (1) that we wish to analyse the regret RT , which is
defined with respect to the loss sequence `1, `2, . . . `T and with activation sets S1, . . . , ST . That is, we need to upper-bound

RT = max
π:2[K] 7→[K]

{
T∑
t=1

E
[
`t(it)

]
−

T∑
t=1

E
[
`t(π(St))

]}
.

Towards proving the above regret bound of Sleeping-EXP3 from Inequality (17), we now first establish the following
lemmas that relates the different expectations of Inequality (17) with quantities related to the regret.

Lemma 3. Let δ ∈ (0, 1). Let t ∈ [T ]. Define qSt as in (4) and ̂̀t as in (2). Assume that it is drawn according to qStt as
defined in Alg. 1. Then,

E
[
`t(it)

]
≤ E

[〈
qSt ,

̂̀
t

〉]
+ 2Kλt +

δ

λt
,

for λt = 2K
√

2 log(K/δ)
t + 8K log(K/δ)

3t .



Improved Sleeping Bandits with Stochastic Actions Sets and Adversarial Rewards

Proof. Let t ∈ [T ]. We first consider the probabilistic event (denoted Et) that (5) is true. That is, for all i ∈ [K]

|q∗t (i)− q̄t(i)| ≤ λt . (18)

Remark that Et isHt−1 measurable since q̄t and q∗t areHt−1 measurable.

We start from the right hand side noting that:

E
[〈
qSt ,

̂̀
t

〉∣∣Et] = E

[∑
i∈S

qSt (i)̂̀t(i)∣∣∣Et]

= E

[
E

[∑
i∈S

qSt (i)
`t(i)1(it = i)

q̄t(i) + λt

∣∣∣ S, St,Ht−1

]∣∣∣∣ Et
]

← by definition (2) of ̂̀t
= E

[
E

[∑
i∈St

qSt (i)
`t(i)q

St
t (i)

q̄t(i) + λt

∣∣∣∣St,Ht−1

]∣∣∣∣ Et
]

← taking the expectation over it ∼ qStt

= E

[
E

[∑
i∈St

q∗t (i)
`t(i)q

St
t (i)

q̄t(i) + λt

∣∣∣∣Ht−1

]∣∣∣∣Et
]

← taking the expectation over S ∼ a

≥ E

[
E

[∑
i∈St

q∗t (i)
`t(i)q

St
t (i)

q∗t (i) + 2λt

∣∣∣∣Ht−1

]∣∣∣∣Et
]

← from Inequality (18)

≥ E

[
E

[∑
i∈St

`t(i)q
St
t (i)

(
1− 2λt

q∗t (i)

)∣∣∣∣Ht−1

]∣∣∣∣Et
]

← since (1 + x)−1 ≥ 1− x for x ≥ 0

≥ E

[
E

[∑
i∈St

`t(i)q
St
t (i)

∣∣∣∣Ht−1

]∣∣∣∣Et
]
−E

[
2λt

K∑
i=1

E
[
qStt (i)

∣∣Ht−1

]
q∗t (i)

∣∣∣∣ Et
]
← since q∗t isHt−1 measurable

= E

[
E
[∑
i∈St

`t(i)q
St
t (i)

∣∣∣Ht−1

]∣∣∣ Et]− 2Kλt ← by definition of q∗t (i) = E
[
qStt (i)

∣∣Ht−1

]
= E

[
`t(it)

∣∣Et]− 2Kλt .

It remains now to deal with the case when the event Et (i.e., (18)) is not satisfied. By Lem. 1, this happens with probability
smaller than δ. Therefore because the estimated losses are smaller than 1/λt, we have

E
[〈
qSt ,

̂̀
t

〉]
= E

[〈
qSt ,

̂̀
t

〉 ∣∣ Et]Pr(Et) + E
[〈
qSt ,

̂̀
t

〉∣∣ not Et
]
Pr
(
not Et

)
≥ E

[
`t(it)

∣∣Et]Pr(Et)− 2Kλt −
Pr
(
not E

)
λt

≥ E
[
`t(it)]− 2Kλt −

δ

λt
.

Lemma 4. Let δ ∈ (0, 1). Let t ∈ [T ]. Define ̂̀t as in (2) and assume that it is drawn according to qStt as defined in Alg. 1.
Then for any i ∈ [K],

E
[̂̀
t(i)
]
≤ `t(i) +

δ

λt
,

for λt = 2K
√

2 log(K/δ)
t + 8K log(K/δ)

3t .

Proof. The proof follows a similar analysis to the one of Lem. 3. We start by assuming the probabilistic event Et of
Inequality (18) and to ease the notation, we denote by Et = E

[
·
∣∣Et] the conditional expectation given Et holds true. Then,

Et

[̂̀
t(i)
]

= Et

[
E

[
`t(i)1(it = i)

q̄t(i) + λt

∣∣∣∣St,Ht−1

]]
← by definition of ̂̀t
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= Et

[
E

[
`t(i)q

St
t (i)

q̄t(i) + λt

∣∣∣∣Ht−1

]]
← taking the expectation over it ∼ qStt

= Et

[
`t(i)q

∗
t (i)

q̄t(i) + λt

]
← taking the expectation over St ∼ a

≤ Et

[
`t(i)

]
← by (18)

= `t(i) .

Similarly to the proof of Lem. 3, using that E holds with probability at least 1− δ and using that the estimated losses are in
[0, 1/λt], we get

E
[̂̀
t(i)
]
≤ `t(i) +

δ

λt
.

Lemma 5. Let δ ∈ (0, 1). Let t ∈ [T ]. Define qSt as in (4) and ̂̀t as in (2). Then,

E

[∑
i∈S

qSt (i)̂̀t(i)2

]
≤ K +

δ

λ2
t

.

for λt = 2K
√

2 log(K/δ)
t + 8K log(K/δ)

3t .

Proof. Let t ∈ [T ]. Then, denoting Et the event such that (18) holds, we can derive:

Et

[∑
i∈S

qSt (i)̂̀t(i)2

]
= Et

[
E

[∑
i∈S

qSt (i)
`2t (i)1(it = i)

(q̄t(i) + λt)2

∣∣∣∣S, St,Ht−1

]]
← by definition of ̂̀t

= Et

[
E

[∑
i∈St

qSt (i)
`2t (i)q

St
t (i)

(q̄t(i) + λt)2

∣∣∣∣St,Ht−1

]]
← taking the expectation over it ∼ qStt

≤ E

[
E

[∑
i∈St

q∗t (i)
qStt

(q̄t(i) + λt)2

∣∣∣∣Ht−1

]]
,

where, in the last inequality, we took the expectation over St ∼ a and used that `t(i)2 ≤ 1. Therefore, taking the expectation
over St ∼ a, we get

Et

[∑
i∈S

qSt (i)̂̀t(i)2

]
≤ Et

[ ∑
i∈[K]

q∗t (i)2

(q̄t(i) + λt)2

]
≤ K ,

where the last inequality is because under Et, |q̄t(i) − q∗t (i)| ≤ λt. Now, using that ̂̀t(i)2 ≤ 1/λ2
t , and using that Et is

satisfied with probability at least 1− δ, we conclude the proof of the lemma:

E

[∑
i∈S

qSt (i)̂̀t(i)2

]
≤ K +

δ

λ2
t

.

Given the above claims in place, we are now in a position to prove the main theorem as shown below. Recall from Eqn. (1),
the actual regret definition of our proposed algorithm:

RT (Sleeping-EXP3) = max
π:2[K] 7→[K]

T∑
t=1

E
[
`t(it)− `t(π(St))

]
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Denoting the best policy π∗ := arg minπ:2[K] 7→[K]

∑T
t=1 ESt∼Pa [`(π(St))], and combining the claims from Lem. 3, 4, we

get:

RT (Sleeping-EXP3) =

T∑
t=1

E
[
`t(it)− `t(π∗(St))

]
≤

T∑
t=1

E
[〈
qSt ,

̂̀
t

〉
+ 2Kλt +

δ

λt
− ̂̀t(π∗(St)) +

δ

λt

]
← from Lemmas 3 and 4

≤ 2K

T∑
t=1

λt + 2

T∑
t=1

δ

λt
+

T∑
t=1

E
[〈
qSt ,

̂̀
t

〉
− ̂̀t(π∗(S))

]
.

Then, we can further upper-bound the last term in the right-hand-side using Inequality (17) and Lem. 5, which yields

RT (Sleeping-EXP3) ≤ 2K

T∑
t=1

λt + 2

T∑
t=1

δ

λt
+

logK

η
+ η

T∑
t=1

E

[∑
k∈S

qSt (k)̂̀t(k)2

]

≤ 2K

T∑
t=1

λt + 2

T∑
t=1

δ

λt
+

logK

η
+ ηKT + η

T∑
t=1

δ

λ2
t

≤ logK

η
+ ηKT + 2K

T∑
t=1

λt + 3

T∑
t=1

δ

λ2
t

, (19)

where in the last-inequality we used that η ≤ 1 and λt ≤ 1. Otherwise, we can always choose min{1, λt} instead of λt in
the algorithm and Lem. 1 would still be satisfied.

The proof is concluded by replacing λt = 2K
√

2 log(K/δ)
t + 8K log(K/δ)

3t and by upper-bounding the two sums

T∑
t=1

λt = 2K

√
2 log

(K
δ

) T∑
t=1

1√
t

+
8K

3
log
(K
δ

) T∑
t=1

1

t

≤ 2K

√
2 log

(K
δ

)
T +

8K

3
log
(K
δ

)
(1 + log T )

and using λt ≥ 2K
√

2 log(K/δ)/t, we have

T∑
t=1

1

λ2
t

≤ 1

8K2 log(K/δ)

T∑
t=1

t ≤ T 2

8K2 log(K/δ)
≤ T 2

8K2
.

Then, using δ := K/T 2, log(K/δ) = 2 log(T ), we can further upper-bound:

T∑
t=1

λt ≤ 4K
√
T log T +

8K

3
(1 + log T )(log T ) ≤ 7K

√
T log T

and

3

T∑
t=1

δ

λ2
t

≤ 3

8K
≤ 1 .

Thus, upper-bounding the two sums into (19), we get

RT (Sleeping-EXP3) ≤ logK

η
+ ηKT + 14K2

√
T log T + 1 .

Optimizing η =
√

(logK)/KT and upper-bounding
√
KT logK ≤ K2

√
T , we finally conclude the proof

RT (Sleeping-EXP3) ≤ 16K2
√
T log T + 1 .
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A.3. Proof of Lem. 6

Lemma 6 (Concentration of q̃t(i)). Let t ∈ [T ] and δ ∈ (0, 1). Let q∗t (i) = ES∼a
[
qSt (i)

]
and q̃t as defined in Equation (8).

Then, with probability at least 1− δ,

|q∗t (i)− q̃t(i)| ≤ 4K

√
log(2K/δ)

t
+

8K log(2K/δ)

3t
,

for all i ∈ [K].

Proof. Let t ∈ [T ]. We start by remarking that for any i ∈ [K]:

|q∗t (i)− q̃t(i)| ≤ |q∗t (i)− q̄t(i)|+ |q̄t(i)− q̃t(i)| . (20)

Note that qS
(1)
t
t (i),q

S
(2)
t
t (i), . . .q

S
(T )
t
t (i) are independent of each other given the pastHt−1. Furthermore, they are in [0, 1]

and are unbiased estimates of q̄t(i) = ES∼ât [q
S
t (i)], i.e., for all i ∈ [K], τ ∈ [t]

Eât

[
q
S

(τ)
t
t (i)

]
= q̄t(i) .

Thus, using Hoeffding’s inequality and a union bound over all i ∈ [K], we get that with probability at least (1− δ/2):

|q̄t(i)− q̃t(i)| ≤
√

1

2t
ln

2K

δ
. (21)

Furthermore, from Lem. 1 we have, for all i ∈ [K], with probability at least (1− δ/2):

|q∗t (i)− q̄t(i)| ≤ 2K

√
2 log(2K/δ)

t
+

8K log(2K/δ)

3t
. (22)

The proof follows combining Eqn. (20), (21) and (22) and using K ≥ 1.

A.4. Proof of Thm. 7

Theorem 7 (Sleeping-EXP3 (Computationally efficient version): Regret Analysis). Let T ≥ 1. The sleeping regret incurred
by the efficient approximation of Sleeping-EXP3 (Alg. 1) can be bounded as:

RT ≤ 20K2
√
T log T + 1 ,

for the parameter choices η =
√

logK
KT , δ = 2K/T 2 and λt := 4K

√
log(2K/δ)/t+ 8K log(2K/δ)/3t.

Furthermore, the per-round time and space complexities of the algorithm are O(tK) and O(K) respectively.

Proof. The regret bound can be proved using the same proof technique used for Thm. 2, except replacing the concentration
result of Lem. 6 in place of Lem. 1.

Concerning the computational time. At each round t ≥ 1, the Alg. 1 performs the following operations:

a) update âti for all i ∈ [K] → Cost O(K)

b) for each τ ∈ [t], sample S(τ)
t from Pât and compute q

S
(τ)
t
t (i) ∝ pt(i)1

(
i ∈ S(τ)

t

)
for each i ∈ [K] → Cost O(tK)

c) compute the estimated losses ̂̀t(i) and update pt+1(i) for each i ∈ [K] → Cost O(K)

The time complexity to perform iteration t is therefore O(tK).

As for spatial complexity, the algorithm only needs to keep track of ât ∈ [0, 1]K and pt ∈ [0, 1]K . Since the step b) above
can also be performed sequentially, the total storage complexity is O(K).
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B. Appendix for Sec. 4
Lemma 8 (Concentration of q̄t(i)). Let t ∈ [T ]. Let q∗t (i) = ES∼a

[
qSt (i)

]
, and define q̄t(i) as in Equation (9). Then, with

probability at least (1− δ),

|q∗t (i)− q̄t(i)| ≤
√

2K+1

t
ln

2K

δ
+

2K+1

3t
ln

2K

δ
,

for all i ∈ [K].

Proof. Let t ∈ [T ]. We start by first noting the concentration of P̂ (S) for any S ⊆ [K], which using Bernstein’s inequality
we know that given any fixed δ ∈ [0, 1]:

Pr

(
|P (S)− P̂t(S)| >

√
2P (S)(1− P (S)) ln 1

δ

t
+

2 ln 1
δ

3t

)
≤ δ .

Then consider the event

Et :=

∀S ⊆ [K] : |P (S)− P̂t(S)| >

√
2P (S)(1− P (S)) ln 2K

δ

t
+

2 ln 2K

δ

3t

 . (23)

Taking a union bound over all 2K subsets S ⊆ [K], we get that: Pr(Et) ≥ 1− δ. Now recall in this case that by definition

q∗t (i) := ES∼P[qSt (i)] =
∑

S∈2[K]

P (S)qSt (i), (24)

and similarly,

q̄t(i) :=
1

t

t∑
τ=1

qSτt (i) = ES∼P̂t(S)[q
S
t (i)] =

∑
S∈2[K]

P̂t(S)qSt (i), (25)

with P̂t(S) := 1
t

∑t
τ=1 1(Sτ = S). To ease the notation, let us denote Si = 1(i ∈ S).

We now proceed to bound |q∗t (i)− q̄t(i)| for any item i ∈ [K], t ∈ [T ]. Let us denote Qt(i) =
∑
S∈2[K] qSt (i). Note that

Qt(i) ≤ 2K . Let us also define for simplicity α(S) = 2P (S)(1− P (S)) ln(2K/δ) and β = 2
3 ln(2K/δ) the terms in the

right-hand-side of (23). Then, following the above claims we note that from (23) with probability at least (1− δ),

|q∗t (i)− q̄t(i)| ≤
∑

S∈2[K]

qSt (i)
∣∣P (S)− P̂t(S)

∣∣ ← from (24) and (25)

≤
∑

S∈2[K]

qSt (i)

(√
α(S)

t
+
β

t

)
← from (23)

≤ β2K

t
+Qt(i)

∑
S∈2[K]

qSt (i)

Qt(i)

√
α(S)

t
← because Qt(i) ≤ 2K

≤ β2K

t
+Qt(i)

√√√√ ∑
S∈2[K]

qSt (i)α(S)

Qt(i)t
← from Jensen’s inequality

≤
√

2K+1

t
ln

2K

δ
+

2K+1

3t
ln

2K

δ
,

where the last inequality is because Qt(i) ≤ 2K and∑
S∈2[K]

qSt (i)α(S) ≤
∑

S∈2[K]

α(S) ≤ 2 log(2K/δ)
∑

S∈2[K]

P (S) ≤ 2 log(2K/δ) .

This concludes the proof of the Lemma.
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B.1. Proof of Thm. 9

Theorem 9 (Sleeping-EXP3G: Regret Analysis). Let T ≥ 1. Suppose we set η =
√

(logK)/(KT ), δ = 2K/T 2, and
λt =

√
(2K+1/t) ln(2K/δ)+2K+1 ln(2K/δ)/(3t). Then, the regret incurred by Sleeping-EXP3G (Alg. 2) can be bounded

as:
RT ≤ K

√
2K+4T log T +K2K+3(log T )2 .

Furthermore, the per-round space and time complexities of the algorithm are O(tK).

Proof. The proof is almost similar to the proof of Thm. 2. We use the same notation introduced in that proof for ease of
understanding. Same as before the proof relies on the Lemmas 3, 4, and 5 that are satisfied but for

λt =

√
2K+1

t
ln

2K

δ
+

2K+1

3t
ln

2K

δ
,

since we need to use the concentration Lem. 8 instead of Lem. 1. Now, recall from Eqn. (1), the actual regret definition of
our proposed algorithm:

RT (Sleeping-EXP3G) = max
π:2[K] 7→[K]

T∑
t=1

E
[
`t(it)− `t(π(St))

]
Denoting the best policy π∗ := arg minπ:2[K] 7→[K]

∑T
t=1 ESt∼Pa [`(π(St))], and combining the claims from Lem. 3, 4

and 5, we get following the same arguments as the ones of Thm. 2:

RT (Sleeping-EXP3G) =

T∑
t=1

E
[
`t(it)− `t(π∗(St))

]
≤

T∑
t=1

E
[〈
qSt ,

̂̀
t

〉
+ 2Kλt +

2δ

λt

]
−E[̂̀t(π∗(St))] ← from Lem. 3 and Lem. 4

=

T∑
t=1

E
[〈
qSt ,

̂̀
t

〉
− ̂̀t(π∗(S))

]
+ 2

T∑
t=1

(
Kλt +

δ

λt

)
≤ logK

η
+ η

T∑
t=1

E

[∑
k∈S

qSt (k)̂̀t(k)2

]
+ 2

T∑
t=1

(
Kλt +

δ

λt

)
← from Inequality (17)

≤ logK

η
+ ηKT +

T∑
t=1

(
2Kλt +

2δ

λt
+
ηδ

λ2
t

)
← from Lem. 5

≤ logK

η
+ ηKT +

T∑
t=1

(
2Kλt +

3δ

λ2
t

)
← because η ≤ 1 and λt ≤ 1

To conclude the proof, it only remains to compute the sums and to choose the parameters δ = 2K/T 2 and η =√
(logK)/KT . Using λt ≥

√
2K+1/t, we have

T∑
t=1

δ

λ2
t

≤ δT 2

2K+1
≤ 1

and since log(2K/δ) = 2 log T ,

λt =

√
2K+1

t
lnT +

2K+1

3t
lnT

which entails
T∑
t=1

λt ≤
√

2K+1T log T +
2K+1

3
(log T )(1 + log T ) ≤

√
2K+1T log T + 2K+2(log T )2 .
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Substituting η and these upper-bounds in the regret upper-bound concludes the proof:

RT (Sleeping-EXP3G) ≤ 2
√
KT logK +K

√
2K+3T log T +K2K+3(log T )2

≤ K
√

2K+4T log T +K2K+3(log T )2 .

As for the complexity, the only difference with Alg. 1 comes from the computation of q̄t(i). The latter can also be performed
with a computational cost of O(tK). Yet, the algorithm needs to keep in memory the empirical distribution of S1, . . . , St.
Thus, a space complexity of O(K + min{tK, 2K}).


