
HAL Id: hal-02950635
https://inria.hal.science/hal-02950635v2

Submitted on 14 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application-Driven Requirements for Node Resource
Management in Next-Generation Systems

Edgar A León, Balazs Gerofi, Julien Jaeger, Guillaume Mercier, Rolf Riesen,
Masamichi Takagi, Brice Goglin

To cite this version:
Edgar A León, Balazs Gerofi, Julien Jaeger, Guillaume Mercier, Rolf Riesen, et al.. Application-
Driven Requirements for Node Resource Management in Next-Generation Systems. ROSS 2020 :
International Workshop on Runtime and Operating Systems for Supercomputers, Nov 2020, Atlanta,
GA / Virtual, United States. �hal-02950635v2�

https://inria.hal.science/hal-02950635v2
https://hal.archives-ouvertes.fr

Application-Driven Requirements for Node
Resource Management in Next-Generation Systems

Edgar A. León∗, Balazs Gerofi†, Julien Jaeger‡∗∗, Guillaume Mercier§, Rolf Riesen¶,
Masamichi Takagi†, and Brice Goglin‖

∗Lawrence Livermore National Laboratory, USA †RIKEN, Japan
‡LIHPC Université Paris-Saclay, France ∗∗CEA, DAM, DIF, F-91297 Arpajon, France

§Bordeaux INP, France ¶Intel Corporation, USA ‖Inria, France

Abstract—Emerging workloads on supercomputing platforms
are pushing the limits of traditional high-performance computing
software environments. Multi-physics, coupled simulations, big
data processing and machine learning frameworks, and multi-
component workloads pose serious challenges to system and
application developers. At the heart of the problem is the lack of
cross-stack coordination to enable flexible resource management
among multiple runtime components.

In this work, we analyze seven real-world applications that
represent emerging workloads and illustrate the scope and
magnitude of the problem. We then extract several themes from
these applications that highlight next-generation requirements
for node resource managers. Finally, using these requirements,
we propose a general, cross-stack coordination framework and
outline its components and functionality.

Index Terms—Scientific computing, Supercomputers, Proces-
sor scheduling, Cluster computing, High performance computing,
Software performance, Software reusability, System software,
Operating systems, Utility programs, Programming environ-
ments, Runtime, Runtime environment, Software libraries.

I. INTRODUCTION

In recent years workload diversity in HPC environments
has exploded. Big data processing, in-situ analytics, artificial
intelligence and machine learning workloads, as well as multi-
component workflows are becoming common-place on super-
computers. Each of these workloads bring specific runtime
requirements that are pushing the traditional supercomputing
software environments to their limits.

In addition, with the end of Dennard scaling and the
slowing down of Moore’s law, the prevalence of heteroge-
neous, special-purpose compute devices, i.e., accelerator-based
computing, is growing and overall hardware complexity is
increasing. The difficulty to efficiently utilize these platforms
nurtures interest in multi-tenancy and more dynamic, cloud-
like execution environments for HPC centers. These trends
force the combined use of software runtime components inside
compute nodes that were not designed to cooperate with
each other, and often lead to suboptimal performance. The
lack of a coordination framework between different runtime
components that enables dynamic assignment of hardware
resources is at the core of the problem.

To study this problem, we analyze a representative set of
emerging applications that test the limits of node resource
management capabilities of traditional supercomputing envi-
ronments. We focus on flexible resource management among

runtime components within compute nodes, as opposed to re-
source management across compute nodes, which we consider
part of the global resource manager. Our application use cases
highlight the underlying forces shaping the requirements for
next generation systems.

We find that hardware resource subsets, e.g., CPU cores,
need to be clearly categorized, so that runtime components
with different characteristics can be mapped to the appropriate
hardware, thus avoiding competition and interference. For ex-
ample, assigning auxiliary utility threads serving asynchronous
background activities, e.g., MPI progress threads, to exclusive
parts of a many-core chip can yield significant performance
improvements. Current software interfaces make such config-
uration hard to achieve. With the introduction of nonblocking
collective communication in MPI, such functionality could
benefit an increasing number of applications [1].

We also find that static resource affinity policies are no
longer adequate. Static assignment of compute resources in a
domain-decomposed HPC simulation typically works well, but
multi-physics, coupled applications that bring together differ-
ent runtime packages and libraries have changing requirements
as the application executes over time [2]. For example, there
is a need to dynamically reconfigure the resources assigned to
MPI processes and OpenMP threads, but that requires custom
modifications to existing runtime components due to the lack
of appropriate interfaces [3].

Furthermore, emerging machine-learning workloads that use
frameworks such as TensorFlow [4] and LBANN [5], require
multiple software components, each of them launching differ-
ent types and number of workers including CUDA threads,
C++ threads, OpenMP threads, and POSIX threads. While
there is a need to manage thread heterogeneity, concurrency,
and their placement onto the compute resources, current soft-
ware interfaces lack such functionality.

This work makes the following contributions:

• We analyze seven, real-world, scientific applications that
stress the resource management capabilities of current HPC
software environments.

• We identify the latent resource conflict themes in these
applications and organize them into a taxonomy that enables
a better understanding of how they should be addressed.

• We propose a framework for cross-stack coordination

within compute nodes for the dynamic management of
hardware resources among runtime components.

Lastly, we include an Artifact Description Appendix de-
scribing the hardware and software environments used for the
experiments presented in this paper as well as the configura-
tions of the scientific applications.

II. CHALLENGES OF REAL-WORLD APPLICATIONS

In this section we describe seven applications that exemplify
the problem we are trying to solve. These emerging applica-
tions make use of multiple programming abstractions, compute
engines, and new software environments that did not evolve
on supercomputers. Combined with traditional environments
such as MPI and OpenMP, the resulting amalgam is bound
to generate resource usage conflicts and sub-optimal perfor-
mance.

We chose the applications in this section because each
demonstrates a particular use case and the unique circum-
stances that are problematic in current supercomputing en-
vironments. After describing each application we call out
the particular challenges we identified and summarize the
main issue for each use-case. In Section III we discuss these
issues in more detail and derive next-generation resource
management requirements.

A. Physics and Chemistry Science

GeoFEM [1] and NWChem [6] are applications that have
the potential to overlap communication and computation. Ge-
oFEM is a parallel simulation code based on the finite-volume
method developed at the University of Tokyo. It simulates
ground-water flow problems through saturated heterogeneous
porous media and uses a conjugate gradient solver with multi-
grid preconditioner for solving Poisson’s equations. NWChem
is an ab initio computational chemistry software package
developed and maintained by the Environmental Molecular
Sciences Laboratory at the Pacific Northwest National Lab-
oratory. NWChem includes the coupled cluster theory (CC)
for accurate quantum-mechanical description of ground and
excited states of chemical systems.

Both of these applications have been modified to utilize
nonblocking MPI collective operations for overlapping com-
putation and communication. However, the placement of asyn-
chronous communication progress threads of the MPI library
plays a critical role in attaining performance.

NWChem running on 32 dual-socket Intel Xeon E5-2680v2
compute nodes, each with 10 cores per socket (hyper-threading
turned off), demonstrates the impact of careful thread place-
ment. The application uses 16 cores across 16 MPI processes,
spawning one MPI utility thread per process for asynchronous
communication progress, i.e., 16 utility threads per node. The
four spare cores, which can be used for system services, are
used when utility threads are explicitly pinned. Figure 1 shows
the execution time of three configurations with respect to the
placement of MPI progress threads.

Usage of MPI progress threads for nonblocking collectives
does not automatically result in performance improvement and

0.00

100.00

200.00

300.00

400.00

500.00

Ex
ec

ut
io

n
tim

e
(s

)

NWCHEM w10_ccsd_cc-pvdz_energy

No Async Async
(default)

Async
(pinned to 4 dedicated cores)

26%

Fig. 1. The impact of utility-thread placement on NWChem.

can decrease performance (blue vs. orange bars). On the other
hand, as shown by the grey bar, proper placement of progress
threads reduces execution time by 26%. For the sake of brevity
we omit detailed results for GeoFEM, but note that we observe
similar behavior. Specifying the affinity of these threads is not
trivial, because there is no standard interface to control MPI
progress thread placement.
Challenges: These application use cases demonstrate the need
for a standard API that enables fine-grained control over
placement of asynchronous communication progress threads.
The challenge is to clearly distinguish progress threads from
compute threads and precisely control their placement.
Issue: Dynamic work performed by auxiliary libraries.

B. Climate Modeling

The field of climate science includes the Ocean Physics,
Atmospheric Physics, and Marine Biogeochemistry domains.
Some domains share similar models but, in most cases,
domain-specific tools have been developed. The various mod-
els interact by exchanging data with one another. For example,
an atmospheric boundary layer modifies surface temperature
from the ocean and vice-versa. Each model is integrated into a
coupled application through a model-specific kernel. Designed
independently, these kernels can be sequential or parallel, use
only MPI, Threads, or MPI+Threads, as shown in Figure 2.

Core Core Core Core

NUMA memory

Core Core Core Core

NUMA memory

P0 P2 P3P1 P4 P6 P7P5

T0 T2 T3T1 T4 T6 T7T5

T0 T2 T3T1 T0 T2 T3T1

P0 P2 P3P1 P4 P6 P7P5Next iteration

Phase II: Pure Threads
1 process/node: P0

Phase III: MPI+Threads
1 process/NUMA: P0,P4

Phase I: Pure MPI
1 process/core: P0-P7

Time

P0

P0 P4

Fig. 2. Kernels or phases of a coupled simulation.

An example of a multi-kernel simulation using the OA-
SIS code coupling software [7] is comprised of two parts:
the SCRIP weight interpolation [2], which uses shared-
memory parallelism, and the NEMO-BENCH oceanic circu-

lation computation [8], which uses distributed-memory paral-
lelism. These parts can be mapped to Phase II and Phase I
(next iteration) of Figure 2, respectively. During the SCRIP
phase, the MPI lead process spawns a predefined number of
OpenMP threads, while the other MPI processes are quiescent.
The number of threads that the SCRIP library launches as
well as the number of active MPI processes do not match
the specific MPI+OpenMP decomposition later phases need—
NEMO-BENCH uses MPI-only parallelism.

Figure 3 shows the simulation’s execution time on 2 com-
pute nodes with 40 SMT-2 cores. It includes three config-
urations varying the number of MPI processes for NEMO-
BENCH (NEMO workers) and the number of OpenMP threads
for SCRIP (SCRIP workers). This figure shows that the best
process-thread heterogeneous configuration is kernel specific:
40 MPI processes per node for NEMO-BENCH and a single
process per node with 80 OpenMP threads for SCRIP. This
configuration is up to 23% better than the other configurations.

40 NEMO workers

40 SCRIP workers

80 NEMO workers

80 SCRIP workers

40 NEMO workers

80 SCRIP workers

NEMO−BENCH

SCRIP

E
xe

c
u
ti
o
n
 t
im

e
 (

s
)

0
5
0

1
0
0

1
5
0

2
0
0

Fig. 3. Cumulative time of a multi-model simulation with dynamic hybrid
parallelism. NEMO-BENCH uses MPI-only parallelism, while SCRIP uses a
single process per node with multiple OpenMP threads.

Unfortunately, there is no standard interface or program-
ming support to dynamically reconfigure different phases and
their hardware mappings, which signifies this process must be
performed repeatedly for each multi-kernel simulation.
Challenges: Thread heterogeneity stemming from different
models in one application is difficult to program. Because
the optimal process/thread configuration is different in each
specific model, a single, static configuration can lead to
significant overall performance loss.
Issue: Rebalancing and remapping of MPI processes and
threads in different application phases.

C. Hydrodynamics

The French Alternative Energies and Atomic Energy Com-
mission employs Arbitrary Lagrangian-Eulerian Hydrodynam-
ics simulations. These multi-phase codes include multiple
objects and multiple materials, where each object in the
simulation has its own mesh.

The Hydrodynamics simulations expose a similar behavior
as SCRIP in terms of resource rebalancing. The global sim-
ulation is divided into multiple recurring phases. Each phase,
performed in two steps, deals with the contact between the
different materials. The first step computes the contact forces
between the materials and uses domain decomposition with

one MPI process per core. Depending on the materials, some
friction displacement needs to be computed in a second step.
This step performs best when assigning all the cells to one
MPI process and using OpenMP threads. This is due to the
dependencies between the cells required for this calculation.
However, there is no standard way to switch between these
two configurations.

To overcome this limitation, the applications were changed
as follows. For each friction phase (Phase II in Figure 2), a
lead MPI process is selected. It gathers information from all
the cells involved in this calculation, and steals other MPI
compute resources which are put to sleep. The lead MPI pro-
cess launches as many OpenMP threads as hardware threads
available. Once the friction phase completes, the mapping of
MPI processes on compute resources is restored to one MPI
process per core (Phase I in Figure 2).

We ran the application using only MPI throughout the
application and compared it with the hand-tuned version that
uses only OpenMP on the friction phases. The former ran in
60,771 secs while the latter ran in 32,112 secs. The dynamic
reconfiguration of phases provides a 1.89X speedup.
Challenges: This use case describes different computation
schemes that can appear within one multi-phase application.
Like with SCRIP, the optimal process/thread configuration is
different in each specific step, and a single, static configuration
can lead to significant overall performance loss.
Issue: Rebalancing and remapping of MPI processes and
threads in different application phases.

D. Machine Learning in Inertial Confinement Fusion

The National Ignition Facility at Lawrence Livermore Na-
tional Laboratory is using deep neural networks to steer
simulations in Inertial Confinement Fusion (ICF). Novel tour-
nament methods are used to train a single model on vast
quantities of data generated by ICF simulations. Components
of this model drive speculative sampling to carefully choose
which simulations to execute.

These ICF simulations use the Livermore Big Artificial
Neural Network (LBANN) toolkit [5]. LBANN accelerates
the training of massive neural networks on HPC systems.
The toolkit is designed as an MPI+Threads framework. On
heterogeneous CPU+GPU architectures, one MPI task per
GPU is used. A number of C++ threads on the CPU are used
for processing the input and transformation layers; convolu-
tion, ReLU, and batch normalization are performed on the
GPUs; and the soft max and metric layers are performed with
OpenMP threads on the CPU. For communication, LBANN
employs the Aluminum library [9] to handle latency-sensitive
operations and the NVIDIA NCCL library for bandwidth-
sensitive operations.

Figure 4 shows the processes and the various software
threads that are launched to perform the compute, I/O, and
communication tasks on a compute node with two sockets and
four GPUs. There are MPI processes (P0-P3), GPU kernels
(K0-K3) and four types of threads: I/O threads (IO) imple-
mented as C++ threads, compute threads (Comp) implemented

as OpenMP threads, Aluminum threads (Al) implemented as
POSIX threads, and NCCL threads implemented as POSIX
threads. Coordinating affinity and binding of all of these
threads and processes to minimize interference and improve
locality is a significant challenge. Today, this process is done
manually and prone to inefficiencies.

CPU: 22 SMT-4 cores GPU

Comp
Al NCCL

IO
P2

Comp
Al NCCL

IO
P3

GPU

K2 K3

CPU: 22 SMT-4 coresGPU

Comp
Al NCCL

IO
P0

Comp
Al NCCL

IO
P1

GPU

K0 K1

NUMA memory NUMA memory
Hardware

Software

Fig. 4. LBANN on a dual-socket, multi-GPU architecture.

Challenges: LBANN requires multiple components, each
with different types and number of workers, including CUDA
kernels, C++ threads, OpenMP threads, and POSIX threads.
Challenges include managing thread heterogeneity, concur-
rency, and efficient placement onto the compute resources.
Issue: Multiple, uncoordinated types of threads.

E. Real-time Weather Forecasting

RIKEN developed a high-resolution, real-time weather fore-
casting system, called SCALE-LETKF [10], to predict severe,
short rainstorms in Japan (Figure 5).

Ensemble 1

Ensemble 2

Ensemble N

…

SCALE LETKF

Data
Assimilation

history

analysis

init

Next cycle

Observation
data 30-minute

weather
prediction

Fig. 5. SCALE-LETKF weather forecasting workflow.

Similar to other operational weather forecasting workflows,
SCALE-LETKF consists of two components developed sep-
arately; a numerical weather prediction (NWP) model and
a data assimilation system. The NWP model is the Scal-
able Computing for Advanced Library and Environment-LES
(SCALE-LES), which simulates the time evolution of the
weather-related atmosphere and land/sea surfaces based on
physical equations. On the other hand, the data assimilation
method uses the Local Ensemble Transform Kalman Filter
(LETKF), which assimilates observation data taken from the
real world into the simulated state to produce a better initial
condition for the model. Figure 5 shows that the two com-
ponents run in a cyclic fashion, exchanging data between the
simulation and data assimilation phases in each cycle.

Additionally, observation data are streamed directly into
RIKEN’s supercomputing facility when executing the work-
flow in real-time. Although executed sequentially, there is
potential for overlap between simulation and data assimilation,
since the data assimilation processes perform a number of

data transformation steps before proceeding to their main
computation.

There are multiple ways how SCALE-LETKF can be de-
ployed with respect to the placement of MPI processes on
compute nodes. Due to the limitations imposed by the K Com-
puter’s job management system, the most common scenario
has been to spawn SCALE and LETKF MPI jobs subsequently
via separate mpirun invocations. Since SCALE and LETKF
processes do not overlap in time, they currently communicate
through the parallel file system. Another deployment scenario
is to spawn SCALE and LETKF MPI jobs to separate sets
of compute nodes and enable direct communication over the
interconnect fabric [11]. In this configuration, MPI processes
spawn multiple execution cycles of the workflow.
Challenges: Ideally, the SCALE and LETKF processes
should be located on the same compute nodes to minimize
inter-job communication costs. The main challenge is that
this would require the batch job system and the runtime
to provide mechanisms that enable flexible resource sharing
between the two components. Specifically, the runtime system
should provide standard methods for synchronization and node
resource re-partitioning so that components could reserve and
release CPU cores dynamically.
Issue: Resource affinity control of multi-component work-
flows.

F. Deep Learning in Cancer Problems

We are using the Exascale Computing Project (ECP) CAN-
DLE application [12] with the Pilot 3 data set to illustrate
the impact of conflicting directives from different parts of the
software stack. CANDLE Pilot 3 is a multi-task, deep neural
network (DNN) for data extraction from clinical reports. It
uses TensorFlow and the Intel MKL-DNN deep learning li-
brary. The latter uses OpenMP to parallelize its work. OpenMP
environment variables can be used to control the number and
placement of the MKL threads. TensorFlow uses two thread
pools, intra_op and inter_op, to stage work. The user can
control the size of the thread pools, but not the placement.

The top line in Figure 6 shows the initial run with 15
trials in the recommended configuration using the mOS multi-
kernel [13]. The gray data points below it show CANDLE
running in the same configuration but under Linux. Because
Linux exhibits such wide variation from run to run, we ran
100 trials of all experiments after the initial mOS runs.

When investigating why mOS was slower than Linux, we
discovered that the recommended settings caused multiple
worker threads to run simultaneously on the same CPUs.
Doing a parameter sweep we were able to find a better com-
bination of thread pool sizes and OpenMP thread placement.
The results are shown in the lower two data sets in Figure 6.
Linux improved by about 9% and mOS by 20%. We achieved
these improvements doing a search over the parameter space
and adjusting the configuration manually in setup scripts.
Challenges: A user of an application that uses multiple run-
time layers with conflicting thread placements may not be
aware that the application could perform much better, and what

 40

 45

 50

 55

 60

 65

 0 20 40 60 80 100

-20%

-15%

-10%

 -5%

 0%

 5%

 10%

 15%

 20%

 25%

E
la

p
se

d
 t

im
e
 i
n
 s

e
co

n
d

s

Pe
rc

e
n
t

o
f

m
O

S
 m

e
d
ia

n

Trial number

mOS OMP_NUM=46, inter=2, intra=23 (initial settings)
Linux OMP_NUM=46, inter=2, intra=23 (initial settings)

Linux OMP_NUM=18, inter=3, intra=16
mOS OMP_NUM=18, inter=3, intra=16

Fig. 6. CANDLE Pilot 3 runs with conflicting and optimized thread placement
under two types of systems: monolithic (Linux) and multi-kernel (mOS).

the root cause of the problem is. Even when the problem has
been identified, it is not obvious how to solve it. Each runtime
layer uses different mechanisms to control thread placement.
This limits what can be done. In the example above, the thread
pool capacities that Tensorflow uses can be configured, but not
the placement of the threads. Luckily, we were able to move
the MKL OpenMP threads. A system where the components
of an application could coordinate would let users discover
earlier that there is a resource management conflict and make
the optimizations easier and portable.
Issue: Multiple, uncoordinated types of threads.

III. SALIENT THEMES AND REQUIREMENTS

The use cases above are real-world examples of applica-
tion domains that require runtime management beyond what
is available today, or accessible to non-advanced users. To
design a framework for multi-runtime resource management
in next-generation systems, we need to clearly understand
the requirements of applications. In this section, we list the
salient challenges we uncovered in the application use cases.
Our goal is to replace application- and architecture-specific
solutions with a unifying approach that benefits a broad class
of applications and usage models. Table I cross-references
our application examples with the themes and programming
abstractions we observed.
A—Multiple, uncoordinated types of threads. A common
theme across most use cases is the highly dynamic and hetero-
geneous nature of runtime components. Most applications have
several phases as a result of multiple physics packages, for
example, or the composition of multiple jobs linked together
to pursue a common goal. These phases neither share the same
complexity, nor the same behavior regarding parallelism. Each
phase may use a specific parallel language/runtime with its
own set of workers and its own set of resources.
We differentiate between explicit workers that are explicitly
launched and managed by an application and implicit workers
that are launched and managed by third-party libraries. We
emphasize that applications may not have visibility into im-
plicit workers. We further consider compute workers and utility
workers. Utility workers are those used by utility libraries such

as nonblocking communication threads or system services
threads (see Section IV).

B—Dynamic work performed by auxiliary libraries. An
experienced developer may be able to rebalance MPI and
OpenMP workers based on when and how many OpenMP
threads are active. Some of our use cases do this. However, this
reconfiguration may not be portable or possible with workers
that application developers are unaware of, i.e., implicit.
Both compute and utility workers may be considered im-
plicit workers in auxiliary libraries. Implicit compute work-
ers include threads from math and linear algebra packages
such as Intel’s MKL. Candle and LBANN include these
type of workers. Utility workers, on the other hand, include
nonblocking communication progress threads from the MPI
library and the NVIDIA NCCL library for communication
between GPUs. GeoFEM, NWCHEM, and LBANN (discussed
in Sections II-A and II-D) are examples that include utility
workers. This type of workers may have different requirements
than compute workers. For example, performance may be
affected by their distance to the network controller or to GPUs.
Since application developers may not be aware of all the
workers running on behalf of an application, it can be difficult
to derive performant resource mapping policies.

C—Rebalancing and remapping of MPI processes and
threads in different application phases. A prevalent hybrid
programming model in HPC is the use of message passing for
inter-node communication and shared memory for intra-node
communication. Efficient data exchange among local threads
requires careful placement and scheduling. Unfortunately, each
runtime attempts to optimize this for its own workers without
regard for other runtimes in the composed application stack.
The most common case of hybrid programming is
MPI+OpenMP. A particular challenging configuration is pure
MPI phases intermingled with MPI+OpenMP phases. Without
dynamic reconfiguration of processes and threads between
phases, some compute resources can be left idle while oth-
ers are overloaded with multiple workers. Under- or over-
subscribing compute resource can significantly limit scalabil-
ity. Application use cases where dynamic rebalancing is re-
quired include SCRIP, Hydrodynamics, and SCALE+LETKF,
discussed in Sections II-B, II-C, and II-E, respectively. Cur-
rently, runtimes lack the ability to share information with each
other to be able to adapt their workers and their placement to
leverage all of the available resources efficiently.

D—Multiple applications working together on the same
problem. A challenging configuration for runtime coordina-
tion is multiple concurrent applications. This arises when
multiple jobs, part of the same simulation, are launched
concurrently and share resources. Examples include in-situ
analytics and code coupling workflows such as SCRIP and
SCALE-LETKF (see Sections II-B and II-E). Code coupling
combines a set of application components, often developed
separately, working together to achieve a common goal.
Since each component is launched separately with its own

TABLE I
TAXONOMY OF APPLICATIONS BASED ON THEMES A-D AND PARALLEL PROGRAMMING ABSTRACTIONS.

Candle GeoFEM NWCHEM SCRIP Hydro LBANN SCALE+LETKF

A/B Dynamic compute workers Explicit X X X X X X
Implicit X X

B Dynamic utility workers X X X

C Rebalancing and remapping X X X

D Multiple applications Single X X X X X
Multiple X X

Parallel programming abstractions

MPI X X X X X X X
OpenMP X X X X X X X

POSIX threads X
NVIDIA CUDA X

C++ threads X X

resource allocation, its knowledge of resource availability is
limited to its local view. The resource allocator is the only
entity that keeps track of all resources allocated to the overall
workflow. To have a global view and efficiently manage
all resources, each local library would have to exchange
information with the resource allocator. Only if they all have
information about the workers and resources available in the
system, can their local libraries make better mappings and
notify each other about the new resource distribution.

Based on the application use cases and their resource
management challenges, we outline a set of requirements for a
general multi-layer resource management framework that can
address the needs of emerging workflows and improve appli-
cation productivity: (1) Dynamic runtime placement based on
worker characteristics including compute and utility threads;
(2) Coordination of all workers from all runtimes within a
compute node; (3) Dynamic reconfiguration and remapping
of workers including processes and threads; and (4) Worker
management across multiple concurrent jobs.

IV. PROPOSED APPROACH

In this section, we propose a system framework to address
the challenges posed by the applications described earlier.
First, some terminology and assumptions:

• For any given user, the global resource manager (RM)
grants hardware resources on the machine. These resources
include multiple compute nodes and, within each node,
compute cores, GPUs, memory, etc. We refer to these
granted resources as a user allocation.

• Within a user allocation the user may launch one or more
jobs (a parallel program or a composition of programs)
sequentially or concurrently.

• A parallel program consists of one or more tasks or
processes and each task may include multiple threads.

• A compute node executes jobs from one or more users as
well as system services.

• System services include processes associated with the OS,
parallel file system, RM, etc., and are often run on isolated
resources. Well-known techniques to mitigate application

interference from system services include Cray’s core
specialization [14] and Fujitsu’s system cores [15].

A central component of the proposed framework is the
Mapping Coordinator (MC), a cross-stack coordination layer
in charge of mapping runtime components to the available
hardware resources. Once resources are granted to a user
by the global resource manager, the Mapping Coordinator
coordinates within-node access to these resources. We em-
phasize this distinction, as the Mapping Coordinator is not
intended to replace the resource manager. Instead, it provides
the missing piece of coordination among multiple runtime
components once resources have been assigned on a compute
node. To this end, the Mapping coordinator provides user
interfaces to request resources and, with this information, it
arbitrates placement among runtime components based on
resource availability. The Mapping Coordinator provides a
set of building blocks for node resource coordination and
management upon which more advanced optimization layers
can be built such as end-to-end workflow managers.

Figure 7 demonstrates the role of the Mapping Coordinator.
In this example, the resource manager has granted resources
as follows: resources 0-3 to system services, resources 4-14 to
Julie’s jobs, and resources 15-20 to Nadine’s job. The resource
manager is in charge of isolating resources between users, as
well as between users and system services on a compute node.

When Julie launches job 1 (consisting of processes P0
and P1), the Mapping Coordinator assigns each process onto
a subset of the resources in Julie’s allocation according to
a mapping policy, the hardware topology, and available re-
sources. If each process has three threads, for example, a
mapping policy may place processes 0 and 1 on resources
4-6 and 7-9, respectively. Similarly, the Mapping Coordinator
maps Julie’s job 2 onto resources 10-14. If job 2 launches
threads, the Mapping Coordinator will map them onto the
scope of resources associated with this job. Since the Mapping
Coordinator keeps track of all the work executed, it reduces
contention and conflicts.

The Mapping Coordinator includes the following abstrac-
tions: scopes to abstract hardware resources associated with a
specific execution context (Section IV-A); affinity policies to

0 41 2 3 85 6 7 129 10 11 1613 14 15 2017 18 19

Job 1
P0

System
Services

Job 1
P1 Julie Job 2 Nadine Job 1

Process scope
Job scope

User scope
System services scope

Mapping Coordinator

App and RM APIResource
Allocator

HW

Fig. 7. The Mapping Coordinator, the central component of the proposed
framework, orchestrates the placement of all workers onto the granted
hardware resources. Scopes associated with Julie’s job 1 process 1 are also
shown. Hardware resources are depicted as numbered gray rectangles.

indicate how to map runtime components onto the hardware
at a high-level (Section IV-B); and a functional interface for
applications, libraries, and resource managers to interact with
the MC (Section IV-C).

A. Resource Scopes

User libraries and applications can use scopes to help the
Mapping Coordinator find the best placement of workers
within the constraints of the resources associated with a user.
A scope is an abstract representation of hardware resources
that may include cores, memory, and accelerators. One may
use scopes to express affinity in a more general way than, for
example, CPUs or NUMA domains. Scopes are hierarchical,
but not necessary disjoint at a given level.

For any given user, we associate four types of scopes:
process, job, user, and system services. Figure 7 shows an
example of the various scopes associated with Julie’s job 1
process 1. The process scope is composed of those resources
assigned to process 1 (7-9); the job scope is composed of
resources 4-9, i.e., those assigned to job 1; the user scope is
composed of resources 4-14, i.e., those assigned to Julie; and
the system services scope is composed of resources 0-3, where
the OS and other system services execute. In addition to these
system-defined scopes provided by the Mapping Coordinator,
users may create scopes dynamically.

B. Mapping and Binding Policies

An important part of the proposed framework is the ability
to leverage and specify mapping policies that determine the
way in which processes, threads, and GPU kernels map to
the hardware. These mappings have a substantial impact on
performance and, at the same time, can be very complex
because of the heterogeneous nature of emerging systems.

We recognize that applications have different requirements
and no single mapping policy can meet the demands of all
applications. To this end, the proposed framework allows
incorporating different affinity policies that can be applied
dynamically at different granularities, including on a code-
phase basis. What this means to an application developer is

choosing mapping policy A or B rather than specifying cores,
memory domains, and GPUs where processes, threads, and
kernels should run. While standardized affinity policies, such
as those specified in OpenMP 4 and above, are important, our
goal is to enable and incorporate emerging policies that focus
on optimizing applications based on heterogeneous aspects of
a system such as accelerators and memory.

C. Main Functions of the Mapping Coordinator
Map and bind runtime components to hardware resources.
The primary function of the Mapping Coordinator is to enable
runtime components to map hardware resources efficiently.
Provide low-level interfaces as well as high-level mapping
polices. To achieve the above mentioned goal we envision the
MC providing interfaces at two levels of abstraction. The low-
level interface allows arbitrary customization with respect to
the association of resources to runtime components, while the
high-level policies express intuitive, frequently used patterns
on how mappings are established.
Keep track of resource utilization. In order to provide
resource mappings, the Mapping Coordinator internally keeps
track of resource utilization.
Provide an interface to query available resources. Runtime
components may query the state of resource usage at any time.
Provide an interface to request and release resources. For
components that require precise resource designation the MC
provides interfaces to request and release specific resources.
Arbitrate access to resources to avoid or reduce oversub-
scription. The MC also serves as a per-user synchronization
point on each compute node enabling runtime components to
efficiently arbitrate resources among each other.
Provide an interface to dynamically rebalance processes
and threads. To enable reconfiguration of resources among
runtime components, the Mapping Coordinator provides an
interface to reconfigure different types of workers and their
hardware mapping dynamically. This would allow coupled
simulations with heterogeneous kernels to inter-operate and
utilize the best configuration for each kernel.
Provide an interface to notify of changes in the resource
set associated with a user allocation. Resource managers
are evolving to provide multi-tenancy and the ability to grow
and shrink user allocations. For example, if a job from user
A completes on a shared node with user B, the resource
manger may reassign A’s resources to user B. The MC needs
awareness of dynamically changing allocations to provide not
only efficient but valid mappings. Thus, the MC provides an
interface allowing resource managers to publish when a user
allocation has changed.

V. RELATED WORK

There is numerous work related to the individual pieces
of our proposed framework. Unlike other studies, our work
places a strong emphasis on understanding the limitations of
real applications, to help derive key requirements for next-
generation systems. Below, we outline impactful studies that

have helped shape our design of a general framework for
coordination and arbitration across multiple runtimes.

We start by enumerating efforts addressing mapping and
placement of processes and threads onto the hardware. The
main limitation in this category is that most frameworks
are specific to an MPI library implementation, vendor, or
hardware architecture. In other words, portability is not a
first-class concern. Furthermore, many of these affinity solu-
tions require low-level hardware topology information, which
makes it harder for application developers to use. Open MPI’s
LAMA [16] provided a rich set of options to enable user-
defined affinity policies. MPIPP [17] is a placement frame-
work that takes into account the characteristics of the target
hardware, but does not address current architectures with
complex, hierarchical multicore nodes. Other work in this
area include PTRAM [18], TopoMapping [19], RAHTM [20],
TreeMatch [21], LibTopoMap [22], EagerMap [23], and Hier-
TopoMap [24]. Vendor solutions tailored to MPI implementa-
tions include those by IBM [25], Cray [26], and HP [27].

LIKWID [28] provides flexible binding of MPI+Threads
applications, but also requires integration with specific MPI
implementations. QUO [3], on the other hand, is an MPI
implementation-agnostic library that allows for dynamic place-
ment. The user can specify mapping policies that are dy-
namically enforced on parts of an MPI+Threads application,
making QUO suitable for multi-kernel applications such as
those represented by Figure 2.

We also note that OpenMP [29], unlike MPI, has primitives
for affinity and binding defined into the standard. This rep-
resents a significant step toward reaching portability, at least
from a library implementation point of view. Our approach
embraces this type of standard interfaces, which can be applied
within the Mapping Coordinator’s scope abstraction.

Resource and Job Management Software (RJMS) provides
task and job placement options. A few examples include
Torque [30], OAR [31], and Flux [32]. Torque proposes
NUMA-aware job placement. OAR provides a way to place
application proceses on a flexible hierarchical representation
of resources. This work takes into account the network
topology, but the node architecture is left unaddressed. Flux
provides hierarchical scheduling of resources to allow efficient
placement of complex ensembles of jobs, and coordination
among jobs in an ensemble. Coordination between different
runtimes is not addressed, however. Kubernetes [33], a popular
container management framework in cloud environments, is
being considered in HPC as a possible replacement technology
to job submission systems. Unlike Kubernetes, our approach
orchestrates resource coordination at a much finer granularity
than containers.

The Lithe system [34] provides a low-level interface for
composing multiple runtimes and coordinating access to the
hardware resources. Despite this compelling work, the problem
of runtime composition still exists. Our work shares similar
goals and, in addition, focuses on a high-level interface and
abstractions to realize runtime composition at the application
level. More general approaches to coordination and arbitration

across multiple software entities include system designs for
composing applications across operating systems and runtimes
in multi-enclave HPC infrastructures, such as Hobbes [35] and
Argo [36]. Multi-kernel operating systems such as mOS [13]
and McKernel [37] inherently designate subsets of compute
resources for specific needs. These systems, however, partition
resources in a static fashion and do not typically address
dynamic reconfiguration.

Finally, PMIx provides an API for exchanging information
between components of the HPC stack, such as runtimes and
the resource manager. PMIx has been proposed for resource
coordination among containers [38] and is a candidate for
implementing information exchange for arbitration in the
proposed Mapping Coordinator.

VI. SUMMARY

Scientific discovery is increasingly enabled by heteroge-
neous computing hardware. To utilize this hardware, scientists
must compose their applications using a combination of pro-
gramming models and runtime systems. Since these systems
were designed in isolation, their concurrent execution results
in resource contention and interference that limits application
performance and productivity.

In this paper, we characterize this problem by analyzing
seven real-world applications and quantify their limitations
on current HPC software environments. We have drawn ap-
plications from various scientific fields and leverage them as
use cases to identify the underlying functionality needed in
next-generation systems. Understanding these requirements,
derived from real applications, is a substantial step toward
devising a productive software stack for next-generation HPC
environments.

These use cases inform the general framework we are
proposing to address resource contention and interference from
multiple runtime systems. We focus on a cross-stack coordi-
nation layer called the Mapping Coordinator, which provides
key functionality and interfaces to dynamically manage node-
local resources based on user demand and resource availability.
It satisfies user requests, minimizing interference and resource
contention. We also describe high-level abstractions, including
resource scopes and mapping policies, to help manage the
complexity and portability challenges involved in worker affin-
ity and placement. Finally, we are working on implementing
the proposed framework with a particular emphasis on pro-
viding interfaces that can be used across operating systems,
resource managers, and computer architectures. A detailed
evaluation is the subject of future work.

ACKNOWLEDGMENT

We would like to thank Eric Maisonnave and Andrea
Piacentini from CERFACS and Brian Van Essen from LLNL.
This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labora-
tory under Contract DE-AC52-07NA27344, and the Exascale
Computing Research laboratory with support of CEA, Intel,
and UVSQ. LLNL-CONF-809181.

REFERENCES

[1] K. Nakajima, “Optimization of serial and parallel communications for
parallel geometric multigrid method,” in 2014 20th IEEE International
Conference on Parallel and Distributed Systems (ICPADS), Dec 2014,
pp. 25–32.

[2] A. Piacentini, E. Maisonnave, G. Jonville, L. Coquart, and S. Valcke,
“A parallel SCRIP interpolation library for OASIS,” CECI, UMR
CERFACS/CNRS, France, Tech. Rep. WN/CMGC/18/34, 2018.

[3] S. K. Gutierrez, K. Davis, D. C. Arnold, R. S. Baker, R. W. Robey,
P. S. McCormick, D. Holladay, J. A. Dahl, R. J. Zerr, F. Weik, and
C. Junghans, “Accommodating thread-level heterogeneity in coupled
parallel applications,” in 2017 IEEE International Parallel and Dis-
tributed Processing Symposium, IPDPS 2017, Orlando, FL, USA, May
29 - June 2, 2017. IEEE Computer Society, 2017, pp. 469–478.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[5] B. Van Essen, H. Kim, R. Pearce, K. Boakye, and B. Chen, “LBANN:
Livermore big artificial neural network HPC toolkit,” in Proceedings of
the Workshop on Machine Learning in High-Performance Computing
Environments, ser. MLHPC ’15. New York, NY, USA: ACM, 2015,
pp. 5:1–5:6.

[6] E. J. Bylaska, W. A. de Jong, N. Govind, and K. Kowalski, “NWChem,
a computational chemistry package for parallel computers, version 4.5,”
Jan. 2007.

[7] A. Craig, S. Valcke, and L. Coquart, “Development and performance of
a new version of the OASIS coupler, OASIS3-MCT 3.0,” Geoscientific
Model Development, vol. 10, no. 9, pp. 3297–3308, 2017.

[8] E. Maisonnave and S. Masson, “NEMO 4.0 performance: how to identify
and reduce unnecessary communications,” Sorbonne Universités-CNRS-
IRD-MNHN, Paris, France, Tech. Rep. TR/CMGC/19/19, 2019.

[9] N. Dryden, N. Maruyama, T. Moon, T. Benson, A. Yoo, M. Snir, and
B. V. Essen, “Aluminum: An asynchronous, GPU-aware communication
library optimized for large-scale training of deep neural networks on
HPC systems,” in Workshop on Machine Learning in High-Performance
Computing Environments, ser. MLHPC‘18, Nov. 2018.

[10] T. Miyoshi, G. Y. Lien, S. Satoh, T. Ushio, K. Bessho, H. Tomita,
S. Nishizawa, R. Yoshida, S. A. Adachi, J. Liao, B. Gerofi, Y. Ishikawa,
M. Kunii, J. Ruiz, Y. Maejima, S. Otsuka, M. Otsuka, K. Okamoto, and
H. Seko, “Big data assimilation; toward post-petascale severe weather
prediction: An overview and progress,” Proceedings of the IEEE, vol.
104, no. 11, 2016.

[11] T. V. Martsinkevich, B. Gerofi, G.-Y. Lien, S. Nishizawa, W.-k. Liao,
T. Miyoshi, H. Tomita, Y. Ishikawa, and A. Choudhary, “DTF: An I/O
arbitration framework for multi-component data processing workflows,”
in High Performance Computing, ser. ISC’18. Springer International
Publishing, 2018, pp. 63–80.

[12] J. M. Wozniak, R. Jain, P. Balaprakash, J. Ozik, N. T. Collier, J. Bauer,
F. Xia, T. Brettin, R. Stevens, J. Mohd-Yusof, C. G. Cardona, B. V.
Essen, and M. Baughman, “CANDLE/supervisor: a workflow framework
for machine learning applied to cancer research,” BMC Bioinformatics,
vol. 19, no. 18, p. 491, Dec 2018.

[13] R. Riesen and R. W. Wisniewski, “mOS for HPC,” in Operating
Systems for Supercomputers and High Performance Computing, ser.
High-Performance Computing, B. Gerofi, Y. Ishikawa, R. Riesen, and
R. W. Wisniewski, Eds. Springer Singapore, Dec. 2019, ch. 18, pp.
307–334.

[14] L. Kaplan and J. Harrell, Cray Compute Node Linux, ser. High-
Performance Computing. Springer Singapore, Dec. 2019, pp. 99–120.

[15] T. Kato and K. Hirai, K Computer, ser. High-Performance Computing.
Springer Singapore, Dec. 2019, pp. 183–197.

[16] J. Hursey and J. M. Squyres, “Advancing application process affinity
experimentation: open MPI’s LAMA-based affinity interface,” in 20th
European MPI Users’s Group Meeting, EuroMPI ’13, Madrid, Spain -
September 15 - 18, 2013. ACM, 2013, pp. 163–168.

[17] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn, “MPIPP: An
automatic profile-guided parallel process placement toolset for SMP
clusters and multiclusters,” in Proceedings of the 20th Annual Interna-
tional Conference on Supercomputing, ICS 2006, Cairns, Queensland,
Australia, June 28 - July 01, 2006, G. K. Egan and Y. Muraoka, Eds.
ACM, 2006, pp. 353–360.

[18] S. H. Mirsadeghi and A. Afsahi, “PTRAM: A parallel topology-and
routing-aware mapping framework for large-scale HPC systems,” in
2016 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), May 2016, pp. 386–396.

[19] J. J. Galvez, N. Jain, and L. V. Kalé, “Automatic topology mapping
of diverse large-scale parallel applications,” in Proceedings of the
International Conference on Supercomputing, ICS 2017, Chicago, IL,
USA, June 14-16, 2017. ACM, 2017, pp. 17:1–17:10.

[20] A. H. Abdel-Gawad, M. Thottethodi, and A. Bhatele, “RAHTM: routing
algorithm aware hierarchical task mapping,” in International Conference
for High Performance Computing, Networking, Storage and Analysis, SC
2014, New Orleans, LA, USA, November 16-21, 2014. IEEE Computer
Society, 2014, pp. 325–335.

[21] E. Jeannot, G. Mercier, and F. Tessier, “Process placement in multicore
clusters: Algorithmic issues and practical techniques,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 25, no. 4, pp. 993–1002,
2014.

[22] T. Hoefler and M. Snir, “Generic topology mapping strategies for large-
scale parallel architectures,” in Proceedings of the 25th International
Conference on Supercomputing, 2011, Tucson, AZ, USA, May 31 - June
04, 2011, D. K. Lowenthal, B. R. de Supinski, and S. A. McKee, Eds.,
2011, pp. 75–84.

[23] E. H. M. Cruz, M. Diener, L. L. Pilla, and P. O. A. Navaux, “EagerMap:
A task mapping algorithm to improve communication and load balanc-
ing in clusters of multicore systems,” ACM Transactions on Parallel
Computing, vol. 5, no. 4, pp. 17:1–17:24, 2019.

[24] J. Wu, X. Xiong, and Z. Lan, “Hierarchical task mapping for parallel ap-
plications on supercomputers,” The Journal of Supercomputing, vol. 71,
no. 5, pp. 1776–1802, 2015.

[25] E. Duesterwald, R. W. Wisniewski, P. F. Sweeney, G. Cascaval, and
S. E. Smith, “Method and system for optimizing communication in MPI
programs for an execution environment,” 2008. [Online]. Available:
http://www.faqs.org/patents/app/20080288957

[26] Cray, “Cray performance measurement and analysis tool,”
2017. [Online]. Available: https://pubs.cray.com/content/S-2376/
7.0.0/cray-performance-measurement-and-analysis-tools-user-guide/
about-the-cray-performance-measurement-and-analysis-tools-user-guide,

[27] D. Solt, “A profile based approach for topology aware MPI rank
placement,” 2007. [Online]. Available: http://www.tlc2.uh.edu/hpcc07/
Schedule/speakers/hpcc hp-mpi solt.ppt

[28] J. Treibig, G. Hager, and G. Wellein, “LIKWID: Lightweight perfor-
mance tools,” in Competence in High Performance Computing 2010,
C. Bischof, H.-G. Hegering, W. E. Nagel, and G. Wittum, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 165–175.

[29] O. A. R. Board, “OpenMP application programming interface,” Nov.
2018, version 5.0.

[30] A. Computing, “Torque resource manager.” [Online]. Avail-
able: http://docs.adaptivecomputing.com/torque/6-0-0/Content/topics/
torque/2-jobs/monitoringJobs.htm

[31] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounié,
P. Neyron, and O. Richard, “A batch scheduler with high level com-
ponents,” in Cluster Computing and Grid 2005 (CCGrid05). Cardiff,
United Kingdom: IEEE, 2005.

[32] D. H. Ahn, J. Garlick, M. Grondona, D. Lipari, B. Springmeyer, and
M. Schulz, “Flux: A next-generation resource management framework
for large HPC centers,” in 43rd International Conference on Parallel
Processing Workshops, ICPPW 2014, Minneapolis, MN, USA, Septem-
ber 9-12, 2014, 2014, pp. 9–17.

[33] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
Omega, and Kubernetes,” ACM Queue, vol. 14, pp. 70–93, 2016.

[34] H. Pan, B. Hindman, and K. Asanovic, “Composing parallel software
efficiently with Lithe,” in Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, B. G. Zorn
and A. Aiken, Eds. ACM, 2010, pp. 376–387.

[35] B. Kocoloski, J. Lange, K. Pedretti, and R. Brightwell, “Hobbes:
A multi-kernel infrastructure for application composition,” in Oper-
ating Systems for Supercomputers and High Performance Computing,

B. Gerofi, Y. Ishikawa, R. Riesen, and R. W. Wisniewski, Eds. Singa-
pore: Springer, Oct. 2019.

[36] S. Perarnau, R. Gupta, P. Beckman, P. Balaji, C. Bordage, G. Bosilca,
F. Cappello, J. Dongarra, D. Ellsworth, B. V. Essen, D. Genet,
R. Gioiosa, M. Gokhale, T. Herault, H. Hoffman, K. Iskra, L. Kale,
G. Kestor, S. Krishnamoorthy, E. A. León, J. Lifflander, H. Lu,
A. Malony, N. Mishra, K. Raffenetti, B. Rountree, M. Schulz, S. Seo,
S. Shende, M. Snir, W. Spear, Y. Sun, R. Thakur, K. Yoshii, X. Zheng,
H. Zhang, and J. Zounmevo, “ARGO: An exascale operating system and
runtime,” in International Conference for High Performance Computing,
Networking, Storage and Analysis; Research Poster, ser. SC’15. Austin,
TX: ACM/IEEE, Nov. 2015.

[37] B. Gerofi, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and
Y. Ishikawa, “On the scalability, performance isolation and device driver
transparency of the IHK/McKernel hybrid lightweight kernel,” in 2016
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), May 2016, pp. 1041–1050.

[38] G. Vallee, C. E. A. Gutierrez, and C. Clerget, “On-node resource
manager for containerized HPC workloads,” in Workshop on Containers
and New Orchestration Paradigms for Isolated Environments in HPC,
ser. CANOPIE-HPC’19. Denver, CO: IEEE/ACM, Nov. 2019.

