
Computing 3D Periodic Triangulations?

Manuel Caroli and Monique Teillaud

INRIA Sophia Antipolis – Méditerranée
{Manuel.Caroli,Monique.Teillaud}@sophia.inria.fr

Abstract. This work is motivated by the need for software computing
3D periodic triangulations in numerous domains including astronomy,
material engineering, biomedical computing, fluid dynamics etc. We de-
sign an algorithmic test to check whether a partition of the 3D flat torus
into tetrahedra forms a triangulation (which subsumes that it is a sim-
plicial complex). We propose an incremental algorithm that computes
the Delaunay triangulation of a set of points in the 3D flat torus without
duplicating any point, whenever possible; our algorithmic test detects
when such a duplication can be avoided, which is usually possible in
practical situations. Even in cases where point duplication is necessary,
our algorithm always computes a triangulation that is homeomorpic to
the flat torus. To the best of our knowledge, this is the first algorithm of
this kind whose output is provably correct. The implementation will be
released in Cgal [7].

1 Introduction

Computing Delaunay triangulations of point sets is a well-studied problem in
Computational Geometry. Several algorithms as well as implementations [31, 26,
19, 38, 25, 21] are available. However, these algorithms are mainly restricted to
triangulations in Rd. In this paper, we take interest in triangulations of a periodic
space, represented as the so-called flat torus [35].

This research was originally motivated by the needs of astronomers who
study the evolution of the large scale mass distribution in our universe by run-
ning dynamical simulations on periodic 3D data. In fact there are numerous
application fields that need robust software for geometric problems in periodic
spaces. A small sample of these needs, in fields like astronomy, material engineer-
ing for prostheses, mechanics of granular materials, was presented at the Cgal
Prospective Workshop on Geometric Computing in Periodic Spaces.1 Many other
diverse application fields could be mentioned, for instance biomedical computing
[36], solid-state chemistry [29], physics of condensed matter [15], fluid dynamics
[10], this list being far from exhaustive.

? This work was partially supported by the ANR (Agence Nationale de la Recherche)
under the “Triangles” project of the Programme blanc (No BLAN07-2 194137)
http://www-sop.inria.fr/geometrica/collaborations/triangles/.

1 http://www.cgal.org/Events/PeriodicSpacesWorkshop/

So far we are not aware of any robust and efficient algorithm for comput-
ing Delaunay triangulations from a given point set S in a periodic space. In
the literature, proved algorithms usually need to compute with 9 copies of each
input point in the planar case [23, 17], or with 27 copies in 3D [14], which ob-
viously leads to a huge slow-down. Additionally, their output is a triangulation
in Rd, d = 2, 3, of the copies of the points, whereas our approach always outputs
triangulations of the flat torus.

In the engineering community, an implementation for computing a periodic
Delaunay “tessellation” was proposed, avoiding duplications of points [34]. How-
ever, the tessellation is not necessarily a simplicial complex. Moreover, the algo-
rithm heavily relies on the assumption that input points are well distributed.

Fig. 1. The partition of the torus (left) and the flat torus
(right) is not a triangulation: All simplices have a unique
vertex.

In fact, as shown
in Section 4, using
copies of the input
points may actually
be necessary: in some
cases, the flat torus
may be partitioned
into tetrahedra hav-
ing the points as ver-
tices and satisfying
the Delaunay prop-
erty, but such a parti-
tion does not always form a simplicial complex. Figure 1 shows a simple partition
of the 2D torus that is not a triangulation. However, in practice, input data sets
are likely to admit a Delaunay triangulation.

Let us insist here on the fact that computing a “true” triangulation, i.e.
a simplicial complex, is important for several reasons. First, a triangulation is
defined as a simplicial complex in the literature [2, 9, 16, 20, 22, 33, 39]. Moreover,
designing a data structure to efficiently store tetrahedral tessellations that are
non-simplicial complexes (e.g. ∆-complexes [18]) would be quite involved. The
Cgal 3D triangulation data structure, that we reuse in our implementation,
assumes the structure to be a simplicial complex [24]. Even more importantly,
algorithms using a triangulation as input are heavily relying on the fact that the
triangulation is a simplicial complex; this is the case for instance for meshing
algorithms [27, 28], as well as algorithms to compute α-shapes, which are actually
needed in the periodic case by several applications mentioned at the beginning
of this introduction. We are planning to use the 3D periodic triangulation as the
fundamental ingredient for computing these structures in the future.

Contributions of the paper
We prove conditions ensuring that the Delaunay triangulation can be computed
without duplicating the input points. To this aim, we design an algorithmic test
for checking whether a set K of simplices in the flat torus forms a simplicial
complex.

We present an adaptation of the well-known incremental algorithm in R3 [3]
that allows to compute three-dimensional Delaunay triangulations in the flat
torus. We focus on the incremental algorithm for several reasons: Its practical
efficiency has been proved in particular by the fully dynamic implementation in
Cgal [25]; moreover, a dynamic algorithm, allowing to freely insert (and remove)
points, is a necessary ingredient for all meshing algorithms and software based
on Delaunay refinement methods (see for instance [32, 27, 8]).

For sets of points that cannot be triangulated in the flat torus, our algorithm
outputs a triangulation of an h-sheeted covering space, where h depends on
some parameters of the flat torus, i.e. a triangulation that is still homeomorphic
to the flat torus and containing h > 1 explicit copies of the input point set.
However, as soon as the above mentioned conditions are fulfilled, the algorithm
switches to a 1-sheeted covering and so does not duplicate points. In this way,
the algorithm always computes a triangulation and is provably correct. It has
optimal randomized worst case complexity.

Our implementation of the algorithm has been accepted for version 3.5 of the
Cgal library [7]. We presented a video demonstration of the software [5].

The paper is organized as follows. In Section 2 we review some general notions
about triangulations and simplicial complexes. In the next section, we adapt
the definition of simplicial complexes to the flat torus. In Section 4 we give a
criterion to decide whether a point set has a triangulation in the flat torus. We
give a second criterion that is based on the same idea but can be verified easily
by the algorithm that is presented in Section 5. We show the correctness of the
algorithm and finish with its complexity analysis and experimental observations.
Proofs are omitted in this paper due to lack of space. They can be found in [6].

2 Triangulations

Before talking about triangulations we need to recapitulate the well-known no-
tions of simplices and simplicial complexes. A k-simplex σ in R3 (k ≤ 3) is the
convex hull of k+1 affinely independent points Pσ = {p0, p1, . . . , pk}. A simplex
τ defined by Pτ ⊆ Pσ is a face of σ and has σ as a coface. This is denoted by
σ ≥ τ and τ ≤ σ. Note that σ ≥ σ and σ ≤ σ.

The following definitions are completely combinatorial. With an appropriate
definition of a simplex, they will remain valid in any topological space X.

There exist several definitions of simplicial complexes in the literature. Often
they restrict to a finite number of simplices [39, 30]. In the sequel, we deal with
infinite simplicial complexes, so, we use the definition given in [22]:

Definition 1 (Simplicial complex). A simplicial complex is a set K of sim-
plices such that:

(i). σ ∈ K, τ ≤ σ ⇒ τ ∈ K
(ii). σ, σ′ ∈ K ⇒ σ ∩ σ′ ≤ σ, σ′

(iii). Every point in a simplex of K has a neighborhood that intersects at most
finitely many simplices in K (local finiteness).

Note that if K is finite, then the third condition is always fulfilled.

A triangulation of a topological space X is a simplicial complex K such that
|K| =

⋃
σ∈K σ is homeomorphic to X. A triangulation of a point set S is a

triangulation such that the set of vertices of the triangulation is identical to S.

Some more definitions are needed for the following discussion: Let K be a
simplicial complex. If a subset of K is a simplicial complex as well, we call it
subcomplex of K. The star of a subcomplex L of K consists of the cofaces of
simplices in L: St(L) = {σ ∈ K|σ ≥ τ ∈ L}. In the following sections, we will be
interested in the union of simplices in the star of a set L of simplices, denoted
as |St(L)|.

3 The flat torus T3
c

At first we give a precise definition of the space of study T3
c. Then we review some

of its well-known properties and establish the notations used in the following
discussion. Finally, we give a definition of simplices in T3

c.

Definition 2 (T3). Let c := (cx, cy, cz) ∈ (R \ {0})3 and G be the group
(c ∗ Z3,+), where ∗ denotes coordinate-wise multiplication2. The quotient space

T3
c = R3/G is called flat torus [35]. We denote the quotient map by π : R3 → T3

c .

The elements of T3
c are the equivalence classes under the equivalence relation

p1 ∼ p2 ⇔ p1 − p2 ∈ c ∗ Z3, for p1, p2 ∈ R3. Hence, these equivalence classes are
isomorphic to Z3 and T3

c×Z3 is isomorphic to R3. We also call the points of T3
c

orbits and refer to their elements as representatives. T3
c is a metric space with

dT(π(p), π(q)) := min dR(p′, q′) for p′ ∼ p, q′ ∼ q. Note that π is continuous.

The space T3
c is homeomorphic to the hypersurface of a 4-dimensional torus.

Consider the closed cuboid [u, u+ cx]× [v, v + cy]× [w,w + cz]. Identifying the
pairs of opposite sides results in a space homeomorphic to T3

c. Such a cuboid is
usually called a fundamental domain or a fundamental region. A fundamental
domain contains at least one representative of each orbit. The half-open cuboid

Dc = [0, cx)× [0, cy)× [0, cz) contains exactly one representative for each ele-

ment of T3
c. We call it the original domain. The map

ϕc : Dc × Z3 → R3

(p, ζ) 7→ p+ c ∗ ζ

is bijective. The longest diagonal of Dc has length ‖c‖, which denotes the L2-
norm of c. We say that two points p1, p2 ∈ R3 are periodic copies of each other
if they both lie in the same orbit, or equivalently if there is a point p ∈ Dc such
that p1, p2 ∈ ϕc({p} × Z3).

2 coordinate-wise multiplication: (ax, ay, az) ∗ (bx, by, bz) := (axbx, ayby, azbz)

Dc

(
p3,

(
0
0

))

(
p1,

(
0
0

))
(
p2,

(
0
0

))

(
p2,

(
0
−1

))

(
p3,

(
0
1

))

(
p3,

(
1
0

))

(
p1,

(
0
−1

))

(
p2,

(−1
0

))

(
p3,

(−1
0

))

(
p1,

(
1
0

))

(
p3,

(
1
1

))

(
p1,

(
1
−1

))(
p2,

(−1
−1

))

(
p3,

(−1
1

))

Fig. 2. (2D case) The three points p1, p2, and
p3 do not uniquely define a triangle. Intuitively,
the offset allows to know which way the triangle
“wraps around” the torus.

Now we turn towards the
definition of simplices in T3

c.
There is no meaningful defini-
tion of a convex hull in T3

c and a
tetrahedron is not uniquely de-
fined by four points. We attach
with each vertex an integer vec-
tor, named offset, that specifies
one representative out of an or-
bit (see Figure 2). In the above
definition of ϕc, the offsets are
the numbers ζ ∈ Z3. We can
adapt the definition of a sim-
plex in R3 in the following way
to T3

c [37]:

Definition 3 (simplex). Let P be a set of k + 1 (k ≤ 3) point offset
pairs (pi, ζi) in Dc × Z3, 0 ≤ i ≤ k. Let Ch(P) denote the convex hull of
ϕc(P) = {pi + c ∗ ζi | 0 ≤ i ≤ k} in R3. If the restriction π|Ch(P) of π to the
convex hull of P is a homeomorphism, the image of Ch(P) by π is called a
k-simplex in T3

c.

A

B

(
p0,

(
2
2

))
(
p1,

(
2
2

))

(
p2,

(
2
2

))

(
p0,

(
2
1

))
(
p1,

(
2
1

))

(
p2,

(
2
1

))

(
p0,

(
0
0

))
(
p1,

(
0
0

))

(
p2,

(
0
0

))

(
p0,

(
1
1

))
(
p1,

(
1
1

))

(
p2,

(
1
1

))

(
p0,

(
2
0

))
(
p1,

(
2
0

))

(
p2,

(
2
0

))

(
p0,

(
1
2

))
(
p1,

(
1
2

))

(
p2,

(
1
2

))

(
p0,

(
0
2

))

(
p1,

(
0
2

))(
p2,

(
0
2

))

(
p0,

(
0
1

))
(
p1,

(
0
1

))

(
p2,

(
0
1

))

(
p0,

(
1
0

))
(
p1,

(
1
0

))

(
p2,

(
1
0

))

Fig. 3. (2D case) π(A) is not a simplex;
however, π(B) is a simplex.

In other words, the image under
π of a simplex in R3 is a simplex in
T3
c only if it does not self-intersect or

touch. Figure 3 shows the convex hulls
A and B of three point-offset pairs in
[0, 1)2×Z2;

(
p1,
(
0
2

))
is a representative

of the equivalence class of a vertex of
A that lies inside A.

There are infinitely many sets of
point-offset pairs specifying the same
simplex. The definition of face and
coface is adapted accordingly: Let
σ be a k-simplex defined by a set
Pσ ⊆ Dc × Z3. A simplex τ defined by
a set Pτ ⊆ Dc × Z3 is a face of
σ and has σ as a coface if and only if there is some ζ ∈ Z3 such that
{(pi, ζi + ζ) | (pi, ζi) ∈ Pτ} ⊆ Pσ.

4 Delaunay triangulation in T3
c

This section is organized as follows: At first we give a definition of the Delaunay
triangulation in T3

c. We observe that there are point sets in T3
c whose Delaunay

triangulation is in fact not defined. The second part elaborates on this question,
finally giving a criterion to decide whether or not a point set has a Delaunay

triangulation in T3
c. In the last part we discuss how to deal with point sets that

do not have a Delaunay triangulation in T3
c.

Let us recall that a triangulation of a point set S in R3 is a Delaunay triangu-
lation iff each tetrahedron satisfies the Delaunay property, i.e. its circumscribing
ball does not contain any point of S in its interior. If the point set is not degen-
erate, i.e. if no five points of S are cospherical, then its Delaunay triangulation
is uniquely defined. Still, even for degenerate point sets, it is possible to spec-
ify a unique Delaunay triangulation, using a symbolic perturbation [13]. In the
sequel we always assume Delaunay triangulations in R3 to be uniquely defined
in that way (see Lemma 2). Let S now denote a finite point set in Dc. We want
to define the Delaunay triangulation of π(S) in T3

c. The idea is to use the pro-
jection under π of a Delaunay triangulation of the infinite periodic point set

Sc := ϕc(S × Z3) in R3.

Lemma 1. For any finite point set S ⊂ Dc, a set of simplices K in R3 that
fulfills (i) and (ii) in Definition 1 as well as the Delaunay property with respect
to Sc is a simplicial complex in R3.

Since Sc contains points on an infinite grid, any point p ∈ R3 is contained in
some simplex defined by points in Sc. Together with Lemma 1, this implies that
the set of all simplices with points of Sc as vertices and respecting the Delaunay
property is a Delaunay triangulation of R3 and we denote it by DTR(Sc). Since
|DTR(Sc)| is homeomorphic to R3 and π is surjective, then π(|DTR(Sc)|) is
homeomorphic to T3

c. So, if π(DTR(Sc)) is a simplicial complex, it is also a
triangulation of T3

c. We can now define a Delaunay triangulation in T3
c:

Definition 4. Let DTR(Sc) be the Delaunay triangulation of the point set Sc
in R3. If π(DTR(Sc)) is a simplicial complex in T3

c, then we call it the Delaunay
triangulation of S in T3

c and denote it by DTT(S).

pp

pp

Fig. 4. (2D case) The shaded region is
ϕc(St(p)× Z3) ∩Dc. There are several cy-
cles of length two originating from p.

We show now that Definition 4 ac-
tually makes sense: Lemma 2 is used
to prove Theorem 1, which gives a suf-
ficient condition for π(DTR(Sc)) to be
a simplicial complex.

Lemma 2. If the restriction of π to
any simplex in DTR(Sc) is a homeo-
morphism, then conditions (i) and (iii)
in Definition 1 are fulfilled.

Theorem 1. If for all vertices v of
DTR(Sc) the restriction of the quo-
tient map π||St(v)| is a homeomor-
phism, then π(DTR(Sc)) forms a sim-
plicial complex.

In the following theorem we give another criterion that is algorithmically
easier to check. Let us recall that the 1-skeleton of a simplicial complex is the
subcomplex that consists of all edges and vertices.

Theorem 2. Assume the restriction of π to any simplex in DTR(Sc) is a home-
omorphism. If the 1-skeleton of π(DTR(Sc)) does not contain any cycle of length
less than or equal to two, then π(DTR(Sc)) forms a simplicial complex.

See Figure 4 for an illustration of Theorems 1 and 2.
In the remaining part of this section, we explain how we can give a finite

representation of the periodic triangulationDTR(Sc) that is a simplicial complex,
even if π(DTR(Sc)) is not a simplicial complex.

Definition 5. [2] Let X be a topological space. A map ρ : X̃ → X is called a

covering map and X̃ is said to be a covering space of X if the following condition
holds: For each point x ∈ X there is an open neighborhood V , and a decomposition
of ρ−1(V) as a family {Uα} of pairwise disjoint open subsets of X̃, in such a way
that ρ|Uα

is a homeomorphism for each α. Let hx denote the cardinality of the
family {Uα} corresponding to some x ∈ X. If the maximum h := maxx∈X hx is

finite, then X̃ is called an h-sheeted covering space.

R3 with the quotient map π as covering map is a universal covering of T3
c,

which means that it is a covering space for all covering spaces of T3
c [2].

Let h = (hx, hy, hz) ∈ N3. T3
h∗c is a covering space of T3

c together with
the covering map ρh := π ◦ π−1h , where πh : R3 → T3

h∗c denotes the quo-
tient map of T3

h∗c. As ρ−1h (p) for any p ∈ T3
c consists of hx · hy · hz differ-

ent points, T3
h∗c is a hx ·hy ·hz-sheeted covering space. The original domain

is Dh∗c = [0, hxcx)× [0, hycy)× [0, hzcz). If hx = hy = hz we use the notation
πh := πh with h := hx ·hy ·hz, like for π27 in Theorem 3 below.

Dolbilin and Huson [14] showed that only the points of Sc contained in
Dc and the 26 copies that surround it can have an influence on the Delaunay
property for simplices that are completely contained in Dc. The ideas of their
proof can be used to show the following:

Theorem 3. π27(DTR(Sc)) is always a simplicial complex.

We prefer to use the framework of covering spaces, rather than just talk about
copies of the points as in [14], for several reasons: A major part of the code can
be reused for any finite covering space. Also, the simplicial complex we compute
is actually homeomorphic to T3

c. So we do not have any artificial boundaries in
the data structure and we get all adjacency relations between simplices.

The algorithm we use to compute triangulations of T3
c requires a slightly

stronger result, which we present in the next section.

5 Algorithm

As mentioned in the introduction, there is a strong motivation for reusing the
standard incremental algorithm [3] to compute a periodic Delaunay triangula-
tion.

We propose the following algorithm:

– We start computing in some finitely-sheeted covering space T3
h∗c of T3

c, with
h chosen such that πh(DTR(Sc)) is guaranteed to be a triangulation.

– If the point set is large and reasonably well distributed, it is likely that
after having inserted all the points of a subset S ′ ⊂ S, all the subsequent
π(DTR(S ′′c)) for S ′ ⊂ S ′′ ⊂ S are simplicial complexes in T3

c. In this case,
we discard all periodic copies of simplices of πh(DTR(S ′c)) and switch to
computing π(DTR(Sc)) in T3

c by adding all the points left in S \ S ′.

Fig. 5. (2D case) Adding a point in a sim-
plicial complex can create a cycle of length
two.

In this way, unlike [14], we avoid
duplicating points as soon as this is
possible. However, if S is a small
and/or badly distributed point set,
the algorithm never enters the second
phase and returns πh(DTR(Sc)). Note
that, before switching to computing in
T3
c, it is not sufficient to test whether

π(DTR(S ′c)) is a simplicial complex.
Indeed, adding a point could create a
cycle of length two (see Figure 5). So,
a stronger condition is needed before
the switch.

See Algorithm 1 for a pseudo-code
listing of the algorithm.

Algorithm 1 Compute Delaunay triangulation of a point set in T3
c

Input: Set S of points in Dc, c such that Dc is a cube with edge length c ∈ R3 \ {0}.
Output: DTT(S) if possible, otherwise π27(DTR(Sc))
1: S ′ ⇐ S
2: Pop p from S ′

3: S ⇐ {p}
4: TR27 ⇐ π27(DTR(ϕc({p} × Z3))) // can be precomputed

5: while the longest edge in TR27 is longer than 1√
6
c do

6: Pop p from S ′; S ⇐ S ∪ {p}
7: for all p′ ∈ {p+ c ∗ ζ | ζ ∈ {0, 1, 2}3} do
8: Insert p′ into TR27

9: end for // TR27 = π27(DTR(Sc))
10: if S ′ = ∅ then return TR27 = π27(DTR(Sc)) // non-triangulable point

set

11: end while
12: Compute DTT(S) from TR27 // switch to T3

c

13: Insert all points remaining in S ′ into DTT(S) one by one
14: return DTT(S)

Two central points must be established to show the correctness of the algorithm:

1. After each insertion, TR27 is a Delaunay triangulation in T3
3c. Let us em-

phasize on the fact that Theorem 3 cannot be used here because in the inner
loop (step 8), the set of points present in TR27 does not contain all the pe-
riodic copies of p. Let p be a point in Dc and Tp ⊆ ϕc({p} × Z3) ∩ D3c, i.e.
Tp is a subset of the grid of 27 copies of p that lie within D3c. Then TR27 is
always of the form π27(DTR(Sc ∪ T 3c

p)) with T 3c
p = ϕ3c(Tp ×Z3). Lemma 3

shows that this is a triangulation.
2. If all edges in π27(DTR(Sc)) are shorter than 1√

6
c, then we can switch to

computing in T3
c.

Lemma 3. Let S ⊂ Dc be a finite point set and p ∈ Dc a point. If Dc is a cube,
then π27(DTR(Sc ∪ T 3c

p)) is a triangulation.

Lemma 4 gives a criterion to decide whether π(DTR(Sc)) is a simplicial
complex and thus a triangulation in T3

c.

Lemma 4. If the 1-skeleton of DTR(Sc) contains only edges shorter than 1√
6
c,

where c is the edge length of Dc, then π(DTR(T c)) is a simplicial complex for
any finite T ⊂ Dc with S ⊆ T .

Note that the criterion in Lemma 4 is only sufficient: There are triangulations
without cycles of length two that have edges longer than 1√

6
c.

Lemmas 3 and 4 prove the correctness of Algorithm 1 in the case of a cubic
domain. The above discussion still remains valid if the original domain Dc is
a general cuboid, i.e. c = (cx, cy, cz). Only the constants, like the number of
sheets of the covering space to start with and the edge length threshold need to
be adapted. Analogously, the algorithm can be extended to weighted Delaunay
triangulations. For a more detailed discussion see [6].

6 Theoretical and Practical Analysis

Complexity analysis. Let us first discuss the following two points: (1) How to test
for the length of the longest edge and (2) how to switch from the triangulation
in T3

h∗c to the triangulation in T3
c.

(1) We maintain an unsorted data structure E that references all edges that
are longer than the threshold 1√

6
cmin. As soon as E is empty, we know that the

longest edge is smaller than the threshold. The total number of edges that are
inserted and removed in E is proportional to the total number of simplices that
are created and destroyed during the algorithm. We can have direct access from
the simplices to their edges in E . Hence, the maintenance of E does not change
the algorithm complexity.

(2) To convert the triangulation in T3
h∗c to DTT(S) when we switch to T3

c,
we need to iterate over all cells and all vertices to delete all periodic copies,
keeping only one; furthermore, we need to update the incidence relations of

those tetrahedra whose neighbors have been deleted. This is linear in the size of
the triangulation and thus dominated by the main loop.

The overall algorithm is incremental and using the Delaunay hierarchy [12]
the following result can be shown:

The randomized complexity of Algorithm 1 is the same as the complexity of
[12], and thus it has randomized worst-case optimal complexity O(n2).

Experimental observations. Algorithm 1 has been implemented in Cgal, so, it
benefits from some of the optimizations that are already available in the Cgal
Delaunay triangulations in R3 [25], such as the spatial sorting [11].

We tested the implementation on real data from research in cosmology. The
input sets consist of up to several hundreds of thousands of points, and they are
sufficiently well distributed to have triangulations in T3

c. This property holds for
most of the applications mentioned in the introduction. With these real data,
usually less than 400 points are needed for Algorithm 1 to reach the threshold
on the edge length and switch to computing in T3

c.
We compared the running time of our implementation for computing De-

launay triangulations in T3
c with the running time of computing the Delaunay

triangulation in R3 with the Cgal package [25]. Table 1 shows for large random
point sets a factor of about 1.6 between the running time of our current imple-
mentation, using the above optimization, and the Cgal implementation for R3.
The timings have been measured for the unit cube Dc = [0, 1)3 using specialized
predicates; if we allow Dc to be any cube, we currently lose about 12%. More
experiments can be found in [6].

No. of points T3 R3 factor

1000 0.032 0.012 2.65

10000 0.230 0.128 1.79

100000 2.24 1.36 1.65

1000000 23.0 14.2 1.62

Table 1. Current running times in seconds on a 2.33 GHz Intel Core 2 Duo processor.

7 Conclusion and future work

We proposed an algorithm to compute 3D periodic Delaunay triangulations.
The algorithm is guaranteed to produce a correct finite representation of the
periodic triangulation for any given point set. We avoid duplications of points
whenever possible, and if there is no triangulation for some point set in the flat
torus T3

c, we output a triangulation in a covering space that is homeomorphic
to T3

c. The algorithm has optimal randomized worst case complexity. Note that
the main parts of the discussion are not bound to three-dimensional space and
will still hold for higher dimensions. The constants in the geometric criteria
and the complexity of the underlying algorithm for computing the Delaunay
triangulation will have to be adapted.

Future work will mainly concentrate on two topics: (1) Extend in a similar
way some meshing and α-shape algorithms based on Delaunay triangulations

so that they can handle periodic data. (2) Extend this work to more general
orbifolds. There is ongoing work to unify our results with the results of [1].

Acknowledgments

We are very grateful to Nico Kruithof, who initiated this work and made important
contributions when he visited INRIA for a short post-doctoral stay in 2006 [4]. We
thank Mridul Aanjaneya for fruitful discussions on Section 4 and Olivier Devillers for
discussions on his Delaunay hierarchy.

Also, we wish to thank Rien van de Weijgaert for providing us with data sets from

cosmology research projects to test our implementation.

References

1. Mridul Aanjaneya and Monique Teillaud. Triangulating the real projective plane.
In Mathematical Aspects of Computer and Information Sciences, 2007.

2. Mark A. Armstrong. Basic Topology. Springer-Verlag, 1982.
3. Adrian Bowyer. Computing Dirichlet tessellations. The Computer Journal, 24:162–

166, 1981.
4. Manuel Caroli, Nico Kruithof, and Monique Teillaud. Decoupling the CGAL 3D

triangulations from the underlying space. In Workshop on Algorithm Engineering
and Experiments, pages 101–108, 2008.

5. Manuel Caroli and Monique Teillaud. Video: On the computation of 3D periodic
triangulations. In Proceedings of the twenty-fourth Annual Symposium on Compu-
tational Geometry, pages 222–223, 2008.

6. Manuel Caroli and Monique Teillaud. Computing 3D periodic triangulations. Re-
search Report 6823, INRIA, 2009. http://hal.inria.fr/inria-00356871.

7. Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.
8. Siu-Wing Cheng, Tamal K. Dey, and Joshua A. Levine. A practical Delaunay

meshing algorithm for a large class of domains. In Proceedings of the sixteenth
International Meshing Roundtable, pages 477–494, 2007.

9. Robert J. Daverman and Richard B. Sher, editors. Handbook of Geometric Topol-
ogy. Elsevier, Amsterdam, London, Paris, 2002.

10. Gianni de Fabritiis and Peter V. Coveney. Dynamical geometry for multiscale
dissipative particle dynamics. http://xxx.lanl.gov/abs/cond-mat/0301378v1,
2003.

11. Christophe Delage. Spatial sorting. In CGAL Editorial Board, editor, CGAL User
and Reference Manual. 3.4 edition, 2008.

12. Olivier Devillers. The Delaunay hierarchy. International Journal of Foundations
of Computer Science, 13:163–180, 2002.

13. Olivier Devillers and Monique Teillaud. Perturbations and vertex removal in a 3D
Delaunay triangulation. In Proceedings of the fourteenth ACM-SIAM Symposium
on Discrete Algorithms, pages 313–319, 2003.

14. Nikolai P. Dolbilin and Daniel H. Huson. Periodic Delone tilings. Periodica Math-
ematica Hungarica, 34:1-2:57–64, 1997.

15. Daniel Duque Campayo. Sklogwiki - Boundary conditions. http://www.

sklogwiki.org/SklogWiki/index.php/Boundary_conditions.
16. Ronald L. Graham, Martin Grötschel, and László Lovász, editors. Handbook of

Combinatorics. Elsevier, Amsterdam, Lausanne, New York, 1995.

17. Clara I. Grima and Alberto Márquez. Computational Geometry on Surfaces.
Kluwer Academic Publishers, 2001.

18. Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
19. Martin Held. Vroni: An engineering approach to the reliable and efficient compu-

tation of Voronoi diagrams of points and line segments. Computational Geometry:
Theory and Applications, 18:95–123, 2001.

20. Michael Henle. A Combinatorial Introduction to Topology. Dover publication, New
York, 1979.

21. Susan Hert and Michael Seel. dD convex hulls and Delaunay triangulations. In
CGAL Editorial Board, editor, CGAL User and Reference Manual. 3.4 edition,
2008.

22. John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York,
2000.

23. Marisa Mazón and Tomás Recio. Voronoi diagrams on orbifolds. Computational
Geometry: Theory and Applications, 8:219–230, 1997.

24. Sylvain Pion and Monique Teillaud. 3D triangulation data structure. In CGAL
Editorial Board, editor, CGAL User and Reference Manual. 3.4 edition, 2008.

25. Sylvain Pion and Monique Teillaud. 3D triangulations. In CGAL Editorial Board,
editor, CGAL User and Reference Manual. 3.4 edition, 2008.

26. Qhull. http://www.qhull.org.
27. Laurent Rineau and Mariette Yvinec. Meshing 3D domains bounded by piecewise

smooth surfaces. In Proceedings of the sixteenth International Meshing Roundtable,
pages 443–460, 2007.

28. Laurent Rineau and Mariette Yvinec. 3D surface mesh generation. In CGAL
Editorial Board, editor, CGAL User and Reference Manual. 3.4 edition, 2008.

29. Vanessa Robins. Betti number signatures of homogeneous Poisson point processes.
Physical Review E, 74(061107), 2006.

30. Günter Rote and Gert Vegter. Computational topology: An introduction. In
Jean-Daniel Boissonnat and Monique Teillaud, editors, Effective Computational
Geometry for Curves and Surfaces, pages 277–312. Springer-Verlag, Mathematics
and Visualization, 2006.

31. Jonathan R. Shewchuk. Triangle: Engineering a 2d quality mesh generator and
Delaunay triangulator. In First Workshop on Applied Computational Geometry.
Association for Computing Machinery, May 1996.

32. Jonathan R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement.
In Proceedings of the fourteenth Annual Symposium on Computational Geometry,
pages 86–95. ACM Press New York, NY, USA, 1998.

33. Edwin H. Spanier. Algebraic Topology. Springer-Verlag, New York, 1966.
34. Karsten E. Thompson. Fast and robust Delaunay tessellation in periodic domains.

International Journal for Numerical Methods in Engineering, 55:1345–1366, 2002.
35. William P. Thurston. Three-Dimensional Geometry and Topology. Princeton Uni-

versity Press, Princeton, New Jersey, 1997.
36. Dahlia Weiss. How hydrophobic Buckminsterfullerene affects surrounding water

structure. INRIA Geometrica Seminar, http://www-sop.inria.fr/geometrica,
March 2008.

37. P M. H. Wilson. Curved Spaces. Cambridge University Press, Cambridge, 2008.
38. Mariette Yvinec. 2D triangulations. In CGAL Editorial Board, editor, CGAL User

and Reference Manual. 3.4 edition, 2008.
39. Afra Zomorodian. Topology for Computing. Cambridge University Press, Cam-

bridge, 2005.

