R. Albanese, J. Blum, and O. Barbieri, On the solution of the magnetic ux equation in an innite domain, EPS. 8th Europhysics Conference on Computing in Plasma Physics, p.4144, 1986.

H. Berestycki and H. Brézis, On a free boundary problem arising in plasma physics, Nonlinear Anal, vol.4, issue.3, p.415436, 1980.

C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach to domain decomposition: The mortar element method, Nonlinear Partial Dierential Equations and Their Applications, 1992.

C. Bernardi, Y. Maday, and F. Rapetti, Basics and some applications of the mortar element method, GAMM-Mitt, vol.28, p.97123, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00021695

M. Bernardou and . Hassan, Basis functions for general Hsieh-Clough-Tocher triangles, complete or reduced, INRIA, 1980.

J. Blum, Numerical Simulation and Optimal Control in Plasma Physics with Applications to Tokamaks. Series in Modern Applied Mathematics, 1989.

J. Blum, T. Gallouet, and J. Simon, Existence and control of plasma equilibrium in a tokamak, SIAM Journal on Mathematical Analysis, vol.17, issue.5, p.11581177, 1986.

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, vol.4, 1978.

R. W. Clough and J. L. Tocher, Finite element stiness matrices for analysis of plates in bending, Proc. Conf. Matrix Methods in Struct. Mech, 1965.

L. Drescher, H. Heumann, and K. Schmidt, A high order method for the approximation of integrals over implicitly dened hypersurfaces, SIAM Journal on Numerical Analysis, vol.55, issue.6, p.25922615, 2017.

G. L. Falchetto, D. Coster, R. Coelho, B. D. Scott, L. Figini et al., ITM-TF Contributors, the ASDEX Upgrade Team, and JET-EFDA Contributors. The European Integrated Tokamak Modelling (ITM) eort: achievements and rst physics results, vol.54, p.43018, 2014.

B. Faugeras, An overview of the numerical methods for tokamak plasma equilibrium computation implemented in the NICE code, Fusion Eng. Design, vol.160, p.112020, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02955053

B. Faugeras and H. Heumann, FEM-BEM coupling methods for tokamak plasma axisymmetric free-boundary equilibrium computations in unbounded domains, J. Computational Physics, pp.201-216, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01443392

H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, vol.153, 1969.

, J. P. Freidberg. Ideal Magnetohydrodynamics. Plenum US, 1987.

R. Johan-p-goedbloed, S. Keppens, and . Poedts, Advanced magnetohydrodynamics: with applications to laboratory and astrophysical plasmas, 2010.

J. Peter-goedbloed and S. Poedts, Principles of magnetohydrodynamics: with applications to laboratory and astrophysical plasmas, 2004.

H. Grad and J. Hogan, Classical diusion in a tokomak, Phys. Rev. Lett, vol.24, p.13371340, 1970.

H. Grad and H. Rubin, Hydromagnetic equilibria and force-free elds, Proceedings of the 2nd UN Conf. on the Peaceful Uses of Atomic Energy, vol.31, p.190, 1958.

V. Grandgirard, Modélisation de l'équilibre d'un plasma de tokamak, 1999.

Z. Jiang, H. Haddar, and A. Lechleiter, Articial boundary conditions for axisymmetric eddy current probe problems, Computers & Mathematics with Applications, vol.68, issue.12A, p.18441870, 2014.

H. Heumann, J. Blum, C. Boulbe, B. Faugeras, G. Selig et al., Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications, Journal of Plasma Physics, vol.6, p.81, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01088772

H. Heumann and F. Rapetti, A nite element method with overlapping meshes for freeboundary axisymmetric plasma equilibria in realistic geometries, J. Computational Physics, vol.334, p.522540, 2017.

F. L. Hinton and R. D. Hazeltine, Theory of plasma transport in toroidal connement systems, Rev. Mod. Phys, vol.48, p.239308, 1976.

S. C. Jardin, A triangular nite element with rst-derivative continuity applied to fusion mhd applications, J. Comput. Phys, vol.200, issue.1, p.133152, 2004.

S. C. Jardin, Computational methods in plasma physics, 2010.

R. Lüst and A. Schlüter, Axialsymmetrische magnetohydrodynamische Gleichgewichtskongurationen, Z. Naturforsch. A, vol.12, p.850854, 1957.

J. N. Lyness and D. Jespersen, Moderate degree symmetric quadrature rules for the triangle, J. Inst. Maths. Applics, vol.15, p.1932, 1975.

L. Marcinkowski, Mortar methods for some second and fourth order elliptic equations, 1999.

A. Masa and . Nakamura, On an equilibrium of the plasma in a tokamak with a limiter, Japan Journal of Industrial and Applied Mathematics, vol.8, issue.3, p.431444

V. D. Shafranov, On magnetohydrodynamical equilibrium congurations, Soviet Journal of Experimental and Theoretical Physics, vol.6, p.545, 1958.

J. R. Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, Applied Computational Geometry: Towards Geometric Engineering, vol.1148, p.203222, 1996.

R. Temam, Remarks on a free boundary value problem arising in plasma physics, Comm. Partial Dierential Equations, vol.2, issue.6, p.563585, 1977.

J. Wesson and . Tokamaks, The International Series of Monographs in Physics, 2004.