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Abstract A numerical methodology is described to study
the influence of the contact location and contact condition
of friction damper in aircraft engines. A simplified beam
model is used to represent the blade for the preliminary de-
sign stage. The frictional damper is numerically analysed
based on two parameters, contact angle and vertical posi-
tion of the platform. The nonlinear modal analysis is used
to investigate the nonlinear dynamic behaviour and damp-
ing performances of the system. Harmonic balanced method
with continuation technique is used to compute the nonlin-
ear modes for a large range of energy levels. Using such
a modelling strategy, modal damping ratio, resonant ampli-
tude and resonant frequency are directly and efficiently com-
puted for a range of design parameters. Monte Carlo simula-
tions together with Latin hypercube sampling is then used to
assess the robustness of the frictional damper, whose contact
parameters involve much uncertainties due to manufactur-
ing tolerance and also wear effects. The influences of those
two parameter are obtained and the best performances of
the frictional damper can be achieved when the contact an-
gle is around 25°-30°. The vertical position of the platform
is highly mode-dependent and other design considerations
need to be accounted. The results have been proved that the
uncertainties involved contact surfaces do not have signifi-
cant effects on the performance of frictional damper.

1 Introduction

The gas turbine engine becomes lighter and more ef-
ficient due to the requirements in aerospace industry. The
design of many components within the engines, such as tur-

*Address all correspondence for other issues to this author.

bine bladed disks, approaches their structural limits. Turbine
bladed disks are highly loaded during the operation, which
undertakes high thermal stress, centrifugal stress and vibra-
tional stress. Large vibrational stress through resonance has
a great probability to cause high cycle fatigue , which is one
of the most common failure of bladed disks within aircraft
engines [1]. The bladed disks have a high modal density and
wide range of operating speed makes it impossible to avoid
all the critical resonances. Therefore, it is vital to reduce the
amplitude around the resonance. In bladed disks, the ma-
terial damping and aerodynamic damping do not contribute
significantly, external damping source is usually required.
Because of the highly loaded operating environment, dif-
ferent damping techniques successfully used in other fields
cannot work well for bladed disks. Therefore, various of dry
frictional dampers are widely used in turbomachinery indus-
tries. The major disadvantage is the cost of wear effects be-
tween the contact surfaces during the operation of the aero-
engine [2].

Different types of dry friction dampers for bladed disks
have been explored by many researchers in literature [2, 3].
Friction damping can be introduced in different locations,
such as at the root, the tip shrouds or under the platforms as
represented Fig.1. Underplatform Dampers (UPD) are one
of the most effective friction dampers, it consists of a small
piece of metal device and is hold to the underside of plat-
forms between two adjacent blades. The cost of UPDs are
relatively low, because they are easy to manufacture, install
and replace. Many researchers have made great efforts in
analysing the dampers in both numerical simulation and ex-
perimental work [4,5]. Panning et al. [6, 7] have exploited
in the regime of dampers optimization for cylindrical and
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Fig. I: Common frictional dampers: (a) Root Joints; (b) Tip
Shrouds; (c) Underplatform Damper [2]

wedge shaped dampers. The parametric design of asym-
metric UPDs have been investigated to avoid the clamped
damper between the adjacent blades [8,9]. Most of the previ-
ous work are focused on the geometric design of the friction
dampers. The vertical position of the UPDs are also impor-
tant in terms of the damping performances. Beside that, Pan-
ning et al. [7] pointed out that the contact angle is expected to
be taken into consideration. Hence, the first objective of this
proof-of-concept work is to explore the effects of the verti-
cal position of the platform and of the contact angle on the
damping performances for UPD.

Structures with frictional contact exhibit a strong nonlin-
ear dynamic behaviour. Different methodologies can be used
to compute the steady state solutions of such nonlinear sys-
tem. Harmonics Balance Method (HBM) is one of the most
common frequency domain methods in literature [10]. HBM
is a well-established method and many researchers have im-
proved HBM using different methods [11,12]. HBM in con-
junction with continuation technique is widely employed for
most of the modelling analysis for nonlinear structural dy-
namic problem. Continuation technique is the method used
for parametric study to evaluate the effects of a specific chas-
ing parameter on system behaviour [13]. HBM integrated
with continuation technique are the methodolog used in this
work to solve the nonlinear dynamic equation.

Nonlinear modes are defined as an autonomous response
for a nonlinear system. Nonlinear Modal Analysis (NMA)
is regarded as an effective method to investigate the modal
characteristics of amplitude-dependent nonlinear system re-
garding to resonant frequency, modal damping properties,
stiffening/softening effect and modal interaction [2]. In a
nonlinear system, superposition and orthogonality condi-
tions are not valid. Therefore, the computation of nonlinear
modes is complicated especially in non-conservative system.
The first definition of nonlinear mode is given by Rosen-
berg [14] as a vibration unison!. However, this definition
cannot be used to explain the internal resonance. Shaw and
Pierre [15] proposed nonlinear modes as an invariant man-
ifold, which is mainly used in conservative system. Lax-
alde et al. [16] proposed a concept of complex nonlinear
modes (CNM), which can be extended to a dissipative sys-
tem, where the solutions are not periodic. Krack [17] further

Vibration unison: where all points in a structure reach their equilibrium
position and their extreme position simultaneously [14]

developed a numerical method, namely Extension of Peri-
odic Motion Concept (EPMC), to compute the CNM as a
periodic solution in a dissipative system, e.g. system with
frictional damper. In EPMC, an artificial damping is applied
to compensate the energy change due to friction. A recent
published paper differences CNM and EPMC and the cor-
responding results are addressed [18]. Theoretically, both
methods can provide similar results. A periodic solution is
better to capture the behaviour of the system with external
excitation [2]. Furthermore, both HBM and shooting method
can be simply applied to compute the nonlinear modes based
on the periodic definition. In this work, EPMC is selected as
the numerical method for NMA.

Finally, the modelling of the contact is a complicated
task and to be more accurate, the uncertainties associated
to the contact roughness that comes from the wear and the
manufacturing tolerances must be considered. Therefore, the
uncertainty analysis is important to yield an optimal design
which is supposed to be robust to the variation of these uncer-
tainties. Many researchers have investigated the uncertain-
ties involved in dynamic analysis for bladed disk [19-21].
A classic method to propagate the uncertainty is the use of
Monte Carlo Simulations (MCS) [22]. MCS method is lim-
ited for its slow convergence, which requires large number
of samples leading to heavy computational cost. Apart from
MCS, other methods could be considered for propagation of
uncertainty, such as Polynomial Chaos Expansion [23], Krig-
ing [24] and Support-Vector Machine [25]. In these methods,
a mathematical approximation is obtained based on a small
number of evaluations of the entire system. A lower compu-
tational costs can be achieved by using these surrogate mod-
els, but a proper validation is expected and convergence is-
sues may appear for high dimension problems. Despite the
lower convergence rate, the MCS methods are well known
for its robustness regardless of the dimension. The low com-
putation time of the present study makes the MCS conceiv-
able. To improve the convergence of MCS, advanced sam-
pling methods are introduced, such as Quasi-Monte Carlo
simulation and structured sampling techniques [26]. One fa-
mous method is based on Latin Hypercube Sampling (LHS)
and gives a faster convergence rate [27]. Thercfore, MCS
in corporation with LHS is used in Uncertainty Quantifica-
tion (UQ) to evaluate the effects of uncertainties within the
contact surfaces.

In this work, the influence of the position of the plat-
form and of the contact angle between the damper and the
platform are investigated for turbine blades by using NMA.
A beam model is used as the reference model to represent
the blade in the preliminary design stage. Two design pa-
rameters are used to describe the design space of the friction
damper, namely the vertical position of the platform and the
contact angle. Nonlinear modes and modal characteristics
are computed through HBM in conjunction with continua-
tion technique. Resonant frequency and modal damping ra-
tio are calculated through the analysis to evaluate the damp-
ing performances. Then, the uncertainties associated to the
contact parameters are taken into consideration to identify a
robust configuration of the damper. This paper is organized
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Fig. 2: Mechanical model: (a) Two dimensional view X-Y
Plane; (b) Two dimension finite element model

as follows: a detailed description of the mechanical models
used is introduced in Section 2. After that, numerical for-
mulations are briefly explained in Section 3. Performances
of the damper are then explored for a wide range of chosen
design parameters in Section 4. Finally, in Section 5, the ro-
bustness of friction damper is further assessed using the UQ
techniques followed by the conclusions.

2 Model Description

The objective of the present study is to investigate the
influences of the position of the damper and contact angle
of the UPD in terms of its capacity to dissipate energy. The
mechanical model and contact model used in this work is
described in this section.

2.1 Mechanical Model

The model used in this work is based on a simple 2D
model represented Fig.2a. The blade is modelled with a
beam of length L, on which one platform is fixed at the
height H, where H /L, € (0,1]. The latter is modelled with
a beam of length L;,. This modelling choice has been widely
used in the numerical and experimental analysis in litera-
ture [4]. Firstly, several simplifications were made about the
model shown in Fig.2a and listed below.

1. Blade and platform: The properties of the blade and
platform are assumed to be constant along the axis of
rotation. Therefore, the blade structure is considered
as a two dimensional Finite Element (FE) model. In
addition, the turbine blade in turbomachinery are rigid
enough to avoid the kinematic nonlinearities. Therefore,
a linear Euler-Bernoulli beam element with bar element
is used to model the flexural and axial vibration of the
blade-platform. To understand the influences of the con-
tact angle, only one side of the damper (usually UPDs
are placed underside of the adjacent blades) is modelled.

2. Cyclic symmetry: Cyclic symmetry boundary condition
is usually required for the actual design of UPD. How-
ever, to investigate the impact of these factors (vertical
position of the damper and contact angle), the cyclic

symmetric framework is not considered so that each
blade is isolated.

3. Damper: A cylindrical damper is considered, because
it is inexpensive to test for different contact angles in
the future experimental work as shown in Fig2b. The
damper is assumed as a rigid body and completely fixed
to the ground so the contact force is introduced between
the tip of the platform and ground. Therefore, the in-
fluences of the contact angle can be obtained indepen-
dently.

4. Frictional contact: Only one contact node is taken into
account, which is used to model the line contact for the
cylindrical damper. The effect of micro-slip is also con-
sidered for this work. The normal force applied to the
contact surface is used to simulate the centrifugal force
for real bladed disks.

A simplified model is shown in Fig.2b. The platform
can be located between the bottom and the tip of the blade
to test the different vertical positions of the UPD. The con-
tact interface between the damper and the blade is modelled
with a contact point at the tip of the platform. The angle 0
between the damper and the platform is taken in [0,7/2]. If
0 =0, then the local contact force is purely friction, whereas
if 8 = /2 there is only impact between the contact points.
A constant vertically downwards normal force N is applied
at contact node to represent the reaction force from the cen-
trifugal effect due to the rotation of the bladed disk. This
force is always positive and N is set to be 50 N.

For 2D FE beam model, each node has three Degrees of
Freedom (DOFs) which are the translational DOFs in X-Y
plane and a rotational one. The beams have the following
dimensions: a length of 200 mm, a width of 40 mm and a
thickness of 3 mm, which is the same beam used in [28].
The mass and stiffness matrices of each element can be ob-
tained as in [29]. A fixed interface component mode synthe-
sis method, namely the Craig-Bampton method [30], is used
to reduce the computational cost [31].

2.2 Contact Model

The physical phenomenon of frictional contact is com-
plicated in a tribological problem. A proper contact model
is expected to consider many factors involved in contact sur-
faces, such as adhesive wear, roughness of the surface and
fretting [32,33]. To consider these tribological properties,
the contact model is needed to link the contact parameters
to the micro-mechanics of the frictional contact. Using such
contact model gives an insight description of the physical be-
haviour of the friction. In the present study, a 2D cylindrical
damper with a point contact is modelled. A simplistic contact
model is used to calculate the nonlinear dynamic response in
a fast time scale [34] and is represented in Fig.3. This contact
model consists a Jenkins element and a unilateral spring. In
the normal direction, unilateral-elastic behaviour with a stiff-
ness k, and a preload N is considered. Whereas, in the tan-
gential direction elastic dry Coulomb friction with the coef-
ficient p and a stiffness &, is considered. W/ (¢) is the internal
variable representing the sliding position during a vibration
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cycle. The value of the friction coefficient u is chosen as 0.5.
The dynamic friction coefficient is assumed to be identical to
the static one. The values of contact stiffness is selected as
the same value in [28].

Fig. 3: Two dimensional contact model

3 Numerical Methods

The mechanical model as well as the modelling choices
have been presented in Section 2. The objective of this sec-
tion is to describe the different numerical techniques used
for the computation of the dynamic response of the system.
Hence, at the first place, HBM is described. Then the contin-
uation technique is presented.

The nonlinear modes are considered as the free vibra-
tion solutions of an autonomous system with nonlinear force.
The dynamic equation for such system can be expressed as
Eqn.(1), where M, K are mass and stiffness matrices respec-
tively. Q(r) is the generalized displacement vector. Fu(Q)
corresponds to the friction forces determined with the model
given in Section 2.2.

MQ+KQ+ Fu(Q)=0 (1

The EPMC approach is used to compute the nonlinear
modes. To obtain the periodic solution, a negative artificial
mass-proportional damping is introduced into the system to
compensate the energy loss due to friction [17]. The artifi-
cial damping matrix C is: € = —20EM, where @ is reso-
nant frequency and { is modal damping ratio. Therefore, the
external damping generated by frictional contact can be rep-
resented as the modal damping ratio £. In NMA, the mode
shapes, resonant frequency and modal damping ratio vary
with the energy level of the mode. Therefore, a modal ampli-
tude o is introduced into the system to represent the energy
level of the mode. Thus, the dynamic equation of the system
becomes:

oM Q +aC Q+ oK Q+ Fu(aQ) =0 @)

3.1 Harmonic Balance Method

The method used for numerical analysis is an existing
HBM with Alternating Frequency/Time (AFT) and has been
discussed in details in [12,35]. The nonlinear dynamic equa-
tion Eqn.(2) is solved in the frequency domain. Since the
response of system is periodic, the variables that depend of
the time are decomposed by a Fourier series truncated at the
harmonic Ny. In the present study, the odd number of har-
monics up to the 7th are considered in the simulation and
28 samples for each period are used in the AFT. Hence, the
displacements Q () can be written as :

Ny y
Q) = Z real {Qp X [cos(pwot) + isin(p(x)ot)}} 3)

p=0

where Q Q —i Q is the cosine and sine terms associated
to the harmomc p- When Eqgn.(3) is inserted into Eqn.(2) and
all properties in time domain are decomposed by Fourier se-
ries with Galerkin projection, the dynamic equation in fre-
quency domain is obtained as Eqn.(4).

A(0,8) x 00 + Fy(aQ) =0 4

where A(wo,{) is the dynamic stiffness matrix, Q is the
collection of Fourier coefficients of the displacement vector
Q= [Qp o Qp PO ’Qp:NH] , ﬂ((xQ) is vector of non-
linear forces. The nonlinear forces in frequency domain
are computed based on AFT and readers can refer [12] for
further details. The problem given by Eqn.(4) is under-
determined since there are three more unknowns than the
number of equations, hence three extra constraints are neces-
sary to solve the problem. The first constraint is given by the
mass normalization that ensures a positive modal amplitude
o as shown in Eqn.(5). The second constraint is given by
the phase normalization in Eqn.(6), since absolute phase is
arbitrary in autonomous system. The last constraint is given
by the corrector used in the continuation process and is dis-
cussed in the next section.

0" —1=0 ©)

IIZ

imag(Q,) =0 (6)

3.2 Continuation Method

In NMA, the characteristics of a nonlinear modes de-
pend on the modal amplitude .. The continuation method
can be used to obtain the evolution of dynamic behaviour
of the system for a range of the modal amplitude o. In a
standard continuation procedure, each iteration can be char-
acterised into two steps: prediction and correction. Read-
ers can refer to [13] for a detailed description and numerical
formulation of continuation process. In the present study, a
secant predictor and an arclength corrector is used.
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(a) (b)
Fig. 4: Linear modeshape for beam model: (a) 1* Bend-

ing mode wp = 391.8 rad/s; (b) ond Bending mode wp =
2333.1 rad/s
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Fig. 5: Modal characteristics against kinctic encrgy (H/Lp =
0.3 and B = 25°): (a) Resonant frequency; (b) Modal damp-
ing ratio

4 Numerical Results

This section is devoted to the discussion of the results.
Firstly, a specific configuration of the system is presented to
characterize the performances of the damper and to illustrate
the results obtained based on the methodology presented pre-
viously. Then the performances of the frictional damper are
analysed for all the possible configurations of the system.

4.1 Nonlinear Modal Analysis
In this part, a specific configuration of the system is con-
sidered where the position of the platform is characterized

by H/L, = 0.3 and the contact angle 0 is set to 25°. At
the first place, the first two linear modes are determined, as
shown in Fig.4. It corresponds to the first two bending modes
at 391.8 rad/s and 2333.1 rad/s. The 1*' bending mode is
chosen to illustrate the damping performances. The method-
ology presented in the previous section is applied and for
a range of modal amplitude o. The periodic solution Q(?)
and modal properties, including the resonant frequency
and the modal damping ratio {, are computed. The modal
properties are illustrated respect to kinetic energy instead of
modal amplitude. Since the total kinetic energy varies dur-
ing the oscillation, the mean kinetic energy per period Eyj,
is calculated based on Parseval’s theorem [28]. Results are
shown Fig.5, where the evolution of the resonant frequency
g and the modal damping ration { are given versus the ki-
netic energy Ey;,. The resonant frequency @y is constant and
equal to 394.2 rad/s when the kinetic energy Ejy;, is infe-
rior to 8, and then it decreases and stabilizes at 392.6 rad/s
when the higher level of kinetic energy is achieved. The nat-
ural frequency of the 1* bending mode is also shown as the
green dotted line in Fig.5a. This variation of the resonant
frequency with respect to the kinetic energy is typical to a
structure with frictional contact. Looking at the evolution
of modal damping ratio { (see Fig.5b), important variations
are also observable. Principally, when kinetic energy Ey;, is
lower than 8, the modal damping ratio is null. Then it in-
creases to reach a maximum values {, equals to 0.1% when
kinetic energy Ey;, reaches around 20. Finally, it decreases
and tends to 0.025%.

When the kinetic energy Ey;, is smaller than 8, the con-
tact mode is sticking and the whole system is purely linear,
so the resonant frequency g of the system remains constant
and there is no energy loss due to the friction. The con-
tact points start to slide when kinetic energy Ej;, is equal
8. The resonant frequency decreases due to the softening ef-
fect caused by friction (sliding). The total change of resonant
frequency is named as A®g, which indicates the shift in res-
onant frequency compared to the baseline configuration (no
damper).

The performances of the damper can be directly as-
sessed through Fig.5b. The maximum modal damping ra-
tio {, can be directly obtained in the figure. However,
when modal damping ratio at its maximum value {,, a small
change in kinetic energy results in a dramatic decrease of the
modal damping ratio. Whereas, the analysis demonstrates
the presence of steady region when the kinematic energy is
larger (i.e. Ep; > 600). Indeed, the damping is not very
sensitive to a variation of the kinetic energy and reaches a
non-zero asymptotic value when kinetic energy Ey;, is fur-
ther increased. This asymptotic value of modal damping
ratio is named as {;, which is approximated from the sim-
ulation. To further demonstrate the energy dissipated, four
normalised hysteresis loops for different levels of kinetic en-
ergy are given Fig.6. The corresponding levels of amplitude
are represented Fig.5b with the blue points. Thus, Fig.6a
shows the normalised hysteresis loop before the maximum
modal damping ratio ,, is achieved (example A). The nor-
malised hysteresis loop at {, (example B) is given in Fig.6b.
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Fig. 7: Hysteresis loop for different contact angle 0: (a) 8 =
0°, 10° and 30°; (b) 8 = 50°, 70° and 90°

The other two hysteresis loops (example C and D) in Fig.6
correspond to higher values of the kinetic energy where the
damping reach its asymptotic value. Before the maximum
damping is reached, the hysteresis loop is a quadrilateral, so
the damper and the platform are always in contact and fric-
tion occurs. Whereas after the maximum damping ratio, loss
of contact occurs.

4.2 Design Space Exploration

In the previous part, a specific case was presented to il-
lustrate the nonlinear dynamic behaviour of the blade with
cylindrical frictional damper. In addition, parameters of in-
terest for damper design are also defined. In the present part,
the performances of the damper are determined for all possi-
ble positions H /L of the platform and all contact angles 6.
Hence, the three performance indicators, namely {,, { and
Aoy (see Fig.5), are determined for the 1% and the 2" bend-
ing modes of the system. The linear modeshape of the base-
line configuration (no damper) for first two bending modes
are displayed Fig.4.

The results are shown Fig.8. The figures in the left col-
umn correspond to the results associated to the 1% bend-

ing mode, and the right column to the 2 bending mode.
For each mode, the maximum modal damping ratio Cp, the
asymptotic value of modal damping ratio y and the shift of
resonant frequency A®g are given. The first obvious obser-
vation is that the three parameters are highly related to both
design parameters, namely the vertical position of platform
and contact angle.

By looking at the evolution of modal damping ratios
(see Fig.8(a,b,d,e)), it appears that the maximum is always
achieved when the platform is close to the top of the blade.
This can be explained by the fact that if the platform locates
at the bottom of the blade, so where the relative displace-
ment between contact nodes are small, it will be more diffi-
cult to initiate sliding and so less energy is dissipated by the
contact leading to lower modal damping ratio. This is con-
firmed by the evolution of the modal damping ratios for the
2" bending mode. Larger displacement can be achieved at
an intermediary position of the platform, and so an increase
of the damping ratios are also observable when the platform
is located around the middle of the blade.

The contact angle 6 has also an crucial impact on the
damping performances. It appears that the damping ratios
and the frequency shift have higher values when the angle
is smaller. To illustrate the influences of the contact angle,
the hysteresis loop for different contact angles and when
H/L, = 0.3 is plotted in Fig.7. The area enclosed by a
closed hysteresis loop represents the total energy dissipated
due to friction. For values of 0 inferior to 30°, the peak-to-
peak value of F; decreases but the displacement variations
increase, which leads to an increase of the enclosed area (see
Fig.7a). When 0 is superior to 50° (see Fig.7b), then loss of
contact occurs and the enclosed area decreases. Further in-
crease 0, the energy dissipated by friction decreases. In the
case of 8 = 90°, the contact mode is separating-sticking and
there is no energy loss due to sliding, so three objectives tend
to zero. From Fig.8b, the maximum case of the {; for the 1%
bending mode is achieved while contact angle 0 is around
25°-30°. For the 2" bending mode, from Fig.8d and Fig.8e,
best performances of the damper are also obtained when the
contact angle is within 25°-30°.

The shift of resonant frequency for both modes are
shown in Fig.8¢ and Fig.8f. The evolution of resonant fre-
quency shift is similar to the evolution of the modal damping
ratios, which leads to similar analysis. The contour plots in
Fig.8c and Fig.8f shows the percentage of variation of fre-
quency (A®g/®p). The maximum shift of resonant frequency
for the 1* and the 2" bending modes are 12% and 0.3% re-
spectively. It is obvious to find out that the frequency shift
for the 2" bending mode is smaller than for the 1% mode in
term of both actual shift of resonant frequency and percent-
age. The shift of resonant frequency is caused by softening
effects due to the sliding on contact interfaces. For different
modes and different H /Ly, the natural frequency sensitivi-
ties with regards to contact stiffness (dwy/dk, k = k, = k)
are different. Therefore, sensitivity analysis are used to in-
vestigate the effect of the contact stiffness on the natural fre-
quency. Natural frequency sensitivities are calculated. The
sensitivity for the first three natural frequencies for different
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Fig. 9: Natural frequency sensitivity

platform positions are shown in Fig.9. It is easy to find out
the natural frequency of the 1¥ bending mode is more sensi-
tive to the contact stiffness. In addition, the sensitivities are
also increased with the value of H /L. The shift of resonant
frequency is an important factor for the design of the damper.
Indeed, the damper is designed to get a certain resonance fre-

Table 1: Uncertain Parameters

Mean Standard deviation

0.05
2N/mm 0.1 N/mm

Friction coefficientu 0.5

Contact stiffness k

quency shift, but a significant change in frequency can cause
interaction with other modes.

The damping performances are very sensitive to the
mode shape and the displacement at the contact nodes. The
best configuration for the damper depends on the considered
mode. By considering the 1% bending mode, the best con-
figuration would be a vertical position of H/Lj, = 1, whereas
for the second mode H /L, = 0.3 is the optimal position. Ex-
cept the damping performance, other design considerations
also need to be accounted, e.g. placing damper at mid-span
might have detrimental effect on aerodynamic performance.
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For this reason, industrials give their priority to place the
UPD at lower position, which is regarded as the most effi-
cient damping technique to reduce the vibrational stress of
bladed disks structure [4].

5 Uncertainty Quantification

The previous section was devoted to the analysis of the
damping performances for different configurations of the
system. This study has been performed in a deterministic
case where all the parameters are supposed to be known and
constant. However, some parameters within contact surfaces

might be uncertain and have a non-negligible impact on the
damper performances. So the objective of this section is to
investigate the impact from those uncertainties on the perfor-
mances of the damper.

Thus, two parameters that define the contact are consid-
ered as uncertain and MCS are performed. This choice is
motivated by the fact that the roughness of contact surfaces
cannot be assumed as a constant due to manufacturing tol-
erance and wear effect caused during operation. The two
contact parameters considered are the friction coefficient u
and the contact stiffness k (k = k,, = k;). A normal distribu-
tion law is assumed for both uncertain parameters [19, 20].
The nominal value and standard deviation of the uncertain
parameters are given Table 1.

The methodology adopted here to propagate the uncer-
tainty is the classic MCS method. To ensure a quicker con-
verge, the samplings are generated based on Latin Hypercube
Sampling (LHS) [27] with an open source software Open-
TURNS [36]. A set of 100 sampling is selected after a con-
vergence study as shown in Fig.10d. The distributions and
the repartition of the input points are given Fig.10.

For a sake of consistency and according to previous re-
sults, only the 1% bending mode is considered for this study.
A first case where H/L, = 0.3 and 6 = 25° is considered as
an illustration. For all the couples (u,k) generated based on
a LHS by OpenTURNS, the evolution of the stochastic reso-
nant frequency and the modal damping ratio with the kinetic
energy Ey;, are given Fig.11. The mean of each parameter as
well as the 5 and 95" percentile are given. For the resonant
frequency, a wider band is obtained before the sliding occurs.
In this case, the friction force only depends on the contact
stiffness. When the kinetic energy Ey;, is greater than 8, the
resonant frequency starts to decrease and the band becomes
thinner. The friction force is dominated by friction coeffi-
cient instead of contact stiffness. So the contact stiffness has
a higher influences on the resonant frequency at low level of
kinetic energy, whereas influences of the friction coefficient
is important at higher levels of kinetic energy.

Considering the evolution of the modal damping ratio,
the two contact parameters have an impact as soon as slid-
ing occurs and changes the threshold at which sliding ap-
pears (between 3 and 25). It has also an impact on the maxi-
mum of the modal damping ratio (0.11% versus 0.07%) and
on the kinetic energy Ey;, at which it appears (30 versus 80).
However, the influences on modal damping ratio is small
once loss of contact appears. So performances of the damper
are affected by the uncertainties associated to the contact pa-
rameters.

To study the impact of these uncertain parameters, the
procedure is performed for all the positions of the damper
and all the contact angles. The mean and the standard de-
viation of modal damping ratios Cp, {; and the shift of res-
onant frequency Amg are determined. Results are given in
Fig.12. By comparison to deterministic results (see Fig.8),
the evolution of the mean of the different parameters does
not give a significant difference. Indeed, the configuration
which gives optimal damping and the variations of three per-
formance indicators are very similar. For area where no slid-
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ing occurs in the dynamics of the system (i.e. {, = 0), this
is justified by the fact that those uncertain parameters have
no significant influences on  (see Fig.11b). So in the area
where {, = 0, no variation is expected and so the variance
remains close to zero. In the areas, where {, and {; are non-
zero, larger variances are observed. As seen in Fig.11b, the
value of the maximum modal damping ratio {, is highly in-
fluenced by the uncertain parameters, which is confirmed by
the high variances. Similarly, the modal damping ratio {; is
influenced by the variation of the uncertain parameters, but
less variations arc observed than for ,, (sce the wider band
for {, than {; on Fig.11b), which is in concordance with the
lower level of variance observed for {; compare to those of
Cp (0.2% versus 0.04%). As for the shift of resonant fre-
quency, the maximum standard deviation for Ay is around
2 rad /s as shown in Fig.12f. By considering the standard de-
viation of the all three design objectives ({,, C; and Aay), it
has been proved that the uncertainties involved contact sur-
faces do not have significant effects on the performance of
frictional damper.

6 Conclusion

In summary, a preliminary parametric design of the fric-
tion damper for aero-engine turbine blades has been effec-
tively explored using the nonlinear modal analysis. A 2D
beam model was used to represent the blade and platform
as a case study. Two design parameters, namely the con-
tact interface angle and the vertical position of the platform
on the blade, have been considered for the parametric study
of the friction damper design. With such a definition of de-
sign parameters, the model is able to simulate the dynam-
ics behaviour of different configurations for underplatform
damper.

Nonlinear modal anlysis based on the concept of the
extension of periodic motions concept for non-conservative
system is performed for different configurations. Thanks to
the harmonic balance method with continuation technique,
resonant frequency and modal damping ratio can be directly
and efficiently calculated for a wide range of kinetic energy.
The performances of the frictional damper has been assessed
based on three objectives: the maximum modal damping ra-
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tio, asymptotic limit of the modal damping ratio and the shift
of the resonant frequency. The results showed an optimal
configuration of the frictional damper can be achieved when
contact angle is around 25°-30°. The vertical position of the
platform is highly mode-dependent and other design consid-
erations need to be addressed. In nonlinear modal anlysis, it
is important to notice that there is non-zero asymptotic limit
of the modal damping ratio, which indicates that the fric-
tional damper is able to dissipate the energy at higher level
of kinetic energy. Frictional damper is usually designed to
mitigate resonance with higher modes and the first several
modes are commonly avoided. Since this work is considered
as preliminary study for future experimental work. Only the
first two bending modes are considered. An effective design
of underplatform damper can significantly reduce the max-
imum dynamic stress, which contribute to a higher fatigue
safety factor and ensure the guaranteed high cycle fatigue
life.

As the contact parameters on the frictional interface in-
volve much uncertainties due to the manufacturing tolerance
and the wear effects on their contact surfaces, they would
significantly change the dynamics of the friction damper. To
evaluate the robustness of the friction damper subjected to
these uncertainties, Monte Carlo simulations together with
Latin hypercube sampling is used to quantify the effects of
these uncertainties on the modal characteristics of the fric-
tion damper. By considering the mean value and standard
deviation from uncertainty quantification process, the uncer-
tainties involved contact surfaces do not have significant in-
fluence on the performance of friction damper. A convinced
experimental work is expected as the validation of the numer-
ical analysis for this blade structure with friction damper.

Acknowledgement

The first author is grateful to China Scholarship Coun-
cil (File NO. 201708060239) for providing the financial sup-
port for this project.

References

[1] Yuan, J., Scarpa, F., Titurus, B., Allegri, G., Patsias,
S., and Rajasekaran, R., 2017. “Novel frame model for
mistuning analysis of bladed disk systems”. ASME J
Vib Acoust, 139(3), p. 031016.

[2] Krack, M., Salles, L., and Thouverez, F., 2016. “Vi-
bration prediction of bladed disks coupled by friction
joints”. Archives of Computational Methods in Engi-
neering, 24, pp. 589-636.

[3] Sinha, A., and Trikutam, K. T., 2017. “Optimal vi-
bration absorber with a friction damper”. ASME J Vib
Acoust, 140(2), p. 021015.

[4] Pesaresi, L., Salles, L., Jones, A., Green, J. S., and
Schwingshackl, C. W., 2017. “Modelling the nonlin-
ear behaviour of an underplatform damper test rig for
turbine applications”. Mechanical Systems and Signal
Processing, 85, pp. 662—-679.

[5] Pesaresi, L., Armand, J., Schwingshackl, C., Salles,

L., and Wong, C., 2018. “An advanced underplatform
damper modelling approach based on a microslip con-
tact model”. Journal of Sound and Vibration, 436,
pp. 327-340.

[6] Panning, L., Sextro, W., and Popp, K., 2000. “Opti-
mization of interblade friction damper design”. ASME.
Paper No.2000-GT-0541.

[7] Panning, L., Sextro, W., and Popp, K., 2002. “Op-
timization of the contact geometry between turbine
blades and underplatform dampers with respect to fric-
tion damping”. ASME. Paper No.GT-2002-30429.

[8] Gastaldi, C., and Gola, M. M., 2016. “Pre-optimization
of asymmetrical underplatform dampers”. ASME J Eng
Gas Turb Power, 139(1), p. 012504.

[9] Gastaldi, C., Berruti, T. M., and Gola, M. M., 2018.
“Best practices for underplatform damper designers”.
Proceedings of the Institution of Mechanical Engi-
neers, Part C: Journal of Mechanical Engineering Sci-
ence, 232(7), pp. 1221-1235.

[10] Krylov, N., and Bogoliubov, N., 1943. Introduction to
Non-linear Mechanics. Annals of mathematics studies.
no.11. Princeton University Press.

[11] Urabe, M., 1965. “Galerkin’s procedure for nonlinear
periodic systems”. Archive for Rational Mechanics and
Analysis, 20(2), pp. 120-152.

[12] Cameron, T. M., and Griffin, J. H., 1989. “An alternat-

ing frequency/time domain method for calculating the

steady-state response of nonlinear dynamic systems”.

ASME J Appl Mech, 56(1), pp. 149-154.

Sarrouy, E., and Sinou, J.-J., 2011. “Non-linear peri-

odic and quasi-periodic vibrations in mechanical sys-

tems - on the use of the harmonic balance methods”. In

Advances in Vibration Analysis Research, F. Ebrahimi,

ed. InTech, Rijeka, ch. 21.

[14] Rosenberg, R. M., 1960. “Normal modes of nonlin-
ear dual-mode systems”. ASME J Appl Mech, 27(2),
pp. 263-268.

[15] Shaw, S. W., and Pierre, C., 1991. “Non-linear normal
modes and invariant manifolds”. Journal of Sound and
Vibration, 150(1), pp. 170-173.

[16] Laxalde, D., Salles, L., Blanc, L., and Thouverez, F.,

2008. “Non-linear modal analysis for bladed disks with

friction contact interfaces”. ASME. Paper No. GT2008-

50860.

Krack, M., 2015. “Nonlinear modal analysis of non-

conservative systems: Extension of the periodic motion

concept”. Computers and Structures, 154, pp. 59-71.

[18] Jahn, M., Tatzko, S., Panning-von Scheidt, L., and
Wallaschek, J., 2019. “Comparison of different har-
monic balance based methodologies for computation of
nonlinear modes of non-conservative mechanical sys-
tems”. Mechanical Systems and Signal Processing,
127, pp. 159-171.

[19] Petrov, E. P.,, 2007. “A sensitivity-based method for
direct stochastic analysis of nonlinear forced response
for bladed discs with friction interfaces”. ASME. Paper
No.GT2007-27981.

[20] Krack, M., Panning, L., Wallaschek, J., Siewert, C., and

[13]

(17]

10 YEKAI SUN



Hartung, A., 2012. “Robust design of friction inter-
faces of bladed disks with respect to parameter uncer-
tainties”. ASME. Paper No.GT2012-68578.

Krack, M., Tatzko, S., Panning-von Scheidt, L., and

Wallaschek, J., 2014. “Reliability optimization of

friction-damped systems using nonlinear modes”. Jour-

nal of Sound and Vibration, 333(13), pp. 2699-2712.

Metropolis, N., and Ulam, S., 1949. “The monte carlo

method”. Journal of the American Statistical Associa-

tion, 44(247), pp. 335-341.

Sudret, B., 2008. “Global sensitivity analysis using

polynomial chaos expansions”. Reliability Engineering

and System Safety, 93(7), pp. 964-979.

[24] Kleijnen, J. P., 2009. “Kriging metamodeling in sim-
ulation: A review”. European Journal of Operational
Research, 192(3), pp. 707-716.

[25] Cortes, C., and Vapnik, V., 1995. “Support-vector net-
works”. Machine learning, 20(3), pp. 273-297.

[26] Yuan, J., Allegri, G., Scarpa, F., Rajasekaran, R., and

Patsias, S., 2015. “Novel parametric reduced order

model for aeroengine blade dynamics”. Mechanical

Systems and Signal Processing, 62, pp. 235-253.

McKay, M. D., Beckman, R. J., and Conover, W. J.,

1979. “A comparison of three methods for selecting

values of input variables in the analysis of output from

a computer code”. Technometrics, 21(2), pp. 239-245.

Krack, M., Panning-von Scheidt, L., and Wallaschek,

J., 2013. “A method for nonlinear modal analysis and

synthesis: Application to harmonically forced and self-

excited mechanical systems”. Journal of Sound and

Vibration, 332(25), pp. 6798-6814.

[29] Przemieniccki, J., 1985. Theory of Matrix Structural
Analysis. Dover Civil and Mechanical Engineering.
Dover.

[30] Craig, JR., R. R., and Bampton, M. C. C., 1968. “Cou-

pling of substructures for dynamic analyses”. AIAA

Journal, 6(7), pp. 1313-1319.

Yuan, J., El-Haddad, E., Salles, L., and Wong, C.,

2019. “Numerical assessment of reduced order mod-

eling techniques for dynamic analysis of jointed struc-

tures with contact nonlinearities”. ASME. Paper No.

GT2018-75303.

Eriten, M., Polycarpou, A., and Bergman, L., 2011.

“Physics-based modeling for fretting behavior of nom-

inally flat rough surfaces”. International Journal of

Solids and Structures, 48(10), pp. 1436-1450.

Vakis, A., Yastrebov, V., Scheibert, J., Nicola, L., Dini,

D., Minfray, C., Almqvist, A., Paggi, M., Lee, S., Lim-

bert, G., Molinari, J., Anciaux, G., Aghababaei, R., Re-

strepo, S. E., Papangelo, A., Cammarata, A., Nicol-

ini, P., Putignano, C., Carbone, G., Stupkiewicz, S.,

Lengiewicz, J., Costagliola, G., Bosia, F., Guarino, R.,

Pugno, N., Miiser, M., and Ciavarella, M., 2018. “Mod-

eling and simulation in tribology across scales: An

overview”. Tribology International, 125, pp. 169-199.

Yang, B. D., Chu, M. L., and Menq, C. H., 1998.

“Stick-slip-separation analysis and non-linear stiffness

and damping characterization of friction contacts hav-

(21]

(22]

(23]

(27]

(28]

[31]

(32]

(33]

[34]

[35]

[36]

ing variable normal load”. Journal of Sound and Vibra-
tion, 210(4), pp. 461-481.

Petrov, E. P., and Ewins, D. J., 2003. “Analytical for-
mulation of friction interface elements for analysis of
nonlinear multi-harmonic vibrations of bladed disks”.
ASME J Turbomach, 125(2), pp. 364-371.

Baudin, M., Dutfoy, A., Iooss, B., and Popelin, A.-L.,
2015. “Openturns: An industrial software for uncer-
tainty quantification in simulation”.

11 YEKAI SUN



