L. Alberti, B. Mourrain, and J. Wintz, Topology and arrangement computation of semi-algebraic planar curves, Comput. Aided Geom. Des, vol.25, pp.631-651, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00343110

M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, 1969.

B. H. Dayton, T. Li, and Z. Zeng, Multiple zeros of nonlinear systems, Math. Comput, vol.80, issue.276, pp.2143-2168, 2011.

B. H. Dayton and Z. Zeng, Computing the multiplicity structure in solving polynomial systems, ISSAC '05: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, pp.116-123, 2005.

M. Elkadi and B. Mourrain, Introductionà la résolution des systèmes d'équations algébriques, Mathématiques et Applications, vol.59, 2007.

W. J. Gilbert, Newton's method for multiple roots, Computers & Graphics, vol.18, issue.2, pp.227-229, 1994.

M. Giusti, G. Lecerf, B. Salvy, and J. Yakoubsohn, On location and approximation of clusters of zeros: Case of embedding dimension one, Foundations of Computational Mathematics, vol.7, pp.1-58, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00186739

W. Hao, A. J. Sommese, and Z. Zeng, Algorithm 931: An algorithm and software for computing multiplicity structures at zeros of nonlinear systems, ACM Trans. Math. Softw, vol.40, issue.1, p.16, 2013.

L. V. Kantorovich, Functional analysis and applied mathematics, vol.3, pp.89-185, 1948.

R. Krawczyk, Newton-algorithmen zur bestimmung von nullstellen mit fehlerschranken, Computing, vol.4, issue.3, pp.187-201, 1969.

G. Lecerf, Quadratic newton iteration for systems with multiplicity, Foundations of Computational Mathematics, vol.2, pp.247-293, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00186730

A. Leykin, J. Verschelde, and A. Zhao, Newton's method with deflation for isolated singularities of polynomial systems, Theoretical Computer Science, vol.359, issue.1-3, pp.111-122, 2006.

A. Leykin, J. Verschelde, and A. Zhao, Higher-order deflation for polynomial systems with isolated singular solutions, Algorithms in Algebraic Geometry, volume 146 of The IMA Volumes in Mathematics and its Applications, pp.79-97, 2008.

F. S. Macaulay, The algebraic theory of modular systems, 1916.

A. Mantzaflaris and B. Mourrain, Deflation and Certified Isolation of Singular Zeros of Polynomial Systems, International Symposium on Symbolic and Algebraic Computation (ISSAC), pp.249-256, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00556021

A. Mantzaflaris, B. Mourrain, and E. Tsigaridas, Continued fraction expansion of real roots of polynomial systems, Proceedings of the 2009 Conference on Symbolic-Numeric Computation, SNC '09, pp.85-94, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00387399

M. G. Marinari, T. Mora, and H. M. Möller, Gröbner duality and multiplicities in polynomial system solving, Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC '95, pp.167-179, 1995.

B. Mourrain, Isolated points, duality and residues, Journal of Pure and Applied Algebra, pp.469-493, 1997.
URL : https://hal.archives-ouvertes.fr/inria-00125278

B. Mourrain and J. P. Pavone, Subdivision methods for solving polynomial equations, J. Symb. Comput, vol.44, pp.292-306, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00070350

T. Ojika, S. Watanabe, and T. Mitsui, Deflation algorithm for the multiple roots of a system of nonlinear equations, Journal of Mathematical Analysis and Applications, vol.96, issue.2, pp.463-479, 1983.

S. R. Pope and A. Szanto, Nearest multivariate system with given root multiplicities, Journal of Symbolic Computation, vol.44, issue.6, pp.606-625, 2009.

S. Rump and S. Graillat, Verified error bounds for multiple roots of systems of nonlinear equations, Numerical Algorithms, vol.54, pp.359-377, 2010.

H. J. Stetter, Analysis of zero clusters in multivariate polynomial systems, Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, ISSAC '96, pp.127-136, 1996.

X. Wu and L. Zhi, Computing the multiplicity structure from geometric involutive form, Proceedings of the twenty-first International Symposium on Symbolic and Algebraic Computation, ISSAC '08, pp.325-332, 2008.

Z. Zeng, The closedness subspace method for computing the multiplicity structure of a polynomial system, Interactions of Classical and Numerical Algebraic Geometry, vol.496, pp.347-362, 2009.