Skip to Main content Skip to Navigation

SketchMLbox -- A MATLAB toolbox for large-scale mixture learning

Nicolas Keriven 1
1 PANAMA - Parcimonie et Nouveaux Algorithmes pour le Signal et la Modélisation Audio
Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : The SketchMLbox is a Matlab toolbox for fitting mixture models to large databases using sketching techniques. The database is first compressed into a vector called sketch, then a mixture model (e.g. a Gaussian Mixture Model) is estimated from this sketch using greedy algorithms typical of sparse recovery. The size of the sketch does not depend on the number of elements in the database, but rather on the complexity of the problem at hand [2,3]. Its computation can be massively parallelized and distributed over several units. It can also be maintained in an online setting at low cost. Mixtures of Diracs ("K-means") and Gaussian Mixture Models with diagonal covariance are currently available, the toolbox is structured so that new mixture models can be easily implemented. Details can be found in the following papers: [1] Keriven N., Bourrier A., Gribonval R., Pérèz P., "Sketching for Large-Scale Learning of Mixture Models", ICASSP 2016. [2] Keriven N., Bourrier A., Gribonval R., Pérèz P., "Sketching for Large-Scale Learning of Mixture Models", 2016. arXiv:1606.02838 (extended version) [3] Keriven N., Tremblay N., Traonmilin Y., Gribonval R., "Compressive K-means", ICASSP 2017. [4] Gribonval R., Blanchard G., Keriven N., Traonmilin Y., "Compressive Statistical Learning with Random Feature Moments", 2017. arXiv:1706.07180.
Document type :
Software
Complete list of metadatas

Browse

Present sur SoftwareHeritage - Identifier : swh:1:dir:a76f6aeb81ce73e178b8b822029d2c721ba24117;origin=https://hal.archives-ouvertes.fr/hal-02960718;visit=swh:1:snp:55fd14b490c1aef81d2582d91d911a71d0a159cf;anchor=swh:1:rev:d8de5cbab0e40297dd0d03d5c93895c568a30a99;path=/  Browse

https://hal.inria.fr/hal-02960718
Contributor : Rémi Gribonval <>
Submitted on : Thursday, October 8, 2020 - 9:10:50 PM
Last modification on : Sunday, October 11, 2020 - 3:10:52 AM

Relations

Share

Metrics

Record views

18

Files downloads

18