J. Bender, T. Kugelstadt, M. Weiler, and D. Koschier, Volume maps: An implicit boundary representation for SPH, Motion, vol.26, 2019.

A. Bottinelli and J. L. Silverberg, Can high-density human collective motion be forecasted by spatiotemporal fluctuations?, 2018.

S. Curtis, A. Best, and D. Manocha, Menge: A modular framework for simulating crowd movement, Collective Dynamics, vol.1, pp.1-40, 2016.

B. Teofilo, R. Dutra, . Marques, B. Joaquim, C. A. Cavalcante-neto et al., Gradient-based steering for vision-based crowd simulation algorithms, Comput. Graph. Forum, vol.36, pp.337-348, 2017.

Á. Garcimartín, D. R. Parisi, and J. M. Pastor, Flow of pedestrians through narrow doors with different competitiveness, César Martín-Gómez, and Iker Zuriguel, vol.4, p.43402, 2016.

A. Robert, J. J. Gingold, and . Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. Roy. Astron. Soc, vol.181, pp.375-389, 1977.

A. Golas, R. Narain, and M. C. Lin, Continuum modeling of crowd turbulence, Physical Review E, vol.90, p.42816, 2014.

S. J. Guy, J. Chhugani, S. Curtis, P. Dubey, M. Lin et al., PLEdestrians: A least-effort approach to crowd simulation, Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp.119-128, 2010.

D. Helbing, Simulating dynamical features of escape panic, Illés Farkas, and Tamás Vicsek, vol.407, pp.487-490, 2000.

D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Physical Review E, vol.51, pp.4282-4286, 1995.

O. Hesham and G. Wainer, Context-sensitive personal space for dense crowd simulation, Proc. Symp. Simulation for Architecture and Urban Design, vol.19, 2017.

R. L. Hughes, The flow of human crowds, Annu. Rev. Fluid Mech, vol.35, pp.169-182, 2003.

I. Karamouzas, B. Skinner, and S. J. Guy, Universal power law governing pedestrian interactions, Phys. Rev. Lett, vol.113, pp.1-5, 2014.

M. Peter, D. H. Kielar, A. Biedermann, and . Borrmann, MomenTUMv2: A modular, extensible, and generic agent-based pedestrian behavior simulation framework, 2016.

S. Kim, S. J. Guy, K. Hillesland, B. Zafar, A. Abdul-aziz-gutub et al., Velocity-based modeling of physical interactions in dense crowds, The Visual Computer, vol.31, pp.541-555, 2015.

D. Koschier, J. Bender, B. Solenthaler, and M. Teschner, Smoothed Particle Hydrodynamics techniques for the physics based simulation of fluids and solids, Eurographics 2019 Tutorials, 2019.

L. B. Lucy, A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, vol.82, pp.1013-1024, 1977.

B. Maury, A. Roudneff-chupin, and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Math. Mod. Meth. Appl. S, vol.20, pp.1787-1821, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00418511

M. Müller, D. Charypar, and M. Gross, Particle-based fluid simulation for interactive applications, Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp.154-159, 2003.

R. Narain, A. Golas, S. Curtis, and M. C. Lin, Aggregate dynamics for dense crowd simulation, ACM Trans. Graph, vol.28, pp.1-8, 2009.

N. Pelechano, J. M. Allbeck, and N. I. Badler, Controlling individual agents in high-density crowd simulation, Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp.99-108, 2007.

N. Pelechano, J. M. Allbeck, M. Kapadia, and N. I. Badler, Simulating Heterogeneous Crowds with Interactive Behaviors, 2016.

K. Sjöström, Computational fluid dynamics in 2D game environments, 2011.

A. Sybren, N. Stüvel, D. Magnenat-thalmann, A. Thalmann, and . Frank-van-der-stappen, Torso crowds, IEEE Trans. Vis. Comput. Graphics, vol.23, pp.1823-1837, 2016.

W. Tantisiriwat, A. Sumleeon, and P. Kanongchaiyos, A crowd simulation using individual-knowledge-merge based path construction and Smoothed Particle Hydrodynamics, Proc. 15th Int. Conf. in Central Europe on Computer Graphics, Visualization and Computer Vision, pp.261-268, 2007.

D. Thalmann, R. Soraia, and . Musse, Generalized microscopic crowd simulation using costs in velocity space, Proc. ACM SIGGRAPH Symp. Interactive 3D Graphics and Games, vol.10, 2013.

N. Wouter-van-toll, R. Jaklin, and . Geraerts, Towards believable crowds: A generic multi-level framework for agent navigation, 2015.

A. Treuille, S. Cooper, and Z. Popovi?, Continuum crowds, ACM Trans. Graph, vol.25, pp.1160-1168, 2006.

P. Jur, . Van-den, S. J. Berg, M. C. Guy, D. Lin et al., Reciprocal n-body collision avoidance, Proc. Int. Symp. Robotics Research, pp.3-19, 2011.

C. Vetter, L. Oetting, C. Ulrich, and T. Rung, SPH simulations of pedestrian crowds, Proc. 6th Int. Spheric Workshop, pp.261-268, 2011.

T. Weiss, C. Jiang, A. Litteneker, and D. Terzopoulos, Position-based multi-agent dynamics for real-time crowd simulation, Proc. 10th Int. Conf. Motion in Games, vol.10, pp.1-10, 2017.

Y. Yuan, B. Goñi-ros, H. H. Bui, W. Daamen, H. L. Vu et al., Macroscopic pedestrian flow simulation using Smoothed Particle Hydrodynamics, Transp. Res. Part C Emerg. Technol, vol.111, pp.334-351, 2020.