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Abstract. Negotiations were introduced in [6] as a model for concurrent6

systems with multiparty decisions. What is very appealing with negotia-7

tions is that it is one of the very few non-trivial concurrent models where8

several interesting problems, such as soundness, i.e. absence of deadlocks,9

can be solved in PTIME [2]. In this paper, we introduce the model of10

timed negotiations and consider the problem of computing the minimum11

and the maximum execution time of a negotiation. The latter can be12

solved using the algorithm of [10] computing costs in negotiations, but13

surprisingly minimum execution time cannot.14

In this paper, we propose new algorithms to compute both minimum15

and maximum execution time, that work in much more general classes16

of negotiations than [10], that only considered sound and determinis-17

tic negotiations. Further, we uncover the precise complexities of these18

questions, ranging from PTIME to ∆P
2 -complete. In particular, we show19

that computing the minimum execution time is more complex than com-20

puting the maximum execution time in most classes of negotiations we21

consider.22

1 Introduction23

Distributed systems are notoriously difficult to analyze, mainly due to the ex-24

plosion of the number of configurations that have to be considered to answer25

even simple questions. A challenging task is then to propose models on which26

analysis can be performed with tractable complexities, preferably within poly-27

nomial time. Free choice Petri nets are a classical model of distributed systems28

that allow for efficient verification, in particular when the nets are 1-safe [5, 4].29

Recently, [6] introduced a new model called negotiations for workflows and30

business processes. A negotiation describes how processes interact in a dis-31

tributed system: a subset of processes in a node of the system take a synchronous32

decisions among several outcomes. The effect of this outcome sends contribut-33

ing processes to a new set of nodes. The execution of a negotiation ends when34

processes reach a final configuration. Negotiations can be deterministic (once an35

outcome is fixed, each process knows its unique successor node) or not.36

Negotiations are an interesting model since several properties can be decided37

with a reasonable complexity. The question of soundness, i.e., deadlock-freedom:38

whether from every reachable configuration one can reach a final configuration,39

is PSPACE-complete. However, for deterministic negotiations, it can be decided40



in PTIME [7]. The decision procedure uses reduction rules. Reduction techniques41

were originally proposed for Petri nets [1, 8, 12, 17]. The main idea is to define42

transformations rules that produce a model of smaller size w.r.t. the original43

model, while preserving the property under analysis. In the context of negotia-44

tions, [7, 2] proposed a sound and complete set of soundness-preserving reduction45

rules and algorithms to apply these rules efficiently. The question of soundness46

for deterministic negotiations was revisited in [9] and showed NLOGSPACE-47

complete using anti patterns instead of reduction rules. Further, they show that48

the PTIME result holds even when relaxing determinism [9]. Negotiation games49

have also been considered to decide whether one particular process can force ter-50

mination of a negotiation. While this question is EXPTIME complete in general,51

for sound and deterministic negotiations, it becomes PTIME [13].52

While it is natural to consider cost or time in negotiations (e.g. think of the53

Brexit negotiation where time is of the essence, and which we model as running54

example in this paper), the original model of negotiations proposed by [6] is55

only qualitative. Recently, [10] has proposed a framework to associate costs to56

the executions of negotiations, and adapt a static analysis technique based on57

reduction rules to compute end-to end cost functions that are not sensitive to58

scheduling of concurrent nodes. For sound and deterministic negotiations, the59

end-to end cost can be computed in O(n.(C + n)), where n is the size of the60

negotiation and C the time needed to compute the cost of an execution. Requir-61

ing soundness or determinism seem perfectly reasonable, but asking sound and62

deterministic negotiations is too restrictive: it prevents a process from waiting63

for decisions of other processes to know how to proceed.64

In this paper, we revisit time in negotiations. We attach time intervals to65

outcomes of nodes. We want to compute maximal and minimal executions times,66

for negotiations that are not necessarily sound and deterministic. Since we are67

interested in minimal and maximal execution time, cycles in negotiations can be68

either bypassed or lead to infinite maximal time. Hence, we restrict this study to69

acyclic negotiations. Notice that time can be modeled as a cost, following [10],70

and the maximal execution time of a sound and deterministic negotiation can71

be computed in PTIME using the algorithm from [10]. Surprisingly however, we72

give an example (Example 3) for which the minimal execution time cannot be73

computed in PTIME by this algorithm.74

The first contribution of the paper shows that reachability (whether at least75

one run of a negotiation terminates) is NP-complete, already for (untimed) deter-76

ministic acyclic negotiations. This implies that computing minimal or maximal77

execution time for deterministic (but unsound) acyclic negotiations cannot be78

done in PTIME (unless NP=PTIME). We characterize precisely the complex-79

ities of different decision variants (threshold, equality, etc.), with complexities80

ranging from (co-)NP-complete to ∆P
2 .81

We thus turn to negotiations that are sound but not necessarily determinis-82

tic. Our second contribution is a new algorithm, not based on reduction rules,83

to compute the maximal execution time in PTIME for sound negotiations. It is84

based on computing the maximal execution time of critical paths in the nego-85
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tiations. However, we show that minimal execution time cannot be computed86

in PTIME for sound negotiations (unless NP=PTIME): deciding whether the87

minimal execution time is lower than T is NP-complete, even for T given in88

unary, using a reduction from a Bin packing problem. This shows that minimal89

execution time is harder to compute than maximal execution time.90

Our third contribution consists in defining a class in which the minimal exe-91

cution time can be computed in (pseudo) PTIME. To do so, we define the class92

of k-layered negotiations, for k fixed, that is negotiations where nodes can be or-93

ganized into layers of at most k nodes at the same depth. These negotiations can94

be executed without remembering more than k nodes at a time. In this case, we95

show that computing the maximal execution time is PTIME, even if the negoti-96

ation is neither deterministic nor sound. The algorithm, not based on reduction97

rules, uses the k-layer restriction in order to navigate in the negotiation while98

considering only a polynomial number of configurations. For minimal execution99

time, we provide a pseudo PTIME algorithm, that is PTIME if constants are100

given in unary. Finally, we show that the size of constants do matter: deciding101

whether the minimal execution time of a k-layered negotiation is less than T102

is NP-complete, when T is given in binary. We show this by reducing from a103

Knapsack problem, yet again emphasizing that the minimal execution time of a104

negotiation is harder to compute than its maximal execution time.105

This paper is organized as follows. Section 2 introduces the key ingredients of106

negotiations, determinism and soundness, known results in the untimed setting,107

and provides our running example modeling the Brexit negotiation. Section 3108

introduces time in negotiations, gives a semantics to this new model, and for-109

malizes several decision problems on maximal and minimal durations of runs in110

timed negotiations. We recall the main results of the paper in Section 4. Then,111

Section 5 considers timed execution problems for deterministic negotiations, Sec-112

tion 6 for sound negotiations, and section 7 for layered negotiations. Proof details113

for the last three technical sections are given in the Appendices A, B and C.114

2 Negotiations: Definitions and Brexit example115

In this section, we recall the definition of negotiations, of some subclasses (acyclic116

and deterministic), as well as important problems (soundness and reachability).117

Definition 1 (Negotiation [6, 10]). A negotiation over a finite set of pro-118

cesses P is a tuple N = (N,n0, nf ,X ), where:119

– N is a finite set of nodes. Each node is a pair n = (Pn, Rn) where Pn ⊆ P120

is a non empty set of processes participating in node n, and Rn is a finite121

set of outcomes of node n (also called results), with Rnf
= {rf}. We denote122

by R the union of all outcomes of nodes in N .123

– n0 is the first node of the negotiation and nf is the final node. Every process124

in P participates in both n0 and nf .125

– For all n ∈ N , Xn : Pn ×Rn → 2N is a map defining the transition relation126

from node n, with Xn(p, r) = ∅ iff n = nf , r = rf . We denote X : N × P ×127
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Fig. 1. A (sound but non-deterministic) negotiation modeling Brexit.

R→ 2N the partial map defined on
⋃
n∈N ({n}×Pn×Rn), with X (n, p, a) =128

Xn(p, a) for all p, a.129

Intuitively, at a node n = (Pn, Rn) in a negotiation, all processes of Pn have130

to agree on a common outcome r chosen from Rn. Once this outcome r is chosen,131

every process p ∈ Pn is ready to move to any node prescribed by X (n, p, r). A132

new node m can only start when all processes of Pm are ready to move to m.133

Example 1. We illustrate negotiations by considering a simplified model of the134

Brexit negotiation, see Figure 1. There are 3 processes, P = {EU,PM,Pa}. At135

first EU decides whether or not to enforce a backstop in any deal (outcome back-136

stop) or not (outcome no-backstop). In the meantime, PM decides to proroge137

Pa, and Pa can choose or not to appeal to court (outcome court/no court). If it138

goes to court, then PM and Pa will take some time in court (c-meet, defend),139

before PM can meet EU to agree on a deal. Otherwirse, Pa goes to recess, and140

PM can meet EU directly. Once EU and PM agreed on a deal, PM tries to141

convince Pa to vote the deal. The final outcome is whether the deal is voted, or142

whether Brexit is delayed.143

Definition 2 (Deterministic negotiations). A process p ∈ P is determinis-144

tic iff, for every n ∈ N and every outcome r of n, X (n, p, r) is a singleton. A ne-145

gotiation is deterministic iff all its processes are deterministic. It is weakly non-146

deterministic [9] (called weakly deterministic in [2]) iff, for every node n, one of147

the processes in Pn is deterministic. Last, it is very weakly non-deterministic [9]148

(called weakly deterministic in [6]) iff, for every n, every p ∈ Pn and every out-149

come r of n, there exists a deterministic process q such that q ∈ Pn′ for every150

n′ ∈ X (n, p, r).151
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In deterministic negotiations, once an outcome is chosen, each process knows152

the next node it will be involved in. In (very)-weakly non-deterministic nego-153

tiations, the next node might depend upon the outcome chosen in other nodes154

by other processes. However, once the outcomes have been chosen for all cur-155

rent nodes, there is only one next node possible for each process. Observe that156

the class of deterministic negotiations is isomorphic to the class of free choice157

workflow nets [10]. Coming back to example 1, the Brexit negotiation is non-158

deterministic, because process PM is non-deterministic. Indeed, consider out-159

comes c-meet: it allows two nodes, according to whether the backstop is enforced160

or not, which is a decision taken by process EU . However, the Brexit negotiation161

is very weakly non-deterministic, as the other processes are deterministic.162

Semantics: A configuration [2] of a negotiation is a mapping M : P → 2N .163

Intuitively, it tells for each process p the set M(p) of nodes p is ready to engage in.164

The semantics of a negotiation is defined in terms of moves from a configuration165

to the next one. The initial M0 and final Mf configurations, are given byM0(p) =166

{n0} and Mf (p) = ∅ respectively for every process p ∈ P . A configuration M167

enables node n if n ∈ M(p) for every p ∈ Pn. When n is enabled, a decision168

at node n can occur, and the participants at this node choose an outcome r ∈169

Rn. The occurrence of (n, r) produces the configuration M ′ given by M ′(p) =170

X (n, p, r) for every p ∈ Pn and M ′(p) = M(p) for remaining processes in P \Pn.171

Moving fromM toM ′ after choosing (n, r) is called a step, denotedM
n,r−−→M ′. A172

run of N is a sequence (n1, r1), (n2, r2)...(nk, rk) such that there is a sequence of173

configurations M0,M1, . . . ,Mk and every (ni, ri) is a step between Mi−1 and Mi.174

A run starting from the initial configuration and ending in the final configuration175

is called a final run. By definition, its last step is (nf , rf ).176

An important class of negotiations in the context of timed negotiations are177

acyclic negotiations, where infinite sequence of steps are impossible:178

Definition 3 (Acyclic negotiations). The graph of a negotiation N is the179

labeled graph GN = (V,E) where V = N , and E = {((n, (p, r), n′) | n′ ∈180

X (n, p, r)}, with pairs of the form (p, r) being the labels. A negotiation is acyclic181

iff its graph is acyclic. We denote by Paths(GN ) the set of paths in the graph of a182

negotiation. These paths are of the form π = (n0, (p0, r0), n1) . . . (nk−1, (pk, rk), nk).183

The Brexit negotiation of Fig.1 is an example of acyclic negotiation. Despite184

their apparent simplicity, negotiations may express involved behaviors as shown185

with the Brexit example. Indeed two important questions in this setting are186

whether there is some way to reach a final node in the negotiation from (i) the187

initial node and (ii) any reachable node in the negotiation.188

Definition 4 (Soundness and Reachability).189

1. A negotiation is sound iff every run from the initial configuration can be190

extended to a final run. The problem of soundness is to check if a given191

negotiation is sound.192

2. The problem of reachability asks if a given negotiation has a final run.193
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Notice that the Brexit negotiation of Fig.1 is sound (but not deterministic).194

It seems hard to preserve the important features of this negotiation while being195

both sound and deterministic. The problem of soundness has received consider-196

able attention. We summarize the results about soudness in the next theorem:197

Theorem 1. Determining whether a negotiation is sound is PSPACE-Complete.198

For (very-)weakly non-deterministic negotiations, it is co-NP-complete [9]. For199

acyclic negotiations, it is in DP and co-NP-Hard [6]. Determining whether an200

acyclic weakly non-deterministic negotiation is sound is in PTIME [2, 9]. Fi-201

nally, deciding soundness for deterministic negotiation is NLOGSPACE-complete [9].202

Checking reachability is NP-complete, even for deterministic acyclic negoti-203

ations (surprisingly, we did not find this result stated before in the literature):204

Proposition 1. Reachability is NP-complete for acyclic negotiations, even if205

the negotiation is deterministic.206

Proof (sketch). One can easily guess a run of size ≤ |N | in polynomial time, and
verify if it reaches nf , which gives the inclusion in NP. The hardness part comes
from a reduction from 3-CNF-SAT that can be found in the proof of Theorem 3.

ut

k-Layered Acyclic Negotiations207

We introduce a new class of negotiations which has good algorithmic properties,208

namely k-layered acyclic negotiations, for k fixed. Roughly speaking, nodes of a209

k-layered acyclic negotiations can be arranged in layers, and these layers contain210

at most k nodes. Before giving a formal definition, we need to define the depth211

of nodes in N .212

First, a path in a negotiation is a sequence of nodes n0 . . . n` such that for213

all i ∈ {1, . . . , `− 1}, there exists pi, ri with ni+1 ∈ X (ni, pi, ri). The length of a214

path n0, . . . , n` is `. The depth depth(n) of a node n is the maximal length of a215

path from n0 to n (recall that N is acyclic, so this number is always finite).216

Definition 5. An acyclic negotiation is layered if for all node n, every path217

reaching n has length depth(n). An acyclic negotiation is k-layered if it is layered,218

and for all ` ∈ N, there are at most k nodes at depth `.219

The Brexit example of Fig.1 is 6-layered. Notice that a layered negotiation220

is necessarily k-layered for some k ≤ |N | − 2. Note also that we can always221

transform an acyclic negotiation N into a layered acyclic negotiation N ′, by222

adding dummy nodes: for every nodem ∈ X (n, p, r) with depth(m) > depth(n)+223

1, we can add several nodes n1, . . . n` with ` = depth(m)− (depth(n) + 1), and224

processes Pni = {p}. We compute a new relation X ′ such that X ′(n, p, r) =225

{n1}, X (n`, p, r) = {m} and for every i ∈ 1..` − 1, X (ni, p, r) = ni+1. This226

transformation is polynomial: the resulting negotiation is of size up to |N | ×227

|X | × |P |. The proof of the following Theorem can be found in appendix C.228

Theorem 2. Let k ∈ N+. Checking reachability or soundness for a k-layered229

acyclic negotiation N can be done in PTIME.230
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3 Timed Negotiations231

In many negotiations, time is an important feature to take into account. For232

instance, in the Brexit example, with an initial node starting at the begining of233

September 2019, there are 9 weeks to pass a deal till the 31st October deadline.234

We extend negotiations by introducing timing constraints on outcomes of235

nodes, inspired by time Petri nets [15] and by the notion of negotiations with236

costs [10]. We use time intervals to specify lower and upper bounds for the237

duration of negotiations. More precisely, we attach time intervals to pairs (n, r)238

where n is a node and r an outcome. In the rest of the paper, we denote by239

I the set of intervals with endpoints that are non-negative integers or ∞. For240

convenience we only use closed intervals in this paper (except for ∞), but the241

results we show can also be extended to open intervals with some notational242

overhead. Intuitively, outcome r can be taken at a node n with associated time243

interval [a, b] only after a time units have elapsed from the time all processes244

contributing to n are ready to engage in n, and at most b time units later.245

Definition 6. A timed negotiation is a pair (N , γ) where N is a negotiation,246

and γ : N×R→ I associates an interval to each pair (n, r) of node and outcome247

such that r ∈ Rn. For a given node n and outcome r, we denote by γ−(n, r) (resp.248

γ+(n, r)) the lower bound (resp. the upper bound) of γ(n, r).249

Example 2. In the Brexit example, we define the following timed constraints γ.250

We only specify the outcome names, as the timing only depends upon them.251

Backstop and no-backstop both take between 1 and 2 weeks: γ(backstop) =252

γ(no-backstop) = [1, 2]. In case of no-court, recess takes 5 weeks γ(recess) =253

[5, 5], and PM can meet EU immediatly γ(meet) = [0, 0]. In case of court ac-254

tion, PM needs to spend 2 weeks in court γ(c-meet) = [2, 2], and depending on255

the court delay and decision, Pa needs between 3 (court overules recess) to 5256

(court confirms recess) weeks, γ(defend) = [3, 5]. Agreeing on a deal can take257

anywhere from 2 weeks to 2 years (104 weeks): γ(deal agreed) = [2, 104] - some258

would say infinite time is even possible! It needs more time with the backstop,259

γ(deal w/backstop) = [5, 104]. All others outcomes are assumed to be immedi-260

ate, i.e., associated with [0, 0].261

Semantics: A timed valuation is a map µ : P → R≥0 that associates a non-262

negative real value to every process. A timed configuration is a pair (M,µ) where263

M is a configuration and µ a timed valuation. There is a timed step from (M,µ)264

to (M ′, µ′), denoted (M,µ)
(n,r)−−−→ (M ′, µ′), if (i) M

(n,r)−−−→M ′, (ii) p /∈ Pn implies265

µ′(p) = µ(p) (iii) p ∈ Pn implies (µ′(p)−maxp′∈Pn
µ(p′)) ∈ γ(n, r)266

Intuitively a timed step (M,µ)
(n,r)−−−→ (M ′, µ′) depicts a decision taken at267

node n, and how long each process of Pn waited in that node before taking268

decision (n, r). The last process engaged in n must wait for a duration contained269

in γ(n, r). However, other processes may spend a time greater than γ+(n, r).270

A timed run is a sequence of steps ρ = (M1, µ1)
e1−→ (M2, µ2) . . . (Mk, µk)271

where each (Mi, µi)
ei−→ (Mi+1, µi+1) is a timed step. It is final if Mk = Mf . Its272

execution time δ(ρ) is defined as δ(ρ) = maxp∈P µk(p).273
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Notice that we only attached timing to processes, not to individual steps.274

With our definition of runs, timing on steps may not be monotonous (i.e., non-275

decreasing) along the run, while timing on processes is. Viewed by the lens of276

concurrent systems, the timing is monotonous on the partial orders of the system277

rather than the linearization. It is not hard to restrict paths, if necessary, to have278

a monotonous timing on steps as well. In this paper, we are only interested in279

execution time, which does not depend on the linearization considered.280

Given a timed negotiation N , we can now define the minimum and maximum281

execution time, which correspond to optimistic or pessimistic views:282

Definition 7. Let N be a timed negotiation. Its minimum execution time, de-283

noted mintime(N ) is the minimal δ(ρ) over all final timed run ρ of N . We284

define the maximal execution time maxtime(N ) of N similarly.285

Given T ∈ N, the main problems we consider in this paper are the following:286

287

– The mintime problem, i.e., do we have mintime(N ) ≤ T?.288

In other words, does there exist a final timed run ρ with δ(ρ) ≤ T?289

– The maxtime problem, i.e., do we have maxtime(N ) ≤ T?.290

In other words, does δ(ρ) ≤ T for every final timed run ρ?291

These questions have a practical interest : in the Brexit example, the question292

“is there a way to have a vote on a deal within 9 weeks ?” is indeed a minimum293

execution time problem. We also address the equality variant of these decision294

problems, i.e., mintime(N ) = T : is there a final run of N that terminates295

in exactly T time units and no other final run takes less than T time units?296

Similarly for maxtime(N ) = T .297

Example 3. We use Fig. 1 to show that it is not easy to compute the minimal298

execution time, and in particular one cannot use the algorithm from [10] to com-299

pute it. Consider the node n with Pn = {PM,Pa} and Rn = {court,no court}.300

If the outcome is court, then PM needs 2 weeks before he can talk to EU and Pa301

needs at least 3 weeks before he can debate. However, if the outcome is no court,302

then PM need not wait before he can talk to EU , but Pa wastes 5 weeks in re-303

cess. This means that one needs to remember different alternatives which could304

be faster in the end, depending on the future. On the other hand, the algorithm305

from [10] attaches one minimal time to process Pa, and one minimal time to306

process PM . No matter the choices (0 or 2 for PM and 3 or 5 for Pa), there307

will be futures in which the chosen number will over or underapproximate the308

real minimal execution time (this choice is not explicit in [10])4. For maximum309

execution time, it is not an issue to attach to each node a unique maximal exe-310

cution time. The reason for the asymmetry between minimal execution time and311

maximal execution time of a negotiation is that the execution time of a path312

is maxp∈P µk(p), for µk the last timed valuation, hence breaking the symmetry313

between min and max.314

4 the authors of [10] acknowledged the issue with their algorithm for mintime.
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4 High Level view of the main results315

In this section, we give a high-level description of our main results. Formal316

statements can be found in the sections where they are proved. We gather in317

Fig. 2 the precise complexities for the minimal and the maximal execution time318

problems for 3 classes of negotiations that we describe in the following. Since we319

are interested in minimum and maximum execution time, cycles in negotiations320

can be either bypassed or lead to infinite maximal time. Hence, while we define321

timed negotiations in general, we always restrict to acyclic negotiations (such as322

Brexit) while stating and proving results.323

In [10], a PTIME algorithm is given to compute different costs for negoti-324

ations that are both sound and deterministic. One limitation of this result is325

that it cannot compute the minimum execution time, as explained in Example326

3. A second limitation is that the class of sound and deterministic negotiations327

is quite restrictive: it cannot model situations where the next node a process328

participates in depends on the outcome from another process, as in the Brexit329

example. We thus consider classes where one of these restrictions is dropped.330

We first consider (Section 5) negotiations that are deterministic, but with-331

out the soundness restriction. We show that for this class, no timed problem332

we consider can be solved in PTIME (unless NP=PTIME). Further, we show333

that the equality problems (maxtime/mintime(N ) = T ), are complete for the334

complexity class DP, i.e., at the second level of the Boolean Hierarchy [16].335

We then consider (Section 6) the class of negotiations that are sound, but not336

necessarily deterministic. We show that maximum execution time can be solved337

in PTIME, and propose a new algorithm. However, the minimum execution time338

cannot be computed in PTIME (unless NP=PTIME). Again for the mintime339

equality problem we have a matching DP-completeness result.340

Finally, in order to obtain a polytime algorithm to compute the minimum341

execution time, we consider the class of k-layered negotiations (see Section 7):342

Given k ∈ N, we can show that maxtime(N ) can be computed in PTIME for343

k-layered negotiations. We also show that while the mintime(N ) ≤ T? problem344

is weakly NP-complete for k-layered negotiations, we can compute mintime(N )345

in pseudo-PTIME, i.e. in PTIME if constants are given in unary.346

Deterministic Sound k-layered

Max ≤ T
Max = T

co-NP-complete (Thm. 3)
DP-complete (Prop. 2)

PTIME (Prop. 3) PTIME (Thm. 6)

Min ≤ T NP-complete (Thm. 3) NP-complete? (Thm. 5)
pseudo-PTIME (Thm. 8)
NP-complete?? (Thm. 7)

Min = T DP-complete (Prop. 2) DP-complete? (Prop. 4) pseudo-PTIME (Thm. 8)

Fig. 2. Results for acyclic timed negotiations. DP refers to the complexity class, Dif-
ference Polynomial time [16], the second level of the Boolean Hierarchy.
? hardness holds even for very weakly non-deterministic negotiations, and T in unary.
?? hardness holds even for sound and very weakly non-deterministic negotiations.
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5 Deterministic Negotiations347

We start by considering the class of deterministic acyclic negotiations. We show348

that both maximal and minimal execution time cannot be computed in PTIME349

(unless NP=PTIME), as the threshold problems are (co-)NP-complete.350

Theorem 3. The mintime(N ) ≤ T decision problem is NP complete, and the351

maxtime(N ) ≤ T decision problem is co-NP complete for acyclic deterministic352

timed negotiations.353

Proof. For mintime(N ) ≤ T , containment in NP is easy: we just need to guess a354

run ρ (of polynomial size as N is acyclic), consider the associated timed run ρ−355

where all decisions are taken at their earliest possible dates, and check whether356

δ(ρ−) ≤ T , which can be done in time O(|N |+log T ).357

For the hardness, we give the proof in two steps. First, we start with a proof358

of Proposition 1 that reachability problem is NP-hard using reduction of 3-CNF359

SAT, i.e., given a formula φ, we build a deterministic negotiation Nφ s.t. φ is360

satisfiable iff Nφ has a final run. In a second step, we introduce timings on this361

negotiation and show that mintime(Nφ) ≤ T iff φ is satisfiable.362

Step 1: Reducing 3-CNF-SAT to Reachability problem.363

Given a boolean formula φ with variables vi, 1 ≤ i ≤ n and clauses cj , 1 ≤ j ≤364

m, for each variable vi we define the sets of clauses Si,t = {cj |vi is present in cj}365

and Si,f = {cj |¬vi is present in cj}. Clauses in Si,t and Si,f are naturally or-366

dered: ci < cj iff i < j. We denote these elements Si,t(1) < Si,t(2) < . . ..367

Similarly for set Si,f.368

Now, we construct a negotiation Nφ (as depicted in Figure 3) with a process369

Vi for each variable vi and a process Cj for each clause cj :370

– Initial node n0 has a single outcome r taking each process Cj to node Lonecj ,371

and each process Vi to node Lonevi .372

– Lonecj has three outcomes: if literal vi ∈ cj , then ti is an outcome, taking373

Vi to Paircj ,vi , and if literal ¬vi ∈ cj , then fi is an outcome, taking Vi to374

Paircj ,¬vi .375

– The outcomes of Loneviare true and false. Outcome true brings vi to376

node T lonevi,1 and outcome false brings vi to node Flonevi,1.377

– We have a node T lonevi,j for each j ≤ |Si,t| and Flonevi,j for each j ≤ |Si,f|,378

with Vi as only process. Let cr = Si,t(j). Node T lonevi,j has two outcomes379

vton bringing Vi to T lonevi,j+1 (or nf if j = |Si,t|), and vtoci,r bringing Vi380

to Paircr,vi . The two outcomes from Flonevi,j are similar.381

– Node Paircr,vi has Vi and Cr as its processes and one outcome ctof which382

takes process Cj to final node nf and process Vi to T lonevi,j+1 (with cr =383

Si,t(j)), or to nf if j = |Si,t|. Node Paircr,¬vi is defined in the same way384

from Flonevi,j .385

With this we claim that Nφ has a final run iff φ is satisfiable which completes386

the first step of the proof. We give a formal proof of this claim in Appendix A.387

Observe that the negotiation Nφ constructed is deterministic and acyclic (but it388

is not sound).389
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V1 Vi Vn C1 Cj Ck Cm
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r rr r r

Vi Vi

true false
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vton ctof

Vi

vton

vton

Vi

vton ctof

vton

Vi Cj

fi

vtoc
i,j

ctof
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fi3

Vi Ck

fi

vto
ci,k

ti4
ti5

V1 Vi Vn C1 Cj Ck Cm

ctof

cto
f

ctof

n0

Lonevi Lonecj Loneck

T lonevi,1 Flonevi,1

Flonevi,r

Flonevi,r+1

Paircj ,¬vi

nf

[2, 2] [2, 2]

Fig. 3. A part of Nφ where clause cj is (i2 ∨ ¬i ∨ ¬i3) and clause ck is (i4 ∨ ¬i ∨ i5).
Timing is [0, 0] whereever not mentioned

Step 2: Before we introduce timing on Nφ, we introduce a new outcome r′390

at n0 which takes all processes to nf . Now, the timing function γ associated391

with the Nφ is: γ(n0, r) = [2, 2] and γ(n0, r
′) = [3, 3] and γ(n, r) = [0, 0], for392

all node n 6= n0 and all r ∈ Rn. Then, mintime(Nφ) ≤ 2 iff φ has a satisfiable393

assignment: if mintime(Nφ) ≤ 2, there is a run with decision r taken at n0394

which is final. But existence of any such final run implies satisfiability of φ. For395

reverse implication, if φ is satisfiable, then the corresponding run for satisfying396

assignment takes 2 units time, which means that mintime(Nφ) ≤ 2.397

Similarly, we can prove that the MaxTime problem is co-NP complete by
changing γ(n0, r

′
) = [1, 1] and asking if maxtime(Nφ) > 1 for the new Nφ. The

answer will be yes iff φ is satisfiable. ut

We now consider the related problem of checking if mintime(N ) = T (or if398

maxtime(N ) = T ). These problems are harder than their threshold variant un-399

der usual complexity assumptions: they are DP-complete (Difference Polynomial400

11



V1 Vn C1 Cm V
′
1 V

′

n
′ C

′
1 C

′

m
′

r rr r

Structure
of Nφ

V1 Vn C1 Cm V
′
1 V

′

n
′ C

′
1 C

′

m
′

r rr r

vton vton ctof ctof

r r r r

Structure
of Nφ′

V
′
1 V

′
n C

′
1 C

′

m
′

rall

rall rall rall

V1 Vn C1 Cm V
′
1 V

′

n
′ C

′
1 C

′

m
′

r, rall r, rall r, rall r, rall

r
′
all

r
′
all r

′
all

r
′
all

vton vton ctof ctof

n0

nsep

nf

nall

[0, 0]

[0, 0] [2, 2] [1, 1]

Fig. 4. Structure of Nφ,φ′

time class, i.e., second level of the Boolean Hierarchy, defined as intersection of401

a problem in NP and one in co-NP [16]).402

Proposition 2. The mintime(N ) = T and maxtime(N ) = T decision prob-403

lems are DP-complete for acyclic deterministic negotiations.404

Proof. We only give the proof for mintime (the proof for maxtime is given in405

Appendix A). Indeed, it is easy to see that this problem is in DP, as it can be406

written as mintime(N ) ≤ T which is in NP and ¬(mintime(N ) ≤ T − 1)),407

which is in co-NP. To show hardness, we use the negotiation constructed in the408

above proof as a gadget, and show a reduction from the SAT-UNSAT problem409

(a standard DP-complete problem).410

The SAT-UNSAT Problem asks given two Boolean expressions φ and φ
′
, both411

in CNF forms with three literals per clause, is it true that φ is satisfiable and φ
′

412

is unsatisfiable? SAT-UNSAT is known to be DP-complete [16]. We reduce this413

problem to mintime(N ) = T .414

Given φ, φ
′
, we first make the corresponding negotiations Nφ and Nφ′ as in415

the previous proof. Let n0 and nf be the initial and final nodes of Nφ and n
′

0416

and n
′

f be the initial and final nodes of Nφ′ .(Similarly, for other nodes we write417

′ above the nodes to signify they belong to Nφ′ ).418

In the negotiation Nφ′ , we introduce a new node nall, in which all the pro-
cesses participate (see Figure 4). The node nall has a single outcome r′all which
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sends all the processes to nf . Also, for node n
′

0, apart from the outcome r which
sends all processes to different nodes, there is another outcome rall which sends
all the processes to nall. Now we merge the nodes nf and n

′

0 and call the merged
node nsep. Also nodes n0 and n′f now have all the processes of Nφ and Nφ′
participating in them. This merged process gives us a new negotiation Nφ,φ′ in
which the structure above nsep is same as Nφ while below it is same as Nφ′ .
Node nsep now has all the processes of Nφ and Nφ′ participating in it. The
outcomes of nsep will be same as that of n′0 (rall, r). For both the outcomes of
nsep the processes corresponding to Nφ directly go to nf of the Nφ,φ′ . Similarly
n0 of Nφ,φ′ which is same n0 of Nφ, sends processes corresponding to Nφ′ di-
rectly to nsep for all its outcomes. We now define timing function γ for Nφ,φ′
which is as follows: γ(Lone

′

vi , r) = [1, 1] for all vi ∈ φ
′

and r ∈ {true, false},
γ(nall, r

′
all) = [2, 2] and γ(n, r) = [0, 0] for all other outcomes of nodes. With

this construction, one can conclude that mintime(Nφ,φ′ ) = 2 iff φ is satisfiable

and φ
′

is unsatisfiable (see Appendix for details). This completes the reduction
and hence proves DP-hardness. ut

Finally, we consider a related problem of computing the min and max time.419

To consider the decision variant, we rephrase this problem as checking whether420

an arbitrary bit of the minimum execution time is 1. Perhaps surprisingly, we421

obtain that this problem goes even beyond DP, the second level of the Boolean422

Hierarchy and is in fact hard for ∆P
2 (second level of the polynomial hierarchy),423

which contains the entire Boolean Hierarchy. Formally,424

Theorem 4. Given an acyclic deterministic timed negotiation and a positive425

integer k,computing the kth bit of the maximum/minimum execution time is426

∆P
2 -complete.427

Finally, we remark that if we were interested in the optimization variant and428

not the decision variant of the problem, the above proof can be adapted to show429

that these variants are OptP-complete (as defined in [14]). But as optimization430

is not the focus of this paper, we avoid formal details of this proof.431

6 Sound Negotiations432

Sound negotiations are negotiations in which every run can be extended to433

a final run, as in Fig. 1. In this section, we show that maxtime(N ) can be434

computed in PTIME for sound negotiations, hence giving PTIME complexi-435

ties for the maxtime(N ) ≤ T? and maxtime(N ) = T? questions. However, we436

show that mintime(N ) ≤ T is NP-complete for sound negotiations, and that437

mintime(N ) = T is DP-complete, even if T is given in unary.438

Consider the graph GN of a negotiation N . Let π = (n0, (p0, r0), n1) · · ·439

(nk, (pk, rk), nk+1) be a path of GN . We define the maximal execution time of440

a path π as the value δ+(π) =
∑
i∈0..k γ

+(ni, ri). We say that a path π =441

(n0, (p0, r0), n1) · · · (n`, (p`, r`), n`+1) is a path of some run ρ = (M1, µ1)
(n1,r

′
1)−→442

· · · (Mk, µk) if r0, . . . , r` is a subword of r′1, . . . , r
′
k.443
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Lemma 1. Let N be an acyclic and sound timed negotiation. Then maxtime(N )444

= maxπ∈Paths(GN ) δ
+(π) + γ+(nf , rf ).445

Proof. Let us first prove thatmaxtime(N ) ≥ maxπ∈Paths(GN ) δ
+(π)+γ+(nf , rf ).446

Consider any path π of GN , ending in some node n. First, as N is sound, we can447

compute a run ρπ such that π is a path of ρπ, and ρπ ends in a configuration448

in which n is enabled. We associate with ρπ the timed run ρ+π which asso-449

ciates to every node the latest possible execution date. We have easily δ(ρ+π ) ≥450

δ(π), and then we obtain maxπ∈Paths(GN ) δ(ρ
+
π ) ≥ maxπ∈Paths(GN ) δ(π). As451

maxtime(N ) is the maximal duration over all runs, it is hence necessarily greater452

than maxπ∈Paths(GN ) δ(ρ
+
π ) + γ+(nf , rf ).453

We now prove that maxtime(N ) ≤ maxπ∈Paths(GN ) δ
+(π)+γ+(nf , rf ). Take454

any timed run ρ = (M1, µ1)
(n1,r1)−→ · · · (Mk, µk) of N with a unique maximal node455

nk. We show that there exists a path π of ρ such that δ(ρ) ≤ δ+(π) by induction456

on the length k of ρ. The initialization is trivial for k = 1. Let k ∈ N. Because nk457

is the unique maximal node of ρ, we have δ(ρ) = maxp∈Pnk
µk−1(p)+γ+(nk, rk).458

We choose one pk−1 maximizing µk−1(p). Let ` < k be the maximal index of a459

decision involving process pk−1 (i.e. pk−1 ∈ Pn`
). Now, consider the timed run460

ρ′ subword of ρ, but with n` as unique maximal node (that is, it is ρ where461

nodes ni, i > ` has been removed, but also where some nodes ni, i < ` have been462

removed if they are not causally before n` (in particular, Pni
∩ Pn`

= ∅).463

By definition, we have that δ(ρ) = δ(ρ′) + γ+(n`, r`) + γ+(nk, rk). We ap-464

ply the induction hypothesis on ρ′, and obtain a path π′ of ρ′ ending in n`465

such that δ(ρ′) + γ+(n`, r`) ≤ δ+(π′). It suffices to consider the path π =466

π′.(n`, (pk−1, r`), nk) to prove the inductive step δ(ρ) ≤ δ+(π) + γ+(nk, rk).467

Thus maxtime(N ) = max δ(ρ) ≤ maxπ∈Paths(GN ) δ
+(π) + γ+(nf , rf ). ut

Lemma 1 gives a way to evaluate the maximal execution time. This amounts468

to finding a path of maximal weight in an acyclic graph, which is a standard469

PTIME problem that can be solved using standard max-cost calculation.470

Proposition 3. Computing the maximal execution time for an acyclic sound471

negotiation N = (N,n0, nf ,X ) can be done in time O(|N |+ |X |).472

A direct consequence is that maxtime(N ) ≤ T and maxtime(N ) = T prob-473

lems can be solved in polynomial time when N is sound. Notice that if N is474

deterministic but not sound, then Lemma 1 does not hold: we only have an475

inequality.476

We now turn to mintime(N ). We show that it is strictly harder to compute477

for sound negotiations than maxtime(N ).478

Theorem 5. mintime(N ) ≤ T is NP-complete in the strong sense for sound479

acyclic negotiations, even if N is very weakly non-deterministic.480

Proof (sketch). First, we can decide mintime(N ) ≤ T in NP. Indeed, one can481

guess a final (untimed) run ρ of size ≤ |N |, consider ρ− the timed run corre-482

sponding to ρ where all outcomes are taken at the earliest possible dates, and483

compute in linear time δ(ρ−), and check that δ(ρ−) ≤ T .484
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The hardness part is obtained by reduction from the Bin Packing problem.
The reduction is similar to Knapsack, that we will present in Thm. 7. The
difference is that we use ` bins in parallel, rather than 2 process, one for the
weight and one for the value. The hardness is thus strong, but the negotiation
is not k-layered for a bounded k (It is 2`+ 1 bounded, with ` depending on the
input). A detailed proof is given in Appendix B. ut

We show that mintime(N ) = T is harder to decide than mintime(N ) ≤ T ,485

with a proof similar to Prop. 2.486

Proposition 4. The mintime(N ) = T? decision problem is DP-complete for487

sound acyclic negotiations, even if it is very weakly non-deterministic.488

An open question is whether the minimal execution time can be computed in489

PTIME if the negotiation is both sound and deterministic. The reduction from490

Bin Packing does not work with deterministic (and sound) negotiations.491

7 k-Layered Negotiations492

In the previous sections, we have considered sound negotiations, and determinis-493

tic negotiations. For both classes, computing the minimal execution time cannot494

be done in PTIME (unless NP=PTIME), even if constants are given in unary.495

In this section, we consider k-layeredness (see Section 2), a syntactic property496

that can be efficiently verified (it suffices to compute the depth of each node,497

which can be done in polynomial time).498

7.1 Algorithmic properties499

Let k be a fixed integer. We first show that the maximum execution time can500

be computed in PTIME for k-layered negotiations. Let Ni be the set of nodes501

at layer i. We define for every layer i the set Si of subsets of nodes X ⊆ Ni502

which can be jointly enabled and such that for every process p, there is exactly503

one node n(X, p) in X with p ∈ n(X, p). Formally, we define Si inductively. We504

start with S0 = {n0}. We then define Si+1 from the contents of layer Si: we have505

Y ∈ Si+1 iff
⋃
n∈Y Pn = P and there exist X ∈ Si and an outcome rm ∈ Rm for506

every m ∈ X, such that n ∈ X (n(X, p), p, rm) for each n ∈ Y and p ∈ Pn.507

Theorem 6. Let k ∈ N+. Computing the maximum execution time for a k-508

layered acyclic negotiation N can be done in PTIME. More precisely, the worst-509

case time complexity is O(|P | · |N |k+1).510

Proof (Sketch). The first step is to compute Si layer by layer, by following its511

inductive definition. The set Si is of size at most 2k, as |Ni| < k by definition512

of k-layeredness. Knowing Si, it is easy to build Si+1 by induction. This takes513

time in O(|P ||N |k+1) : We need to consider all k-uple of outcomes for each layer.514

There can be |N |k such tuples. We need to do that for all processes (|P |), and515

for all layers (at most |N |).516
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We then keep for each subset X ∈ Si and each node n ∈ X, the maximal
time fi(n,X) ∈ N associated with n and X. From Si+1 and fi, we inductively
compute fi+1 in the following way: for all X ∈ Si with successor Y ∈ Si+1

for outcomes (rp)p∈P , we denote fi+1(Y, n,X) = maxp∈P (n) fi(X,n(X, p)) +
γ+(n(X, p), rp). If there are several choices of (rp)p∈P leading to the same Y ,
we take rp with the maximal fi(X,n(X, p)) + γ+(n(X, p), rp). We then define
fi+1(Y, n) = maxX∈Si

fi+1(Y, n,X). Again, the initialization is trivial, with
f0({n0}, n0) = 0. The maximal execution time of N is f({nf}, nf ). ut

We can bound the complexity precisely by O(d(N ) · C(N ) · ||R||k∗), with:517

– d(N ) ≤ |N | the depth of nf , that is the number of layers of N , and ||R|| is518

the maximum number of outcomes of a node,519

– C(N ) = maxi |Si| ≤ 2k, which we will call the number of contexts of N , and520

which is often much smaller than 2k.521

– k∗ = maxX∈
⋃

i Si
|X| ≤ k. We say that N is k∗-thread bounded, meaning522

that there cannot be more that k∗ nodes in the same context X of any layer.523

Usually, k∗ is strictly smaller than k = maxi |Ni|, as Ni =
⋃
X∈Si

X.524

Consider again the Brexit example Figure 1. We have (k + 1) = 7, while525

we have the depth d(N ) = 6, the negotiation is k∗ = 3-thread bounded (k∗ is526

bounded by the number of processes), ||R|| = 2, and the number of contexts is527

at most C(N ) = 4 (EU chooses to enforce backstop or not, and Pa chooses to528

go to court or not).529

7.2 Minimal Execution Time530

As with sound negotiations, computing minimal time is much harder than com-531

puting the maximal time for k-layered negotiations:532

Theorem 7. Let k ≥ 6. The Min ≤ T problem is NP-Complete for k-layered533

acyclic negotiations, even if the negotiation is sound and very weakly non-deterministic.534

Proof. One can guess in polynomial time a final run of size ≤ |N |. If the exe-535

cution time of this final run is smaller than T then we have found a final run536

witnessing mintime(N ) ≤ T . Hence the problem is in NP.537

Let us now show that the problem is NP-hard. We proceed by reduction from538

the Knapsack decision problem. Let us consider a set of items U = {u1, . . . un}539

of respective values v1, . . . vn and weight w1, . . . , wn and a knapsack of maximal540

capacity W . The knapsack problem asks, given a value V whether there exists a541

subset of items U ′ ⊆ U such that
∑
ui∈U ′ vi ≥ V and such that

∑
ui∈U ′ wi ≤W .542

We build a negotiation with 2n processes P = {p1, . . . p2n}, as shown in543

Fig. 5. Intuitively, pi, i ≤ n will serve to encode the value of selected items as544

timing, while pi, i > n will serve to encode the weight of selected items as timing.545

Concerning timing constraints for outcomes we do the following: Outcomes546

0, yes and no are associated with [0, 0]. Outcome ci is associated with [wi, wi],547

the weight of ui. Last, outcome bi is associated with a more complex function,548
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Fig. 5. The negotiation encoding Knapsack

such that
∑
i bi ≤W iff

∑
i vi ≥ V . For that, we set [ (vmax−vi)W

n·vmax−V , vmaxW
n·vmax−vi ] for549

outcome bi, where vmax is the largest value of an item, and V is the total value550

we want to reach at least. Also, we set [ (vmax)W
n·vmax−V ,

vmaxW
n·vmax−vi ] for outcome ai. We551

set T = W , the maximal weight of the knapsack.552

Now, consider a final run ρ in N . The only choices in ρ are outcomes yes or553

no from C1, . . . , Cn. Let I be the set of indices such that yes is the outcome from554

all Ci in this path. We obtain δ(ρ) = max(
∑
i/∈I ai +

∑
i∈I bi,

∑
i∈I ci). We have555

δ(ρ) ≤ T = W iff
∑
i∈I wi ≤ W , that is the sum of the weights is lower than556

W , and
∑
i/∈I

(vmax)W
n·vmax−V +

∑
i∈I

(vmax−vi)W
n·vmax−V ≤W . That is, n · vmax −

∑
i∈I vi ≤557

n · vmax − V , i.e.
∑
i∈I vi ≥ V . Hence, there exists a path ρ with δ(ρ) ≤ T = W558

iff there exists a set of items of weight less than W and of value more than V . ut559

It is well known that Knapsack is weakly NP-hard, that is, it is NP-hard only560

when weights/values are given in binary. This means that Thm. 7 shows that561

minimum execution time ≤ T is NP-hard only when T is given in binary. We562

can actually show that for k-layered negotiations, the mintime(N ) ≤ T problem563

can be decided in PTIME if T is given in unary (i.e. if T is not too large):564

Theorem 8. Let k ∈ N. Given a k-layered negotiation N and T written in565

unary, one can decide in PTIME whether the minimum execution time of N is566

≤ T . The worst-case time complexity is O(|N | · |P | · (T · |N |)k).567
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Proof. We will remember for each layer i a set Ti of functions τ from nodes Ni568

of layer i to a value in {1, . . . , T,⊥}. Basically, we have τ ∈ Ti if there exists a569

path ρ reaching X = {n ∈ Ni | f(n) 6= ⊥}, and this path reaches node n ∈ X570

after τ(n) time units. As for Si, for all p, we should have a unique node n(τ, p)571

such that p ∈ n(f, p) and τ(n(τ, p)) 6= ⊥. Again, it is easy to initialize T0 = {τ0},572

with τ0(n0) = 0, and τ0(n) = ⊥ for all n 6= n0.573

Inducively, we build Ti+1 in the following way: τi+1 ∈ Ti+1 iff there exists a574

τi ∈ Ti and rp ∈ Rn(τi,p) for all p ∈ P such that for all n with τi+1(n) 6= ⊥, we575

have τi+1(n) = maxp τi(n(τi, p)) + γ(n(τi, p), rp).576

We have that the minimum execution time for N is minτ∈Tn τ(nτ ), for n the
depth of nf . There are at most T k functions τ in any Ti, and there are at most
|N | layers to consider, giving the complexity. ut

As with Thm. 6, we can more accurately state the complexity as O(d(N ) ·577

C(N ) · ||R||k∗ ·T k∗−1). The k∗−1 is because we only need to remember minimal578

functions τ ∈ Ti: if τ ′(n) ≥ τ(n) for all n, then we do not need to keep τ ′ in Ti.579

In particular, for the knapsack encoding in the proof of Thm. 7, we have k∗ = 3,580

||R|| = 2 and C(N ) = 4.581

Notice that if k is part of the input, then the problem is strongly NP-hard,582

even if T is given in unary, as e.g. encoding bin packing with ` bins result to a583

2`+ 1-layered negotiations.584

8 Conclusion585

In this paper, we considered timed negotiations. We believe that time is of the586

essence in negotiations, as examplified by the Brexit negotiation. It is thus im-587

portant to be able to compute in a tractable way the minimal and maximal588

execution time of negotiations.589

We showed that we can compute in PTIME the maximal execution time for590

acyclic negotiations that are either sound or k-layered, for k fixed. We showed591

that we cannot compute in PTIME the maximal execution time for negotiations592

that are not sound nor k-layered, even if they are deterministic and acyclic593

(unless NP=PTIME). We also showed that surprisingly, computing the minimal594

execution time is much harder, with strong NP-hardness results in most of the595

classes of negotiations, contradicting a claim in [10]. We came up with a new596

reasonable class of negotiations, namely k-layered negotiations, which enjoys597

a pseudo PTIME algorithm to compute the minimal execution time. That is,598

the algorithm is PTIME when the timing constants are given in unary. We599

showed that this restriction is necessary, as the problem becomes NP-hard for600

constants given in binary, even when the negotiation is sound and very weakly601

non-deterministic. The problem to know whether the minimal execution time602

can be computed in PTIME for deterministic and sound negotiation remains603

open.604
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Appendix A: Deterministic Negotiations658

We start by considering the class of deterministic acyclic negotiations. We show659

that both maximal and minimal execution time cannot be computed in PTIME660

(unless NP=PTIME), as the threshold problems are (co-)NP-complete.661

Theorem 3. The mintime(N ) ≤ T decision problem is NP complete, and the662

maxtime(N ) ≤ T decision problem is co-NP complete for acyclic deterministic663

timed negotiations.664

Proof. For mintime(N ) ≤ T , containment in NP is easy: we just need to guess665

a run ρ (of polynomial size as N is acyclic), consider the associate timed run ρ−666

where all decisions are taken at their earliest possible dates, and check whether667

δ(ρ−) ≤ T , which can be done in time O(|N |+log T ).668

For the hardness, we give the proof in two steps. First, we start with a proof669

of Proposition 1 that reachability problem is NP-hard using reduction of 3-CNF670

SAT, i.e., given a formula φ, we build a deterministic negotiation Nφ s.t. φ is671

satisfiable iff Nφ has a final run. In a second step, we introduce timings on this672

negotiation and show that mintime(Nφ) ≤ T iff φ is satisfiable.673

Step 1: Reducing 3-CNF-SAT to Reachability problem.674

Given a boolean formula φ with variables vi, 1 ≤ i ≤ n and clauses cj , 1 ≤ j ≤675

m, for each variable vi we define the sets of clauses Si,t = {cj |vi is present in cj}676

and Si,f = {cj |¬vi is present in cj}. Clauses in Si,t and Si,f are naturally or-677

dered: ci < cj iff i < j. We denote these elements Si,t(1) < Si,t(2) < . . ..678

Similarly for set Si,f.679

Now, we construct a negotiation Nφ with a process Vi for each variable vi680

and a process Cj for each clause cj :681

– Initial node n0 has a single outcome r taking each process Cj to node Lonecj ,682

and each process Vi to node Lonevi .683

– Lonecj has three outcomes: if literal vi ∈ cj , then ti is an outcome, taking684

Vi to Paircj ,vi , and if literal ¬vi ∈ cj , then fi is an outcome, taking Vi to685

Paircj ,¬vi .686

– The outcomes of Loneviare true and false. Outcome true brings vi to687

node T lonevi,1 and outcome false brings vi to node Flonevi,1.688

– We have a node T lonevi,j for each j ≤ |Si,t| and Flonevi,j for each j ≤ |Si,f|,689

with Vi as only process. Let cr = Si,t(j). Node T lonevi,j has two outcomes690

vton bringing Vi to T lonevi,j+1 (or nf if j = |Si,t|), and vtoci,r bringing Vi691

to Paircr,vi . The two outcomes from Flonevi,j are similar.692

– Node Paircr,vi has Vi and Cr as its processes and one outcome ctof which693

takes process Cj to final node nf and process Vi to T lonevi,j+1 (with cr =694

Si,t(j)), or to nf if j = |Si,t|. Node Paircr,¬vi is defined in the same way695

from Flonevi,j .696
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Fig. 3. A part of Nφ where clause cj is (i2 ∨ ¬i ∨ ¬i3) and clause ck is (i4 ∨ ¬i ∨ i5).
Timing is [0, 0] whereever not mentioned
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Claim. Nφ has a final run iff φ is satisfiable.697

Proof. First we show that if there is a run ρ from n0 to nf then φ is satisfiable.698

In ρ, all processes reached nf . So each process Vi takes either outcome true or699

false in ρ. Let val the valuation associated each variable vi with the choice700

true or false by Vi. We now show that all clause cr have at least one literal701

true in val. In ρ, process Cr reaches the final node nf : it must have gone via702

one node either Paircr,vi or Paircr,¬vi , for some i. Wlog, let us assume that Cr703

went to Paircr¬vi . The only way it is possible is for process Vi to have been in704

Flonevi,j , with cr = Si,f(j). This is possible only if Vi decided outcome false at705

Lonevi . So this implies that literal ¬vi of cj is true in val. Hence φ is satisfiable.706

Conversely, we show that if φ is satisfiable then Nφ has final run. Let val a707

satisfiable assignment val : V → {true,false} for φ. We build a run ρ which is708

final. After reaching Lonevi , Vi will decide the outcome according to the value709

of val(vi) and reach Flonevi,1 or T lonevi,1 accordingly. Let Gi(val) be the set710

of clause cj such that i is the minimal literal of cj true under val. When there is711

a choice between two outcomes vton and vtoci,k for process Vi, the run chooses712

vtoci,k iff k ∈ Gi(val). Concerning Cj , it appears in exactly one Gi(val), because713

val satisfies φ. If val(vi) = true, run ρ chooses outcome ti for Vi in node Lonecj ,714

and outcome fi if val(vi) = false. Observe that the same variable vi can be715

associated with several clauses cj , but then all these clauses go to the same type716

of nodes i.e. Paircj ,vi if val(vi) = true and Paircj ,¬vi if val(vi) = false.717

This run ρ is final: Every process Cj reaches nf after participating in exactly
one node Paircj ,vi or Paircj ,¬vi . Every process Vi reaches nf after participating
in zero or more node Paircj ,vi or Paircj ,¬vi (it participates in exactly |Gi| such
nodes). ut

With this we claim that Nφ has a final run iff φ is satisfiable which com-718

pletes the first step of the proof. Observe that the negotiation Nφ constructed719

is deterministic and acyclic (but it is not sound).720

Step 2: Before we introduce timing on Nφ, we introduce a new outcome r′721

at n0 which takes all processes to nf . Now, the timing function γ associated722

with the Nφ is: γ(n0, r) = [2, 2] and γ(n0, r
′) = [3, 3] and γ(n, r) = [0, 0], for723

all node n 6= n0 and all r ∈ Rn. Then, mintime(Nφ) ≤ 2 iff φ has a satisfiable724

assignment: if mintime(Nφ) ≤ 2, there is a run with decision r taken at n0725

which is final. But existence of any such final run implies satisfiability of φ. For726

reverse implication, if φ is satisfiable, then the corresponding run for satisfying727

assignment takes 2 units time, which means that mintime(Nφ) ≤ 2.728

Similarly, we can prove that the MaxTime problem is Co-NP complete by729

changing γ(n0, r
′
) = [1, 1] and asking if maxtime(Nφ) > 1 for the new Nφ. The730

answer will be yes iff φ is satisfiable.731

As a side note, we observe that the NP-hardness for mintime could also have
been proved without introducing the new result r′ but then it would have been
possible that Nφ had no final run making mintime(Nφ) ≤ 2 vacuous. ut

We now consider the related problem of checking if mintime(N ) = T (or if732

maxtime(N ) = T ). These problems are harder than their threshold variant un-733
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Fig. 4. Structure of Nφ,φ′

der usual complexity assumptions: they are DP-complete (Difference Polynomial734

time class, i.e., second level of the Boolean Hierarchy, defined as intersection of735

a problem in NP and co-NP [16]).736

Proposition 2. The mintime(N ) = T and maxtime(N ) = T decision prob-737

lems are DP-complete for acyclic deterministic negotiations.738

Proof. Indeed, it is easy to see that this problem is in DP, as it can be written739

as mintime(N ) ≤ T which is in NP and ¬(mintime(N ) ≤ T − 1)), which is in740

co-NP. To show hardness, we use the negotiation constructed in the above proof741

as a gadget, and show a reduction from the SAT-UNSAT problem (a standard742

DP-complete problem).743

SAT-UNSAT Problem : Given two Boolean expressions φ and φ
′
, both in744

CNF forms with three literals per clause, is it true that φ is satisfiable and φ
′

is745

unsatisfiable? SAT-UNSAT is known to be DP -Complete [16]. We reduce this746

problem to mintime(N ) = T .747

Given φ, φ
′
, we first make the corresponding negotiations Nφ and Nφ′ as in748

the previous proof. Let n0 and nf be the initial and final nodes of Nφ and n
′

0 and749

n
′

f be the inital and final nodes ofNφ′ .(Similarly, for other nodes we write ′ above750

the nodes to signify they belong to Nφ′ ). In the negotiation Nφ′ , we introduce751

a new node nall (see Figure 4), in which all the processes participate. The node752

nall has a single outcome r′all which sends all the processes to nf . Also, for node753
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n
′

0, apart from the outcome r which sends all processes to different nodes, there754

is another outcome rall which sends all the processes to nall.755

Now we merge the nodes nf and n
′

0 and call the merged node nsep. Also nodes756

n0 and n′f now have all the processes of Nφ and Nφ′ participating in them.757

This merged process gives us a new negotiation Nφ,φ′ in which the structure758

above nsep is same as Nφ while below it is same as Nφ′ . Node nsep now has all the759

processes of Nφ and Nφ′ participating in it. The outcomes of nsep will be same760

as that of n′0 (rall, r). For both the outcomes of nsep the processes corresponding761

to Nφ directly go to nf of the Nφ,φ′ . Similarly n0 of Nφ,φ′ which is same n0 of762

Nφ, sends processes corresponding to Nφ′ directly to nsep for all its outcomes.763

We now define timing function γ for Nφ,φ′ which is as follows:764

– γ(Lone
′

vi,r) = [1, 1] for all vi ∈ φ
′

and r ∈ {true, false},765

– γ(nall, r
′
all) = [2, 2] and766

– γ(n, r) = [0, 0] for all other outcomes of nodes.767

The claim is that768

Claim. mintime(Nφ,φ′ ) = 2 iff φ is satisfiable and φ
′

is unsatisfiable.769

Proof. If mintime(Nφ,φ′ ) = 2, this implies that φ is satisfiable, for if it was not770

satifiable then for no run, all the processes corresponding to φ could reach nsep771

and therefore the negotiation could not complete and hence MinTime would be772

infinite. Also φ
′

is unsatisfiable because if it would have been satisfiable then773

there would have been a final run in which the processes after reaching nsep774

choose the outcome r from nsep and complete the negotiation. The time for that775

run would be 1 unit and therefore the mintime(Nφ,φ′ ) 6= 2.776

For the other side of the implication, we can argue similarly that if φ is
satisfiable then the processes of Nφ would complete the structure above nsep
and reach nsep in 0 units of time. From there the processes would have to choose
the outcome rall to reach nf because otherwise, the run would not be final. The
time taken for the path would be 2 units. So total time associated will this run
will be 2 units which will also be the mintime(Nφ,φ′ ). ut

For equality decision problem of MaxTime, the proof is similar; only the
γ(Lone

′

vi , r) = [2, 2] for all vi ∈ φ
′
, γ(nall, r

′
all) = [1, 1] and γ(n, r) = [0, 0] for

all other nodes. The question asked is maxtime(Nφ,φ′ ) = 2 which is true if only

if φ is satisfiable and φ
′

is unsatisfiable. ut

Finally, we consider a related problem of deciding if a bit of mintime(N ) is777

1 (or similarly with maxtime(N )). Perhaps surprisingly, we obtain that these778

problems goes even beyond DP (the second level of the Boolean Hierarchy) and779

is in fact hard for ∆P
2 , which contains the whole Boolean Hierarchy:780

Theorem 4. Given an acyclic deterministic timed negotiation and a positive781

integer k, computing the kth bit of the maximum/minimum execution time is782

∆P
2 complete.783
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Proof. Containment is again relatively easy. Given an acyclic deterministic timed784

negotiation, we can compute the largest possible time attainable as a function785

of the number of nodes and maximal constant in each node. Now guess the786

min/max time (in binary) and then check it using NP-oracle or equivalently787

Co-NP oracle calls.788

The hardness is not so simple to obtain. We first notice that it suffices to789

show the problem of whether maxtime/mintime(N ) = odd ? is ∆p
2 hard. This is790

because odd or even is the same as the last bit. We first show that maxtime(N )791

= odd is ∆p
2 complete.792

Consider the following problem: Given a Boolean formula φ(x1, x2, ...xn), is793

xn = 1 in the lexicographically largest satisfying assignment of φ?794

The above problem is known to be ∆p
2 complete [14] and we reduce it to the795

decision problem of maxtime(N ) = odd? First, we convert φ to 3-CNF form us-796

ing Tseitin transformation. Let the new variables introduced be called t1, t2, ...tk.797

So φ(x1, x2, ...xn) is equisatisfiable to 3-CNF φ
′
(v1, v2, ...vn, vn+1, ...vn+k) where798

vi = xi for i ≤ n and vi = ti for i > n. We convert φ
′

to a negotiation Nφ′ . Nφ′799

has the same structure as that of Nφ which was constructed in Theorem 3 apart800

from some change in arcs and participation of processes in nodes.801

Paritcipation changes are the following : The node Lonevi associated with each802

variable vi of φ
′

now involve two processes namely Vi and Vi−1. (Lonev1 has only803

V1 as process). Both of the outcomes, true and false associated with Lonevi804

take Vi−1 to nf while true takes Vi to TLonevi,1 and false takes Vi to Flonevi,1.805

Change in arcs is the following: The outcome vton of FLonevi,r where r = |Si,f|806

and TLonevi,r′ where r′ = |Si,t| takes Vi to Lonevi+1
(Except for i = n + k for807

which there is no change). We now define timing function γ as follows:808

– γ(Lonevi , true) = [2n−i, 2n−i] for all i ≤ n and809

– γ(n, r) = 0 for all other combination of nodes and outcomes.810

The claim is that maxtime(Nφ′ ) = odd iff xn = 1 in the lexicographically811

largest satisfying assignment of φ.812

813

To prove the claim, we prove a stronger outcome that there is a run which is814

final and takes time t iff there is a satisfying assignment to φ whose lexicographic815

value is same as t in binary.816

817

To prove the forward implication, consider any run σ which is final. Now,818

just like the proof in 3, the process Vi must have choosen either true or false at819

node Lonevi . The assignment f , corresponding to this outcome chosen by each820

Vi is essentially the one whose lexicographic value is same as t. The fact that821

this assignment is satisifable follows from the proof of theorem 3. To show that822

that lexicorgraphic value is same, first of all the observe that time taken t can be823

written as 2n−i1 + 2n−i2 + ...+ 2n−ik where Vij are those processes which chose824

true at Lonevi . Moreover ij ≤ n, which implies that all these variables are also825

present in φ. Also the the contribution of a variable xij (which is same as vij )826

in lexicographic value will be 2n−ij which is same as its contribution in t. Hence827

the forward implication.828
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For backward implication, consider any satisfiable assignment f of φ. Since829

φ and φ
′

are equisatisfiable hence there will exist an satisfiable assignment f
′

to830

φ
′
, such that f ′(xi) = f(vi) for i ≤ n. Now following the proof of831

Thm. 3, it is easy see that the run σ corresoponding to the assignment f
′

will832

be final. Moreover the time taken for the path will be 2n−i1 + 2n−i2 + ...+ 2n−ik833

where f ′(vik) = true. Since all these ij ≤ n, these variables will also be present834

in φ and their contribution in lexicographic value of f would also be 2n−ij . And835

hence the backward implication.836

This proves the claim and shows that maxtime(Nφ′ ) = odd iff xn = 1 in the
lexicographically largest satisfying assignment of φ. ut

Finally, we note that if we were interested in the optimization and not the837

decision variant of the problem, the above proof can be adapted to show that838

the optimization variants are OptP-Complete (as defined in [14]).839

Appendix B: Sound Negotiations840

Sound negotiations are negotiations in which every run can be extended to841

a final run, as in Fig. 1. In this section, we show that maxtime(N ) can be842

computed in PTIME for sound negotiations, hence giving PTIME complexi-843

ties for the maxtime(N ) ≤ T? and maxtime(N ) = T? questions. However, we844

show that mintime(N ) ≤ T is NP-complete for sound negotiations, and that845

mintime(N ) = T is DP-complete, even if T is given in unary.846

Consider the graph GN of a negotiation N . Let π = (n0, (p0, r0), n1) · · ·847

(nk, (pk, rk), nk+1) be a path of GN . We define the maximal execution time of848

a path π as the value δ+(π) =
∑
i∈0..k γ

+(ni, ri). We say that a path π =849

(n0, (p0, r0), n1) · · · (n`, (p`, r`), n`+1) is a path of some run ρ = (M1, µ1)
(n1,r

′
1)−→850

· · · (Mk, µk) if r0, . . . , r` is a subword of r′1, . . . , r
′
k.851

Lemma 1. Let N be an acyclic and sound timed negotiation. Then maxtime(N )852

= maxπ∈Paths(GN ) δ
+(π) + γ+(nf , rf ).853

Proof. Let us first prove thatmaxtime(N ) ≥ maxπ∈Paths(GN ) δ
+(π)+γ+(nf , rf ).854

Consider any path π of GN , ending in some node n. First, as N is sound, we can855

compute a run ρπ such that π is a path of ρπ, and ρπ ends in a configuration856

in which n is enabled. We associate with ρπ the timed run ρ+π which asso-857

ciates to every node the latest possible execution date. We have easily δ(ρ+π ) ≥858

δ(π), and then we obtain maxπ∈Paths(GN ) δ(ρ
+
π ) ≥ maxπ∈Paths(GN ) δ(π). As859

maxtime(N ) is the maximal duration over all runs, it is hence necessarily greater860

than maxπ∈Paths(GN ) δ(ρ
+
π ) + γ+(nf , rf )861

We now prove that maxtime(N ) ≤ maxπ∈Paths(GN ) δ
+(π) + γ+(nf , rf ).862

Take any timed run ρ = (M1, µ1)
(n1,r1)−→ · · · (Mk, µk) of N with a unique863

maximal node nk. We show that there exists a path π of ρ such that δ(ρ) ≤ δ+(π)864

by induction on the length k of ρ. The initialization is trivial for k = 1. Let k ∈ N.865

Because nk is the unique maximal node of ρ, we have δ(ρ) = maxp∈Pnk
µk−1(p)+866
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γ+(nk, rk). We choose one pk−1 maximizing µk−1(p). Let ` < k be maximal index867

of a decision involving process pk−1 (i.e. pk−1 ∈ Pn`
). Now, consider the timed868

run ρ′ subword of ρ, but with n` as unique maximal node (that is, it is ρ where869

nodes ni, i > ` has been removed, but also where some nodes ni, i < ` have been870

removed if they are not causally before n` (in particular, Pni
∩ Pn`

= ∅).871

By definition, we have that δ(ρ) = δ(ρ′) + γ+(n`, r`) + γ+(nk, rk). We ap-872

ply the induction hypothesis on ρ′, and obtain a path π′ of ρ′ ending in n`873

such that δ(ρ′) + γ+(n`, r`) ≤ δ+(π′). It suffices to consider the path π =874

π′(n`, (pk−1, r`), nk) to prove the inductive step δ(ρ) ≤ δ+(π) + γ+(nk, rk).875

Thus maxtime(N ) = max δ(ρ) ≤ maxπ∈Paths(GN ) δ
+(π) + γ+(nf , rf ). ut

Lemma 1 gives a way to evaluate the maximal execution time. This amounts876

to finding a path of maximal weight, which is a standard PTIME graph problem877

that can be solved using standard max-cost calculation.878

Proposition 3. Computing the maximal execution time for an acyclic sound879

negotiation N = (N,n0, nf ,X ) can be done in time O(|N |+ |X |).880

Proof. First of all, we compute a topological order < on nodes of the graph GN ,881

that is for all n′ ∈ X (n, r), we have n < n′. This can be done in O(|N |+ |X |) [3].882

Then, we follow the total order < on nodes of GN and attach to each node n a883

maximal time δ+(n) for runs ending at node n in the following way: δ+(n0) = 0884

and for each node n, we let δ+(n) = maxn′|(n′,(p,r),n)∈GN (γ+(n′, r) + δ+(n′)). It885

is easy to see that δ+(n) is the maximal δ(π) over all paths π from n0 to n. As886

every transition of GN is considered only once, the computation of δ+ can be887

done in O(|N |+ |X |). It then suffices to return δ+(nf ) + γ+(nf , rf ). ut888

A direct consequence is that maxtime(N ) ≤ T and maxtime(N ) = T prob-889

lems can be solved in polynomial time when N is. Notice that if N is determin-890

istic but not sound, then Lemma 1 does not hold: we only have an inequality.891

We now turn to mintime(N ). We show that it is strictly harder to compute892

for sound negotiations than maxtime(N ).893

Theorem 5. mintime(N ) ≤ T is NP-complete in the strong sense for sound894

acyclic negotiations, even if N is very weakly non-deterministic.895

Proof. First, we can decide mintime(N ) ≤ T in NP. Indeed, one can guess a896

final (untimed) run ρ of size ≤ |N |, consider ρ− the timed run corresponding to897

ρ where all outcomes are taken at the earliest possible dates, and compute in898

linear time δ(ρ−), and check that δ(ρ−) ≤ T .899

The hardness part is obtained by reduction from the Bin Packing problem.900

We give a set U of items, a size s(u) ∈ N for each u ∈ U , a positive integer901

B defining a bin capacity. The bin packing problem asks whether there exists902

a partition of U into k disjoint subsets U1, U2...Uk such that the sum of sizes903

of items in each Ui is smaller or equal to B. Bin Packing is known to be NP-904

Complete [11] in the strong sense, that is even if the constants are given in905

unary. Let us now show that every instance of Bin Packing can be reduced to a906

min-time problem for very-weakly non-deterministic sound negotiations.907
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Given a set U of items, a bin capacity B and number k of bins, we build a908

timed negotiation NU,k with k processes ui,1, ui,2, ..., ui,k for each item ui ∈ U ,909

and k additional processes v1, v2, ..vk. The timing of a process vi will encode the910

total size of items put in the bin i. We then show that Bin Packing with items911

U , k bins, and a bound B has a solution iff mintime(NU,k) ≤ B.912

We describe the negotiation NU,k layer by layer. In total we will have |U |+ 1913

layers: intuitively, we will consider one item in each layer, and make one global914

decision to decide in which bin this item goes. The first layer has only the initial915

node n0. The set of processes involved in n0 is the set of all processes. The916

outcomes from the initial node are r1,1, . . . , r1,k, which tell in which bin 1, . . . , k917

the first item is placed. Outcome r1,i leads process ui,1 and vi to node YES1
i .918

It leads processes uj,1 and vj to NO1
j for every j 6= i. Last, it leads all other919

processes in {uj,m | j > 1, 1 ≤ m ≤ k} to node n1. Intuitively, moving to node920

YES1
i means that item u1 is placed in bin i. The second layer has 2k+ 1 nodes:921

YES2
1 . . .YES2

k, NO2
1 . . .NO2

k and n1. The timing of outcome r1,i from node n0922

is γ(n0, r1,i) = [0, 0].923

Yesij
vj ui,j

Noij
vj ui,j

ni
ui+1,1 ui+1,k ui+2,1 un,k

r1 rk r1 rk

Yesi+1
j

vj ui+1,j

[s(ui), s(ui)] rj

Noi+1
j

vj ui+1,j

[0,0]

r¬j

Garbagei
u<i,`

Garbagei+1
ui,j u<i,`

ni+1

ui+2,1 un,k

r1...rk

Fig. 6. Layer i of the very weakly non-deterministic N (U, k)

Inductively, layer i is defined as in Fig 6. Node ni contains processes uj,` for924

all j > i and all `. It is similar to n0, with outcome ri+1,1, . . . , ri+1,k. Outcome925

ri+1,` leads process ui+1,` to node Y esi+1
` , and process ui+1,j to Noi+1

j for all926

j 6= `. Other processes ui′,j with i′ > i + 1 are sent to ni+1. The associated927

timings are [0, 0].928

Node Garbagei collects all nodes u`,j with ` < i. There is a unique outcome,929

with associated timing [0, 0], leading all processed to Garbagei+1.930

Node YESij has a unique outcome r, with timing γ(YESij , r) = [s(ui), s(ui)],931

and with X (YESij , r) = {YESi+1
j ,Noi+1

j }. That is, node YESij is non determinis-932

tic, and it awaits the decision from ui+1,j to known whether it will go to YESi+1
j933

or to Noi+1
j . Last, ui,j is sent to node Garbagei+1. This allows each nodes to934

have at least one deterministic process, as vi only are non-deterministic.935

In the same way, NOi
j has a unique outcome r, timed with γ(NOi

j , r) = [0, 0],936

and with X (NOi
j , r) = {YESi+1

j ,Noi+1
j }. It sends process uj,i to Garbagei+1.937
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The last layer has only node nf . Nodes Y eski and Noki both have a single938

outcome which take all their processes to nf .939

The timing function γ is defined as follows: γ(Y esij , ri) = [s(ui), s(ui)] and940

γ(n, r) = [0, 0] for all other node and outcome r.941

We now prove that MinTime(NU,k) ≤ B iff the answer to Bin Packing is942

positive. The maximal execution time over runs ρ of NU,k is the maximal value943

of all valuations µ(vj) and µ(ui,j), with i ∈ 1..|U |, j ∈ 1..k. Take the valuation944

µ at the last step before (nf , rf ). Consider t = maxj µ(vj). We have easily that945

µ(ui,j) ≤ t for all i, j by construction, because each ui,j had the same timing946

as vj before reaching a garbage node. Now, we have µ(vj) =
∑

(Yesij ,ri)∈ρ
s(ui).947

Hence, δ(ρ) = maxj∈1..k µ(vj). That is, mintime(N (U,B, k) ≤ B iff there is948

a path ρ such that µ(vj) =
∑

(Yesij ,ri)∈ρ
s(ui) ≤ B for all j, ie there exists a949

valuation such that each item is in one bin, and no bin exceeds its bound B.950

Last, we now show that NU,k is a very weakly non-deterministic, sound and951

layered negotiations. First, the only processes that have non-deterministic tran-952

sitions are processes v1, . . . vk, from Y esij and NOij nodes. However, both nodes953

also have the same deterministic process uij . Thus NU,k is very weakly non-954

deterministic. Let us now prove soundness. The only choices are made from955

node ni, the rest just follow in a unique way. From any configuration M , let i956

such that M(ui+1, j) = {ni} for some j. By construction, i is unique. We can957

then do steps ri+1,1 . . . rn,1, that is chosing to place items i+ 1, . . . , n to the first958

bin. The steps from other processes are uniquely derived, and all processes reach959

nf . The layeredness comes from the definition. Actually, NU,k is 2k+ 2-layered,960

for k the number of bins. However, as k is part of the input, it does not fall in961

our k-layered restriction. ut962

We show that mintime(N ) = T is harder to decide than mintime(N ) ≤ T :963

Proposition 4. The mintime(N ) = T? decision problem is DP-complete for964

sound acyclic negotiations, even if it is very weakly non-deterministic.965

Proof. The reduction is very similar to proof of Proposition 2. First, we define966

the complement of Bin-Packing Problem, Non-Bin-Packing Problem:967

Given a set U of items, a size s(u) ∈ N for each u ∈ U , a positive integer bin968

capacity B, does for any partition U into k disjoint subsets U1, U2...Uk there969

exist a subset Ui such that the sum of sizes of the items in Ui is more than B?970

Since the Bin-Packing Problem is NP-Complete, so the Non-Bin-Problem is co-971

NP Complete. Now consider the following Bin-Non-Bin Problem :972

Given two instances of Bin-Packing parameters, P1 = (U1, s1, B1, k1) and973

P2 = (U2, s2, B2, k2), does P1 satisfy Bin-Packing Problem and P2 satisfy Non-974

Bin-Packing Problem?975

Bin-Non-Bin Problem is DP-Complete, so we reduce it to our equality de-976

cision problem of min time. First, we construct the negotiations NU ′1,B′1,k1 and977

NU ′2,B′2,k2 like in proof of Theorem 5, but only after tripling each s(u) in U1 and978

doubling each s(u) in U2. Likewise we triple B1 and double B2, so that new979
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B
′

1 = 3 ∗B1 and B
′

2 = 2 ∗B2.980

In NU ′1,B′1,k1 , we add a new node n0 with a single outcome r which now acts981

as the first node. The older n0 is now called n′0. We also add a new process a1,982

which goes to another new node na1(has only a1 as process) from n0 for its single983

outcome r. Outcome r sends all other processs from n0 to n′0. Node na1 has a984

single outcome r1 which takes a1 to nf . Also, γ(na1 , r1) = [3 ∗B1 + 1, 3 ∗B1 + 1]985

while γ(n0, r) = [0, 0].986

Similarly in NU ′2,B′2,k2 , we add a new node n0 with two outcomes r and rnew987

which now acts as the first node. The older n0 is now called n′0. We also add a988

new process a2, which goes to another new node na2(has only a2 as process) from989

n0 for its outcome r. Outcome r sends all other processes from n0 to n′0. Node990

na2 has a single outcome r2 which takes a2 to nf . Also, γ(na2 , r2) = [2∗B1, 2∗B1]991

while γ(n0, r) = [0, 0]. For outcome rnew of n0, all processes(including a2) di-992

rectly go to nf . Also, γ(n0, rnew) = [2 ∗B2 + 1, 2 ∗B2 + 1].993

Now we merge the two negotiations NU ′1,B′1,k1 and NU ′2,B′2,k2 in the same way994

as we merged in Corollary 2, merging the nf of NU ′1,B′1,k1 with n0 of NU ′2,B′2,k2995

and making other similar changes we did in Corollary 2. We call this new ne-996

gotiation NP ′1 ,P ′2 . Note the negotiation NP ′1 ,P ′2 is sound as well as very weakly997

non-deterministic.998

The claim is that mintime(NP ′1 ,P ′2 ) = 3 ∗B1 + 2 ∗B2 + 2 iff (P1, P2) satisfy999

Bin-Non-Bin Problem.1000

We first show the reverse implication i.e if (P1, P2) satisfy Bin-Non-Bin Problem,1001

then mintime(NP ′1 ,P ′2 ) = 3∗B1+2∗B2+2. Since P1 is satisfiable, so the mintime1002

to complete the structure above nsep ofNP ′1 ,P ′2 is 3∗B1+1. This is because all the1003

processes corresponding to NU ′1,B′1,k1 take (≤ 3 ∗B) time to reach nsep (because1004

P1 is satisfies Bin-Packing) while a1 takes 3∗B1 +1 units of time. After reaching1005

nsep, processes can now take either outcome r2 or rnew. If processes choose1006

outcome r2, then the timetaken by any final run will be (≥ 2∗ (B2 + 1)) because1007

P2 satisfies Non-Bin-Packing. On the other hand, if processes choose rnew to1008

reach nf , then the time taken will be 2 ∗B2 + 1. So it is clear mintime for part1009

below nsep is 2 ∗B2 + 1. So, overall the mintime(NP ′1 ,P ′2 ) = 3 ∗B1 + 2 ∗B2 + 2.1010

For forward implication, we consider all four scenerios of (P1, P2) and argue that1011

P1 satisfies Bin-Packing and P2 satisfies Non-Bin-Packing is the only possibility.1012

First let’s assume that P1 does not satisfy Bin-Packing. Then the mintime to1013

complete the structure above nsep is (≥ 3 ∗ (B1 + 1)). This is beacuse processes1014

corresponding to NU ′1,B′1,k1 take at least 3 ∗ (B1 + 1) time to reach nsep while1015

a1 take 3 ∗B1 + 1. Now since the mintime which can be taken to reach nf from1016

nsep in either case whether P2 satisfies Non-Bin-Packing or not is (≥ 2 ∗B2) so1017

the min time to complete (NP ′1 ,P ′2 ) ≥ 3 ∗B1 + 2 ∗B2 + 3. Hence this shows that1018

P1 satisfies Bin-Packing. This also shows the final run corresponding to mintime1019

of NP ′1 ,P ′2 takes exactly 3 ∗ B1 + 1 units of time to reach nsep from n0 (i.e. all1020

processes have reached nsep) if mintime(NP ′1 ,P ′2 ) = 3 ∗B1 + 2 ∗B2 + 2.1021

Now if we assume the P2 does not satisfy Non-Bin-Packing, then the mintime to1022

reach nf from nsep is 2 ∗ B2. And we already know that mintime to reach nsep1023
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from n0 is 3∗B1 +1. So mintime(NP ′1 ,P ′2 ) = 2∗B2 +3∗B1 +1. Hence this leaves1024

us with the only case when P1 satisfies Bin-Packing and P2 satisfies Non-Bin-1025

Packing for which we already know that the min time taken is 3∗B1 +2∗B2 +21026

from the reverse implication. ut1027

An open question is whether the minimal execution time can be computed1028

in PTIME if the negotiation is both sound and deterministic. The reduction to1029

bin packing does not work with deterministic (and sound) negotiations.1030

Appendix C: k-Layered Negotiations1031

In the previous sections, we have considered sound negotiations, and determinis-1032

tic negotiations. For both classes, computing the minimal execution time cannot1033

be done in PTIME (unless NP=PTIME), even if constants are given in unary.1034

In this section, we consider k-layeredness (see Section 2), a syntactic property1035

that can be efficiently verified (it suffices to compute the depth of each node,1036

which can be done in polynomial time).1037

8.1 Algorithmic properties1038

Let k be a fixed integer. We first show that Reachability, Soundness and max-1039

imum execution time can be checked in PTIME for k-layered negotiations (the1040

two first results were stated in Section 2). Let Ni be the set of nodes at layer1041

i. We define for every layer i the set Si of subsets of nodes X ⊆ Ni which can1042

be jointly enabled and such that for every process p, there is exactly one node1043

n(X, p) in X with p ∈ n(X, p). Formally, we define Si inductively. We start with1044

S0 = {n0}. We then define Si+1 from the contents of layer Si: we have Y ∈ Si+11045

iff
⋃
n∈Y Pn = P and there exist X ∈ Si and an outcome rm ∈ Rm for every1046

m ∈ X, such that n ∈ X (n(X, p), p, rm) for each n ∈ Y and p ∈ Pn.1047

Theorem 6. Let k ∈ N+. Checking reachability, soundness and computing the1048

maximum execution time for a k-layered acyclic negotiation N can be done in1049

PTIME. More precisely, the worst-case time complexity is O(|P | · |N |k+1).1050

Proof (Sketch of Proof). The algorithm has the same form for all problems. The1051

basis is to compute Si layer by layer, by following its inductive definition. The1052

set Si is of size at most 2k, as |Ni| < k by definition of k-layerness. Knowing Si,1053

it is easy to build Si+1 by induction. This takes time at most O(|P ||N |k+1) : We1054

need to consider all k-uple of outcomes for each layer. There can be |N |k such1055

tuples. We need to do that for all processes (|P |), and for all layers (at most1056

|N |).1057

For reachability, we just need to check whether layer Sd = {nf}, where d is1058

the depth of nf .1059

For soundness, let us denote by Next(X, (rn)n∈X) the set of nodes that1060

are successors of nodes in X after outcomes (rn)n∈X . We need to check that1061

for all layer i, for all set X ∈ Si and all tuple of outcomes (rn)n∈X , there1062
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is a Y ⊆ Next(X, (rn)n∈X) such that every process p is in exactly one node1063

n(Y, p) of Y . All nodes of Next(X, (rn)n∈X) are at depth i + 1, and thus there1064

are at most k nodes in Next(X, (rn)n∈X). There are thus at most 2k subset1065

Y ⊆ Next(X, (rn)n∈X) and we can check them one by one.1066

For maximal execution time, we keep for each subset X ∈ Si and each
node n ∈ X, the maximal time fi(n,X) ∈ N associated with n and X. From
Si+1 and fi, we inductively compute fi+1 in the following way: for all X ∈ Si
with successor Y ∈ Si+1 for outcomes (rp)p∈P , we denote fi+1(Y, n,X) =
maxp∈P (n) fi(X,n(X, p))+γ+(n(X, p), rp). If there are several choices of (rp)p∈P
leading to the same Y , we take rp with the maximal fi(X,n(X, p))+γ+(n(X, p), rp).
We then define fi+1(Y, n) = maxX∈Si

fi+1(Y, n,X). Again, the initialization is
trivial, with f0({n0}, n0) = 0. The maximal execution time of N is f({nf}, nf ).
That is, for all nodes (at most |N |), we have to consider every k-uple of out-
comes, and there are at most |N |k of them, and every process to compute the
max, and the complexity is still in O(|P | · |N |k+1). ut

We can bound the complexity precisely by O(d(N ) · C(N ) · ||R||k∗), with:1067

– d(N ) ≤ |N | the depth of nf , that is the number of layers of N , and ||R|| is1068

the maximum number of outcomes of a node,1069

– C(N ) = maxi |Si| ≤ 2k, which we will call the number of contexts of N , and1070

which is often much smaller than 2k.1071

– k∗ = maxX∈
⋃

i Si
|X| ≤ k. We say that N is k∗-thread bounded, meaning1072

that there cannot be more that k∗ nodes in the same context X of any layer.1073

Usually, k∗ is strictly smaller than k = maxi |Ni|, as Ni =
⋃
X∈Si

X.1074

Consider again the Brexit example Figure 1. We have (k + 1) = 7, while1075

we have the depth d(N ) = 6, the negotiation is k∗ = 3-thread bounded (k∗ is1076

bounded by the number of processes), and the number of contexts is at most1077

C(N ) = 4 (EU chooses to enforce backstop or not, and Pa chooses to go to court1078

or not).1079

8.2 Minimal Execution Time1080

As with sound negotiations, computing minimal time is much harder than com-1081

puting the maximal time for k-layered negotiations:1082

Theorem 7. Let k ≥ 6. The Min ≤ T problem is NP-Complete for k-layered1083

acyclic negotiations, even if the negotiation is sound and very weakly non-deterministic.1084

Proof. One can guess in polynomial time a final run of size ≤ |N |. If the exe-1085

cution time of this final run is smaller than T then we have found a final run1086

witnessing Min(N ) ≤ T . Hence the problem is in NP.1087

Let us now show that the problem is NP-hard. We proceed by reduction from1088

the knapsack decision problem. Let us consider a set of items U = {u1, . . . un}1089

of respective values v1, . . . vn and weight w1, . . . , wn and a knapsack of maximal1090

capacity W . The knapsack problem asks, given a value V whether there exists a1091

subset of items U ′ ⊆ U such that
∑
ui∈U ′ vi ≥ V and such that

∑
ui∈U ′ wi ≤W .1092
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We build a negotiation with 2n processes P = {p1, . . . p2n}. Intuitively, pi, i ≤1093

n will serve to encode the value as timing, while pi, i > n will serve to encode1094

the weight as timing. We set the set of nodes N = {n0, nf} ∪ {Ci | i ∈ 1..n} ∪1095

{nL,0,i, nL,1,i, nR,0,i, nR,1,i | i ∈ 1..n}. Intuitively, node nL,1,i (resp nR,1,i) will1096

be used to remember that item i is placed in the knapsack and that its value1097

(resp. weight) needs to be added. For all i, node nL,1,i (resp. nR,1,i) has a unique1098

possible outcome, bi (resp. ci). Nodes of the form nL,0,i remember that item i1099

has not been placed in the knapsack, and they have outcome ai. Nodes of the1100

form nR,0,i remember that item i has not been placed in the knapsack, and they1101

all have outcome 0. This outcome does not change the execution time, matching1102

the fact that the current weight and value of the knapsack is not increased.1103

Last, nodes of the form Ci will just remember the items that have already1104

been considered. These nodes have two outputs, yes and no, telling whether the1105

item i should be placed in the knapsack or not, consistently for weight and value1106

processes.1107

We set Pn0 = Pnf
= P , and for other nodes nL,0,i, PnL,0,i

= PnL,1,i
=1108

{p1 . . . pi} and PnR,0,i
= PnR,1,i

= {pn+1 . . . pn+i}. Last PCi
= {pi+1 . . . pn.pn+i . . . p2n}.1109

We define the transition relation as follows: X (n0, yes, p1) = {nL,1,i}, and1110

X (n0,no, p1) = {nL,0,1}, such that process p1 remembers that the item is picked/notpicked.1111

In the same way, X (n0,no, pn+1) = {nR,0,1} and X (n0, yes, pn+1) = {nR,1,1} for1112

process pi+1. Hence both process p1, pn+1 will have the same information about1113

whether the first item is picked or not. Finally, for every k ∈ 2..n, we define1114

X (n0,no, pk) = X (n0,no, pk+n) = X (n0, yes, pk) = X (n0,no, pk+n) = {C1}.1115

Other layers are similar: for i ∈ 1..n, we have X (Ci,no, pi) = {nL,0,i+1}1116

X (Ci, yes, pi) = {nL,1,i+1}, Similarly, for every i ∈ 1..n, X (Ci,no, pi+n) =1117

{nR,0,i+1}, and X (Ci, yes, pi+n) = {nR,1,i+1}. We set X (Ci,no, pj) = X (Ci, yes, pj) =1118

{Ci+1} for every j ∈ [i+ 1, n−1] ∪ [n+ i+ 1, 2n].1119

The most interesting set of transitions are to interface nL,0,i, nL,1,i, nR,0,i, nR,1,i1120

with the next layer, in a non deterministic way because they dont know whether1121

the next item will be picked or not: X (nL,0,i, ai, pj) = X (nL,1,i, bi, pj) = {nL,0,i+1, nL,1,i+1}1122

for j ∈ 1..i and, X (nR,0,i, 0, pj) = X (nR,1,i, ci, pj) = {nR,0,i+1, nR,1,i+1} for1123

j ∈ n+ 1..n+ i.1124

Last, all processes synchronize on nf by setting )X (nL,0,n, 0, pj) = X (nL,1,n, bn, pj) =1125

X (nR,0,n, 0, pj) = X (nR,1,n, cn, pj) = {nf}1126

We now have to set timing constraints for outcomes. Outcomes 0, yes and1127

no are associated with [0, 0]. Outcome ci is associated with [wi, wi], the weight1128

of ui. Last, outcome bi is associated with a more complex function, such that1129 ∑
i bi ≤ W iff

∑
i vi ≥ V . For that, we set [ (vmax−vi)W

n·vmax−V , vmaxW
n·vmax−vi ] for outcome1130

bi, where vmax is the largest value of an item, and V is the total value we want to1131

reach at least. Also, we set [ (vmax)W
n·vmax−V ,

vmaxW
n·vmax−vi ] for outcome ai. We set T = W ,1132

the maximal weight of the knapsack.1133

Now, consider a final run ρ in N . The only choice is about yes, no from1134

Ci. Let I be the set of indices such that yes is the outcome from all Ci in1135

this path. We obtain δ(ρ) = max(
∑
i/∈I ai +

∑
i∈I bi,

∑
i∈I ci). We have δ(ρ) ≤1136

T = W iff
∑
i∈I wi ≤ W , that is the sum of the weight are lower than W , and1137
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Fig. 5. The negotiation encoding Knapsack

∑
i/∈I

(vmax)W
n·vmax−V +

∑
i∈I

(vmax−vi)W
n·vmax−V ≤W . That is, n·vmax−

∑
i∈I vi ≤ n·vmax−V ,1138

i.e.
∑
i∈I vi ≥ V . Hence, there exists a path ρ with δ(ρ) ≤ T = W iff there exists1139

a set of items of weight less than W and of value more than V .1140

So, given a knapsack of size n, a value V and a weight limit W one can build1141

a negotiation NKnap
V with O(3n + 2) nodes. We can encode all weights with1142

log(vmax.W ) + log(n.vmax) bits. One can notice that NKnap
V is 5-layered and1143

sound.1144

However, it is not (weakly) non-deterministic because of nodes nL,0,i, nL,1,i, nR,0,i, nR,1,i.1145

It is easy to add two processes V (resp. W ), present in all nodes nL,0,i, nL,1,i1146

(resp nR,0,i, nR,1,i), and make process Pi (resp. Pn+i leave these nodes, deter-1147

ministically leading to a new node garbagei+1 at layer i+1. Then the negotiation1148

is very weakly deterministic, and 6-layered. ut1149

Following the same lines as for the proofs of Propositions 2 and 4, a conse-1150

quence of Theorem 7 is that the Min = T problem is in DP for k-layered acyclic1151

negotiations.1152

It is well known that Knapsack is weakly NP-hard, that is it NP-hard only1153

when weights/values are given in binary. This means that Thm. 7 shows that1154

minimum execution time ≤ T is NP-hard only when T is given in binary. We1155

can actually show that for k-layered negotiations, the mintime(N ) ≤ T problem1156

can be decided in PTIME if T is given in unary (i.e. if T is not too large):1157
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Theorem 8. Let k ∈ N. Given a k-layered negotiation N and T written in1158

unary, one can decide in PTIME whether the minimum execution time of N is1159

≤ T . The worst-case time complexity is O(|N | · |P | · (T · |N |)k).1160

Proof. We will remember for each layer i a set Ti of functions τ from nodes Ni1161

of layer i to a value in {1, . . . , T,⊥}. Basically, we have τ ∈ Ti if there exists a1162

path ρ reaching X = {n ∈ Ni | f(n) 6= ⊥}, and this path reaches node n ∈ X1163

after τ(n) time units. As for Si, for all p, we should have a unique node n(τ, p)1164

such that p ∈ n(f, p) and τ(n(τ, p)) 6= ⊥. Again, it is easy to initialize T0 = {τ0},1165

with τ0(n0) = 0, and τ0(n) = ⊥ for all n 6= n0.1166

Inducively, we build Ti+1 in the following way: τi+1 ∈ Ti+1 iff there exists a1167

τi ∈ Ti and rp ∈ Rn(τi,p) for all p ∈ P such that for all n with τi+1(n) 6= ⊥, we1168

have τi+1(n) = maxp τi(n(τi, p)) + γ(n(τi, p), rp).1169

We have that the minimum execution time for N is minτ∈Tn τ(nτ ), for n the
depth of nf . There are at most T k functions τ in any Ti, and there are at most
|N | layers to consider, giving the complexity. ut

As with Thm. 6, we can more accurately state the complexity as O(d(N ) ·1170

C(N ) · ||R||k∗ ·T k∗−1). The k∗−1 is because we only need to remember minimal1171

functions τ ∈ Ti: if τ ′(n) ≥ τ(n) for all n, then we do not need to keep τ ′ in Ti.1172

In particular, for the knapsack encoding in the proof of Thm. 7, we have k∗ = 3,1173

||R|| = 2 and C(N ) = 4.1174

Notice that if k is part of the input, then the problem is strongly NP-hard,1175

even if T is given in unary, as e.g. encoding bin packing with k bins result to a1176

k + 1-layered negotiations.1177
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