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Abstract. The equational unification problem, where the underlying
equational theory may be given as the union of component equational
theories, appears often in practice in many fields such as automated
reasoning, logic programming, declarative programming, and the formal
analysis of security protocols. In this paper, we investigate the unification
problem in the non-disjoint union of equational theories via the combina-
tion of hierarchical unification procedures. In this context, a unification
algorithm known for a base theory is extended with some additional in-
ference rules to take into account the rest of the theory. We present a
simple form of hierarchical unification procedure. The approach is par-
ticularly well-suited for any theory where a unification procedure can be
obtained in a syntactic way using transformation rules to process the
axioms of the theory. Hierarchical unification procedures are exempli-
fied with various theories used in protocol analysis. Next, we look at
modularity methods for combining theories already using a hierarchical
approach. In addition, we consider a new complexity measure that allows
us to obtain terminating (combined) hierarchical unification procedures.

1 Introduction

Unification is a critical tool in many fields such as automated reasoning, logic
programming, declarative programming, and the formal analysis of security pro-
tocols. For many of these applications we want to consider equational unifi-
cation, where the problem is defined modulo an equational theory E, such as
Associativity-Commutativity. For example, one approach to the analysis of se-
curity protocols is based on deductive reasoning, as is done in the following
tools [6,5,18,25]. In this approach protocols are usually represented by clauses
in first-order logic with equality and equational theories are used to specify the
capabilities of an intruder [1]. To support this reasoning approach we need to use
E-unification procedures. Since equational unification is undecidable in general,
specialized techniques have been developed to solve the problem for particular
classes of equational theories, many of high practical interest. For instance, when
the equational theory E has the Finite Variant Property (FVP) [11,19], there
exists a reduction from E-unification to syntactic unification via the computa-
tion of finitely many variants of the unification problem. The class of equational
theories with the FVP has attracted a considerable interest since it contains
theories that are crucial in protocol analysis [19,8,7,12,26].
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Another ubiquitous scenario is given by an equational theory E involved in
a union of theories F ∪ E. To solve this case, it is quite natural to proceed in
a modular way by reusing the unification algorithms available for F and for
E. There are terminating and complete combination procedures for signature-
disjoint unions of theories [29,3]. However, the non-disjoint case remains a chal-
lenging problem. One approach to the non-disjoint combination problem that has
been successful in some cases is the hierarchical approach [14]. In this approach,
F ∪E-unification can be considered as a conservative extension of E-unification.
Then, a new inference system related to F , say UF , can be combined with an
E-unification algorithm to obtain an F ∪ E unification algorithm. While this
hierarchical approach won’t work for every F ∪ E it can be a very useful tool
when applicable. However, up to now it could be complex to know if a combi-
nation F ∪ E could be solved via the hierarchical approach. For example, there
is no general method for obtaining the inference system UF , and the resulting
hierarchical unification procedure may not terminate.

In this paper, we consider “syntactic” theories F ∪ E where UF can be de-
fined as a system of mutation rules, and we present new terminating instances
of the hierarchical unification procedure. When an equational theory fulfills the
syntacticness property [22,28], there exists a rule-based unification procedure
in the same vein as the one known for syntactic unification, which is called
a mutation-based unification procedure. Unfortunately, being syntactic is not
a sufficient condition to ensure the termination of this mutation-based unifica-
tion procedure. However, terminating mutation-based unification procedures are
known for some particular theories such as one one-side distributivity [30,24],
distributive exponentiation theories [15], shallow theories [10] and theories closed
by paramodulation [23]. All the theories investigated here using the hierarchical
approach are both syntactic and finitary: each of them is actually a syntactic
theory for which a (finitary) unification algorithm is shown. On the one hand,
we study theories which are both collapse-free and finitary, that is, finitary the-
ories defined by axioms between non-variable terms. These theories are known
to be syntactic [22]. On the other hand, we also examine forward-closed theo-
ries that are known to be both syntactic and finitary, just like theories closed
by paramodulation [23]. The forward-closed theories we are interested in are
actually examples of theories having the Finite Variant Property.

The contributions of the paper consist of several improvements to the hierar-
chical combination method [14,13] including: simplifying the method, clarifying
the theories for which the approach is applicable, and reducing some of the re-
strictions. Furthermore, we develop several new results including general reduc-
tion procedures for certain types of theories, and modular termination results.
More specifically:

– We better define theories for which a hierarchical approach is applicable,
constructor-based theories, and simplify the hierarchical unification proce-
dure denoted here by HE(UF ), where UF is an additional rule-based proce-
dure to be combined with an E-unification algorithm (Section 3).
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– We define the requirements for the UF rule-based procedure, and develop
new general rule-based procedures for subterm collapse-free and forward-
closed theories (Section 3).

– Using the hierarchical approach, we develop new modularity results for the
unification problem in unions of constructor-sharing theories. We define a
new complexity measure to show terminating combinations of hierarchical
unification algorithms. This allows us to obtain new (combined) unification
algorithms for a wider variety of theories (Section 4).

– We show how the combination of hierarchical unification algorithms can be
applied to unions of constructor-sharing forward-closed theories (Section 4).

The rest of the paper is organized as follows. Section 2 provides the back-
ground material. Section 2.3 contains an introduction to forward-closed theories.
Section 3 introduces the notion of hierarchical unification and presents examples
of theories admitting a hierarchical unification algorithm. Section 4 focuses on
the combination of hierarchical unification algorithms. Finally, Section 5 contains
the conclusions and future work.

2 Preliminaries

We use the standard notation of equational unification [4] and term rewriting
systems [2]. Given a first-order signature Σ and a (countable) set of variables V ,
the set of Σ-terms over variables V is denoted by T (Σ,V ). The set of variables
in a term t is denoted by Var(t). A term t is ground if Var(t) = ∅. A term is
linear if all its variables occur only once. For any position p in a term t (including
the root position ε), t(p) is the symbol at position p, t|p is the subterm of t at
position p, and t[u]p is the term t in which t|p is replaced by u. A substitution is
an endomorphism of T (Σ,V ) with only finitely many variables not mapped to
themselves. A substitution is denoted by σ = {x1 7→ t1, . . . , xm 7→ tm}, where
the domain of σ is Dom(σ) = {x1, . . . , xm}. Application of a substitution σ to t
is written tσ.

2.1 Equational Theories

Given a set E of Σ-axioms (i.e., pairs of Σ-terms, denoted by l = r), the equa-
tional theory =E is the congruence closure of E under the law of substitutivity
(by a slight abuse of terminology, E is often called an equational theory). Equiv-
alently, =E can be defined as the reflexive transitive closure↔∗E of an equational
step↔E defined as follows: s↔E t if there exist a position p of s, l = r (or r = l)
in E, and substitution σ such that s|p = lσ and t = s[rσ]p. An axiom l = r is
regular if Var(l) = Var(r). An axiom l = r is linear (resp., collapse-free) if l and
r are linear (resp. non-variable terms). An equational theory is regular (resp.,
linear/collapse-free) if all its axioms are regular (resp., linear/collapse-free). A
theory E is subterm collapse-free if and only if for all terms t it is not the case
that t =E u where u is a strict subterm of t. A theory E is syntactic if it has
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finite resolvent presentation S, defined as a finite set of axioms S such that each
equality t =E u has an equational proof t↔∗S u with at most one equational step
↔S applied at the root position. One can easily check that C = {x ∗ y = y ∗ x}
(Commutativity) and AC = {x∗(y∗z) = (x∗y)∗z, x∗y = y∗x} (Associativity-
Commutativity) are regular, collapse-free, and linear. Moreover, C and AC are
syntactic [22]. A Σ-equation is a pair of Σ-terms denoted by s =? t or simply
s = t when it is clear from the context that we do not refer to an axiom. A
flat Σ-equation is either an equation between variables or a non-variable flat Σ-
equation of the form x0 = f(x1, . . . , xn) where x0, x1, . . . , xn are variables and
f is a function symbol in Σ. An E-unification problem is a set of Σ-equations,
G = {s1 =? t1, . . . , sn =? tn}, or equivalently a conjunction of Σ-equations. The
set of variables in G is denoted by Var(G). A solution to G, called an E-unifier ,
is a substitution σ such that siσ =E tiσ for all 1 ≤ i ≤ n, written E |= Gσ. A
substitution σ is more general modulo E than θ on a set of variables V , denoted
as σ ≤VE θ, if there is a substitution τ such that xστ =E xθ for all x ∈ V . A
Complete Set of E-Unifiers of G, denoted by CSUE (G), is a set of substitutions
such that each σ ∈ CSUE (G) is an E-unifier of G, and for each E-unifier θ of G,

there exists σ ∈ CSUE (G) such that σ ≤Var(G)
E θ. An E-unification algorithm

is an algorithm that computes a finite CSUE (G) for all E-unification problems
G. An inference rule G ` G′ for E-unification is sound if each E-unifier of G′

is an E-unifier of G; and complete if for each E-unifier σ of G, there exists an

E-unifier σ′ of G′ such that σ′ ≤Var(G)
E σ. An inference system for E-unification

is sound if all its inference rules are sound; and complete if for each E-unification
problem G on which an inference applies and each E-unifier σ of G, there exist
an E-unification problem G′ inferred from G and an E-unifier σ′ of G′ such

that σ′ ≤Var(G)
E σ. A set of equations G = {x1 =? t1, . . . , xn =? tn} is said

to be in tree solved form if each xi is a variable occurring once in G. Given an
idempotent substitution σ = {x1 7→ t1, . . . , xn 7→ tn} (such that σσ = σ), σ̂
denotes the corresponding tree solved form. A set of equations is said to be in
dag solved form if they can be arranged as a list x1 =? t1, . . . , xn =? tn where
(a) each left-hand side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n: xi
does not occur in tj . A set of equations {x1 =? t1, . . . , xn =? tn} is a cycle if
for any i ∈ [1, n − 1], xi+1 ∈ Var(ti), x1 ∈ Var(tn), and there exists j ∈ [1, n]
such that tj is not a variable. Given two disjoint signatures Σ0 and Σ1 and
any i = 1, 0, Σi-terms (including the variables) and Σi-equations (including the
equations between variables) are called Σi-pure. A term t is called a Σi-rooted
term if its root symbol is in Σi. An alien subterm of a Σi-rooted term t is a
Σj-rooted subterm s (i 6= j) such that all superterms of s are Σi-rooted. We
define general E-unification as the unification problem in the equational theory
obtained by extending E with arbitrary free function symbols.

Given a Σ0-theory E, a theory F ∪ E is a conservative extension of E if
=F∪E and =E coincide on Σ0-terms. When F ∪ E is a conservative extension
of E, E-unification is said to be complete for solving the Σ0-fragment of F ∪E-
unification if for any Σ0-pure F ∪ E-unification problem G, any CSUE (G) is a
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CSUF∪E (G). If F and E have disjoint signatures, E-unification is known to be
complete for solving the Σ0-fragment of F ∪ E-unification.

2.2 Equational Term Rewrite Systems

Given a signature Σ, an equational term rewrite system (TRS) (R,E) over Σ is
defined by a Σ-theory E and a finite set R of oriented Σ-axioms called rewrite
rules and of the form l → r such that l, r are Σ-terms, l is not a variable
and Var(r) ⊆ Var(l). A term s rewrites to a term t w.r.t (R,E), denoted by
s→R,E t, if there exist a position p of s, l→ r ∈ R, and substitution σ such that
s|p =E lσ and t = s[rσ]p. The term s|p is called a redex. Given a TRS (R,E),
←→R∪E denotes the symmetric relation ←R,E ∪ →R,E ∪ =E . A TRS (R,E) is
Church-Rosser modulo E if ←→∗R∪E is included in →∗R,E ◦ =E ◦ ←∗R,E . When
=E ◦ →R,E ◦ =E is terminating, the following properties are equivalent [20]:

1. (R,E) is Church-Rosser modulo E,
2. for any terms t, t′, t←→∗R∪E t′ if and only if t↓=E t′ ↓, where t↓ (resp., t′ ↓)

denotes any normal form of t (resp., t′) w.r.t (R,E).

A TRS (R,E) is E-convergent if =E ◦ →R,E ◦ =E is terminating and (R,E)
is Church-Rosser modulo E. Let Σ0 be the subsignature of Σ that consists of
function symbols occurring in the axioms of E. An E-convergent TRS (R,E) is
said to be E-constructed if Σ0 ∩ {l(ε) | l→ r ∈ R} = ∅.

An E-convergent TRS (R,E) is said to be subterm E-convergent if for any
l → r ∈ R, r is either a strict subterm of l or a constant. When (R,E) is
clear from the context, a normal form w.r.t (R,E) is said to be normalized.
A substitution σ is normalized if, for every variable x in the domain of σ, xσ
is normalized. An instance lσ → rσ of a rule l → r ∈ R is a right-reduced
instance if σ|V ar(r) is normalized. A term t is an innermost redex if no subterm
of t is a redex. An E-convergent TRS (R,E) is IRR if every innermost redex is
R,E-reducible by a right-reduced instance of a rule in R. An E-convergent TRS
(R,E) is IR1 if every innermost redex is R,E-reducible to a normal form in one
step.

To simplify the notation, we often use tuples of terms, say ū = (u1, . . . , un),
v̄ = (v1, . . . , vn). Applying a substitution σ to ū is the tuple ūσ = (u1σ, . . . , unσ).
The tuples ū and v̄ are said to be E-equal, denoted by ū =E v̄, if u1 =E

v1, . . . , un =E vn. Similarly, ū→∗R v̄ if u1 →∗R v1, . . . , un →∗R vn, ū is normalized
if u1, . . . , un are normalized, and ū =? v̄ is u1 =? v1 ∧ · · · ∧ un =? vn.

2.3 Forward Closure

In this section, we introduce the notion of finite forward closure, following the
definition given in [21]. Consider the rule:

ForwardOverlap g → d[l′], l→ r ` (g → d[r])σ
where g → d[l′], l→ r ∈ R, l′ is not a variable and σ ∈ CSUE (l′ =? l)
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For this inference rule, the notion of redundancy is defined with respect to an
ordering on terms. We assume the existence of a simplification ordering > such
that > is E-compatible, meaning that s′ =E s > t =E t′ implies s′ > t′, and
l > r for any l → r ∈ R. ForwardOverlap is said to be redundant in (R,E) if
for each g′ such that g′ =E gσ, g′ is R,E-reducible by a right-reduced instance
sµ→ tµ of R and either sµ < gσ or (sµ =E gσ and tµ < d[l′]σ).

Let I be an inference system generating rewrite rules and whose inferences
are possibly redundant, like for instance I = {ForwardOverlap}. Given an
equational TRS (R,E), the saturation of (R,E) with respect to I is inductively
defined as follows:

– S0
I(R) = R,

– Sk+1
I (R) = SkI(R)∪{ρ} where the rule ρ is obtained by applying an inference
i in I using (SkI(R), E) as equational TRS and such that i is not redundant
in (SkI(R), E).

Let SI(R) =
⋃
k≥0 S

k
I(R). When SI(R) is finite, SI(R) is called a finite I-

saturation of (R,E). An equational TRS (R,E) is I-saturated if SI(R) = R.
An equational TRS has a finite forward closure if it has a finite I-saturation
for I = {ForwardOverlap}. An equational TRS is forward-closed if it is I-
saturated for I = {ForwardOverlap}.

Example 1. Any subterm E-convergent TRS has a finite forward closure. Sub-
term convergent TRSs are often used in the verification of security protocols [1],
e.g., {dec(enc(x, y), y) → x} and {fst(pair(x, y)) → x, snd(pair(x, y)) → y}.
The equational TRSs {dec(enc(x, k), k ∗ y) → x} and {rm(x ∗ k, k) → x} are
subterm E-convergent for E = AC(∗) = {x ∗ (y ∗ z) = (x ∗ y) ∗ z, x ∗ y = y ∗ x}.

Forward closure can be connected to the notion of Finite Variant Property
(FVP, for short) introduced in [11]. Given an E-convergent TRS (R,E), an
(R,E)-variant of a term t is a pair ((tθ) ↓, θ) where θ is a normalized substitu-
tion whose domain is included in Var(t). (R,E) has the FVP if for any term t
there exists a finite set V of (R,E)-variants of t such that any (R,E)-variant of
t is componentwise E-equal to an instance of some element in V . If (R,E) has
the FVP, then any R ∪ E-unification problem G reduces to E-unification prob-
lems via the computation of finitely many variants of G (viewed as a term with
additional symbols). This computation can be performed using folding variant
narrowing [19,12]. In [7], it was shown that for any TRS R, R has the FVP iff it
has a finite forward closure. A similar equivalence holds for E-constructed TRSs:

Lemma 1. Assume (R,E) is any E-constructed TRS and E is any regular and
collapse-free equational theory such that E-unification is finitary. Then, (R,E)
has a finite forward closure iff (R,E) has the FVP.

Proof. We rely on some results that have been shown in [21] for an inference
system I including ForwardOverlap plus an additional Parallel rule whose
premises are s→ t, l→ r ∈ R, v = u[l′] ∈ E such that l′ is a non-variable strict
subterm of u which is E-unifiable with l. The following statements are proved
in [21]:
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– (R,E) is IR1 iff (R,E) is I-saturated.
– If (R,E) is IR1 and E-unification is finitary, then (R,E) has the FVP.
– If (R,E) has the FVP, then (R,E) has a finite I-saturation.

When (R,E) is E-constructed and E is a regular and collapse-free equational
theory, Parallel does not apply since a Σ0-rooted term l′ is not E-unifiable with
a Σ\Σ0-rooted term l. Thus, I-saturation reduces to forward closure, I-satured
means forward-closed, and the above statements can be reworded accordingly.
To conclude the proof, notice that if R′ is a finite forward closure of (R,E), then
(R′, E) is forward-closed and both (R′, E) and (R,E) have the FVP. ut

In this paper, (R,E) is assumed to be E-constructed and so the signature of
(R,E) necessarily includes a non-empty set of function symbols that do not occur
in the axioms of E. Thus, this means that we actually need general E-unification,
i.e., E-unification with free function symbols, instead of E-unification. Fortu-
nately, when E is regular and collapse-free, E-unification is finitary if and only
if general E-unification is finitary. This equivalence is a consequence of a classi-
cal disjoint combination method for regular and collapse-free theories [31] that
allows us to build a general E-unification algorithm as a combination of the
syntactic unification algorithm and an E-unification algorithm.

From now on, the equational theory E is always assumed to be regular and
collapse-free when (R,E) is E-constructed.

3 Hierarchical Unification

Consider now a union of theories R ∪ E where E is regular and collapse-free
and (R,E) is assumed to be E-constructed. Thanks to this assumption, R and
E are “sufficiently separated” and thus we can envision the problem of building
an R ∪ E-unification algorithm as a combination of two unification procedures:
a mutation-based unification procedure processing some R ∪ E-equalities, and
an E-unification algorithm. The approach we will use for this problem is the
hierarchical approach. Informally, the approach works as follows:

– The set of equations is processed to separate the terms over the shared
signature, Σ0, from terms over the non-shared one, Σ\Σ0.

– The mutation-based procedure is then used to simplify the Σ\Σ0-equations.
– The remaining equations over the shared signature Σ0 are solved using the
E-unification algorithm.

– The process can repeat. If the process terminates in a solved form then the
problem is solvable and a unifier is produced.

A hierarchical unification procedure is parameterized by an E-unification algo-
rithm and a mutation-based reduction procedure U . It applies some additional
rules given in Figure 1: Coalesce, Split, Flatten, and VA are used to separate
the terms, U is used to simplify the Σ\Σ0-equations, and finally, Solve calls the
E-unification algorithm.
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Coalesce {x = y} ∪G ` {x = y} ∪ (G{x 7→ y})
where x and y are distinct variables occurring both in G.

Split {f(v̄) = t} ∪G ` {x = f(v̄), x = t} ∪G
where f ∈ Σ\Σ0, t is a non-variable term and x is a fresh variable.

Flatten {v = f(. . . , u, . . . )} ∪G ` {v = f(. . . , x, . . . ), x = u} ∪G
where f ∈ Σ\Σ0, v is a variable, u is a non-variable term, and x is a fresh variable.

VA {s = t[u]} ∪G ` {s = t[x], x = u} ∪G
where t is Σ0-rooted, u is an alien subterm of t, and x is a fresh variable.

Solve G ∪G0 `
∨
σ0∈CSUE (G0)

G ∪ σ̂0

where G is a set of Σ\Σ0-equations, G0 is a set of Σ0-equations, G0 is E-unifiable and
not in tree solved form, σ̂0 is the tree solved form associated with σ0, and w.l.o.g for
any x ∈ Dom(σ0), xσ0 ∈ Var(G0) if xσ0 is a variable.

Fig. 1. HE rules

Definition 1 (Hierarchical unification procedure). Assume a Σ0-theory
E for which an E-unification algorithm is known, a Σ-theory F ∪ E for which
E-unification is complete for solving the Σ0-fragment of F ∪ E-unification, and
an inference system U such that: U transforms only non-variable flat Σ\Σ0-
equations; U is sound and complete for F∪E-unification; and U is parameterized
by some finite set S of F ∪E-equalities for which the soundness of each inference
`U follows from at most one equality in S. Under these assumptions, HE(U) is
the inference system defined as the repeated application of some inference from
HE (cf. Figure 1) or U , using the following order of priority: Coalesce, Split,
Flatten, VA, U , Solve. An F ∪ E-unification problem is separate, also called
in separate form, if it is a normal form w.r.t HE\{Solve}. HE(U) is said to be
a hierarchical unification procedure if the normal forms w.r.t HE(U) are either
the separate dag solved forms or problems that are not F ∪ E-unifiable.

Note that U is not just a set of inference rules but also a strategy for applying
those rules, for instance to avoid non-termination [15]. From now on, an inference
system HE(U) always denotes a hierarchical unification procedure.

Proposition 1. Let (R,E) be any E-constructed TRS such that an inference
system U following Definition 1 is known for the equational theory R ∪ E, in
addition to an existing E-unification algorithm. Then E, R ∪ E and U satisfy
the assumptions of Definition 1, and a hierarchical unification procedure HE(U)
provides a sound and complete R∪E-unification procedure, and in particular an
R ∪ E-unification algorithm when HE(U) is also terminating.

Proof. If (R,E) is E-constructed, then E-unification is complete for solving the
Σ0-fragment of R ∪ E-unification, and so all the assumptions are satisfied to
define HE(U). By construction, HE(U) is sound and complete. Since the R∪E-
unifiable normal forms w.r.t HE(U) are assumed to be the separate dag solved
forms, collecting all the separate dag solved forms reached by HE(U) suffices to
get a complete set of R ∪ E-unifiers. ut
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3.1 Subterm Collapse-Free Theories

Hierarchical unification algorithms are known for particular subterm collapse-
free theories of particular interest for protocol analysis.

Proposition 2. ([30,15]) Let E be the empty Σ0-theory where Σ0 only consists
of a binary function symbol ∗, RD = {h(x ∗ y) → h(x) ∗ h(y)} and RD1 =
{f(x ∗ y, z)→ f(x, z) ∗ f(y, z)}. The equational TRSs (RD, E) and (RD1, E) are
E-constructed. Moreover, RD ∪ E (resp., RD1 ∪ E) is a subterm collapse-free
theory admitting a unification algorithm of the form HE(UD) (resp., HE(UD1)).

Proof. Subterm collapse-freeness follows from the fact that both theories are
non-size-reducing. The inference system UD1 can be derived following the ap-
proach developed in [15] and based on the one initiated in [30] for one-side
distributivity. The same approach can be applied for RD to get UD. ut

Proposition 3. ([15]) Let AC = AC(~), RE = {exp(exp(x, y), z)→ exp(x, y~
z), exp(x∗y, z)→ exp(x, z)∗exp(y, z)} and RF = {enc(enc(x, y), z)→ enc(x, y~
z)}. The equational TRSs (RE , AC) and (RF , AC) are AC-constructed. More-
over, EAC = RE ∪AC (resp., FAC = RF ∪AC) is a subterm collapse-free theory
admitting a unification algorithm of the form HAC(UE) (resp., HAC(UF )).

Proof. In [15] it is shown that both EAC and FAC are subterm collapse-free
theories. Also in [15] a mutation-based inference system, say UE (resp., UF ),
is developed for EAC (resp., FAC): it reduces the Σ\Σ0-equations into solved
forms after which a solving step applies AC-unification on Σ0-equations. It is
shown in [15] that the solving step needs only be applied once. Hence, the EAC-
unification algorithm (resp., FAC-unification algorithm) given in [15] provides a
unification algorithm of the form HAC(UE) (resp., HAC(UF )). ut

3.2 Forward-Closed E-Constructed TRSs

For any forward-closed E-constructed TRS (R,E) such that E is regular and
collapse-free, an R∪E-unification algorithm of the form HE(U) can be obtained
by defining some inference system U , based on the Basic Syntactic Mutation
approach initiated for the class of theories closed by paramodulation [23], and
already applied in [13] to a particular class of forward-closed equational TRSs.

Let BSMR be the inference system given in Figure 2. One can notice that
each inference rule in BSMR generates some boxed terms. This particular an-
notation of terms, detailed in [23,13], allows us to control the rules application,
disregarding needless inferences on boxed terms, in such a way that BSMR is
terminating.

An R∪E-unification algorithm combining BSMR and an E-unification algo-
rithm has been developed in [13] for the case of any forward-closed convergent
TRS R such that the left-hand sides of R are linear and contain no symbols of E.
In this paper, we extend [13] to any forward-closed E-constructed TRS (R,E),
without any further restriction on R.

The soundness and completeness of BSMR is shown by the following lemma.
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Imit
⋃
i{x = f(v̄i)} ∪G ` {x = f(ȳ) } ∪

⋃
i{ȳ = v̄i} ∪G

where f ∈ Σ\Σ0, i > 1, ȳ are fresh variables and there are no more equations
x = f(. . . ) in G.

MutConflictR {x = f(v̄)} ∪G ` {x = t , s̄ = v̄} ∪G
where f ∈ Σ\Σ0, f(s̄) → t is a fresh instance of a rule in R, f(v̄) is unboxed, and there
is another equation x = u in G with a non-variable term u or x = f(v̄) occurs in a cycle.

ImitCycle {x = f(v̄)} ∪G ` {x = f(ȳ) , ȳ = v̄} ∪G
where f ∈ Σ\Σ0, f(v̄) is unboxed, ȳ are fresh variables and x = f(v̄) occurs in a cycle.

Fig. 2. BSMR rules

Lemma 2. Let (R,E) be any forward-closed E-constructed TRS over the sig-
nature Σ. For each equality u =R∪E v such that u is Σ\Σ0-rooted and v is
normalized, one of the following is true:

1. u = f(ū), v = f(v̄) and ū =R∪E v̄.
2. u = f(ū), there exist f(s̄) → t ∈ R and a normalized substitution σ such

that ū =R∪E s̄σ, v =E tσ and s̄σ, tσ are normalized.

Proof. Let us analyze the possible rewrite proofs →∗R,E of u =R∪E v.
First, if there is no step at the root position, then we get u = f(ū) →∗R,E

f(ū′) =E v where ū→∗R,E ū′ and ū′ are normalized. Since f is a free symbol for

E, we have that v = f(v̄) and ū′ =E v̄. Hence, ū =R∪E v̄ since ū =R∪E ū′.
Second, if there is one step at the root position, then we have

u = f(ū)→∗R,E f(ū′) = f(s̄)σ →R,E,ε tσ =E v

where f(s̄) → t ∈ R, ū →∗R,E ū′, ū′ are normalized, ū′ =E s̄σ, and so σ, s̄σ are
normalized. Since tσ =E v and v is normalized, tσ is also normalized. ut

A unification procedure of the form HE(BSMR) corresponds to the BSC
unification procedure given in [13] except that Solve is applied in BSC before
BSMR rules. However, the termination proof stated for BSC in [13] also holds
when Solve is applied after the BSMR rules.

Lemma 3. Assume E is any regular and collapse-free theory such that an E-
unification algorithm is known. Let (R,E) be a forward-closed E-constructed
TRS and BSMR the inference system given in Fig. 2. Then HE(BSMR) is an
R ∪ E-unification algorithm.

Example 2. Consider R = {h(x) → a × x}, R′ = {f(x, y) → a′(y) × x} and
E = {x×(y∗z) = (x×y)∗(x×z)}. The theory E corresponds to left-distributivity
and an E-unification algorithm is given in [30]. Since (R,E) and (R′, E) are
forward-closed and E-constructed, HE(BSMR) and HE(BSMR′) are unification
algorithms forR∪E andR′∪E, respectively. Notice that h(x∗y) =R∪E h(x)∗h(y)
and f(x ∗ y, z) =R′∪E f(x, z) ∗ f(y, z).
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Example 3. Consider R = {π1(x.y) → x, π2(x.y) → y, dec(enc(x, y), y) → x}
and E = {enc(x.y, z) = enc(x, z).enc(y, z)}. An E-unification algorithm can
be obtained following the approach developed in [30,15] and can be used in
a hierarchical unification procedure of the form HE(BSMR). Since (R,E) is
forward-closed and E-constructed, HE(BSMR) is an R∪E-unification algorithm.

4 Combined Hierarchical Unification

We are now interested in combining hierarchical unification algorithms known for
E-constructed TRSs. Given two E-constructed TRSs, say (R1, E) and (R2, E),
the problem is to study the possible construction of a (combined) hierarchi-
cal unification algorithm for (R1 ∪R2, E) using the two hierarchical unification
algorithms known for (R1, E) and (R2, E). We investigate this combination prob-
lem for the two classes of E-constructed TRSs introduced in Section 3. First,
we consider a class of E-constructed TRSs (R,E) such that R ∪ E is subterm
collapse-free. Second, we study the class of forward-closed E-constructed TRSs
(R,E) such that E is regular and collapse-free.

4.1 Combining Subterm Collapse-Free Theories

Let us first consider a technical lemma which is useful to get a hierarchical
unification procedure.

Lemma 4. Let (R1, E) and (R2, E) be two E-constructed TRSs over the sig-
natures Σ1 and Σ2, respectively, such that Σ1 ∩ Σ2 = Σ0 for the signature Σ0

of E, and for i = 1, 2, Ri ∪ E admits a sound and complete unification pro-
cedure of the form HE(Ui). Assume that R1 ∪ R2 ∪ E is subterm collapse-free,
and for any Σ1\Σ0-rooted term t1 and any Σ2\Σ0-rooted term t2, t1 cannot be
equal to t2 modulo R1 ∪ R2 ∪ E. Then, HE(U1 ∪ U2) is a sound and complete
R1 ∪R2 ∪ E-unification procedure.

Proof. According to the assumptions, U1 ∪ U2 is sound and complete for R1 ∪
R2∪E-unification and any normal form w.r.t HE(U1∪U2) is R1∪R2∪E-unifiable
iff it is in dag solved form. So, Proposition 1 applies. ut

We study below a possible way to satisfy the assumptions of Lemma 4.

Definition 2 (Layer-preservingness). Let (R,E) be an E-constructed TRS
over the signature Σ, for which Σ0 denotes the signature of E. A Σ-term t is
said to be E-capped if there exist a constant-free Σ0-term u and a substitution σ
such that t = uσ, Dom(σ) = V ar(u) and Ran(σ) is a set of Σ\Σ0-rooted terms.
The TRS (R,E) is said to be layer-preserving if R ∪ E is subterm collapse-free
and any normal form of any Σ\Σ0-rooted term is E-capped.

Remark 1. An easy way to get layer-preservingness of (R,E) is to assume that
R ∪E is subterm collapse-free and the right hand-sides of rules in R are Σ\Σ0-
rooted. In that case the term u in Definition 2 is simply a variable. Layer-
preservingness generalizes this assumption used in [14].
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The property of being E-constructed and layer-preserving is modular.

Lemma 5. Assume E is a subterm collapse-free Σ0-theory, for i = 1, 2, (Ri, E)
is an E-constructed layer-preserving TRS over the signature Σi, and Σ1 ∩Σ2 =
Σ0. If =E ◦ →R1∪R2 ◦ =E is terminating, then (R1∪R2, E) is an E-constructed
layer-preserving TRS, and for any Σ1\Σ0-rooted term t1 and any Σ2\Σ0-rooted
term t2, t1 cannot be equal to t2 modulo R1 ∪R2 ∪ E.

Proof. To show that (R1 ∪ R2, E) is layer-preserving, we have to prove that
R1 ∪R2 ∪E remains subterm collapse-free. The modularity of subterm collapse-
freeness has been shown in [14] when the right-hand sides of Ri areΣi\Σ0-rooted,
for i = 1, 2. Actually, a similar proof by contradiction can be performed in the
case (Ri, E) is layer-preserving, for i = 1, 2. Let us consider the height of layers
of a term t, inductively defined as follows:

– ht(t) = 0 if t is a variable,
– ht(t) = 1 if t is a non-variable pure term,
– ht(t) = 1 + max{ht(u) | u is an alien subterm of t} if t is not pure.

Assume there exists a term t and a non-empty position p such that t =R1∪E2∪E
t|p. If the path from ε to p contains only symbols from one theory, say Ri ∪ E,
this would lead to a contradiction with the subterm collapse-freeness of Ri ∪E.
Consider now that the path from ε to p contains both a Σ1\Σ0-symbol and a
Σ2\Σ0-symbol. Let u = t|p and let t′ and u′ be the respective normal forms of t
and u w.r.t (R1∪R2, E). Since t′ =E u′ and E is necessarily regular collapse-free,
we have that t′ and u′ have the same height of layers. By the layer-preserving
assumption, t and t′ have the same height of layers, as well as u and u′. Thus t
and u have the the same height of layers, which leads to a contradiction due to
the considered path from ε to p.

Assume there exist some Σ1\Σ0-rooted term t1 and some Σ2\Σ0-rooted term
t2 such that t1 =R1∪R2∪E t2. Then, t′1 =E t′2 where t′1 and t′2 are the respective
normal forms of t1 and t2 w.r.t (R1 ∪ R2, E). The layer-preserving assumption
implies that t′i must still contain a symbol in Σi\Σ0 for i = 1, 2. Since E is
necessarily regular and collapse-free, it is thus impossible to have t′1 =E t′2. ut
Remark 2. To satisfy the condition =E ◦ →R1∪R2 ◦ =E is terminating, it suffices
to exhibit an E-compatible reduction ordering > such that l > r for any l →
r ∈ R1 ∪R2. In that case, > is defined on terms built over Σ1 ∪Σ2.

By Lemma 5, the two assumptions of Lemma 4 can be satisfied, and this leads
to a hierarchical unification procedure for the combined TRS. In the following,
we consider a notion of decreasingness in order to study the termination of this
unification procedure.

Definition 3 (Decreasingness). Consider a complexity measure defined as a
mapping C from separate forms to natural numbers. An HE(U) inference system
is said to be C-decreasing if for any separate form G ∪G0 we have that (1) for
any G′ such that G ∪ G0 `U G′ ∪ G0, the separate form of G′ ∪ G0 does not
increase C; (2) for any G′0 such that G ∪ G0 `Solve G ∪ G′0, then either the
separate form of G ∪G′0 is in normal form w.r.t HE(U), or it decreases C.
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Consequently, HE(U) is terminating if there exists some C such that HE(U)
is C-decreasing.

Theorem 1. Assume E is a subterm collapse-free theory such that an E-unifica-
tion algorithm is known, and C is a complexity measure defined on separate
forms. Let (R1, E) and (R2, E) be two E-constructed TRSs sharing only symbols
in E such that, for i = 1, 2, (Ri, E) is layer-preserving, and Ri ∪ E admits a
C-decreasing unification algorithm of the form HE(Ui). If =E ◦ →R1∪R2 ◦ =E is
terminating, then (R1 ∪R2, E) is an E-constructed TRS such that (R1 ∪R2, E)
is layer-preserving, and R1∪R2∪E admits a C-decreasing unification algorithm
of the form HE(U1 ∪ U2).

Proof. (R1∪R2, E) is layer-preserving by Lemma 5. In addition, a Σ1\Σ0-rooted
term cannot be equal to a Σ2\Σ0-rooted term modulo R1 ∪ R2 ∪ E. Applying
Lemma 4, HE(U1 ∪U2) provides a sound and complete R1 ∪R2 ∪E-unification
procedure. Moreover, HE(U1 ∪ U2) is C-decreasing and so it is terminating. ut

Example 4. Consider the theories EAC and FAC introduced in Proposition 3 and
the corresponding hierarchical unification algorithms HAC(UE) and HAC(UF )
where the mutation rules defining UE and UF can be found in [15]. Let SV C be
the complexity measure defined as follows: given an R ∪ E-unification problem
in separate form G ∪G0, SV C(G ∪G0) is the number of equivalence classes of
variables shared by G and G0 that are variables abstracting Σ\Σ0-rooted terms.

Let us now check that the unification algorithms HAC(UE) and HAC(UF )
are both SV C-decreasing. On the one hand, it is routine to verify that any
(mutation) rule in UE (resp., UF ) does not lead, via a further possible application
of VA, to new shared variables which are abstracting Σ\Σ0-rooted terms. Hence,
the rules in UE (resp., UF ) cannot increase SV C. On the other hand, Solve
leads to either a normal form w.r.t HAC(UE) (resp., HAC(UF )), or it generates
some equality x =? y between variables x and y for which there are Σ\Σ0-
equations x =? s and y =? t in G. In the last case, the respective equivalence
classes of x and y are merged into a single one by applying Solve and so,
Solve strictly decreases SV C. By Theorem 1, we get that EAC ∪ FAC admits
a SV C-decreasing unification algorithm of the form HAC(UE ∪UF ). Notice this
means that we can use the termination strategy used in the individual HAC(UE)
and HAC(UF ) algorithms to obtain a termination strategy for the hierarchical
combined algorithm, HAC(UE ∪ UF ). We suspect that this complexity measure,
SV C, could be useful for proving termination in other theories.

To conclude this section, let us mention the problem of combining two copies
of the same E-constructed layer-preserving TRS, provided that only the symbols
in E are possibly shared. In that very particular case, layer-preservingness is
sufficient and there is no need to find a decreasing complexity measure.

Theorem 2. Consider (R,E) is an E-constructed layer-preserving TRS over
the signature Σ such that R ∪ E admits a unification algorithm of the form
HE(U). Let (R′, E) be a copy of (R,E) obtained by renaming the Σ\Σ0-symbols.
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Then, (R∪R′, E) is an E-constructed layer-preserving TRS such that R∪R′∪E
admits a unification algorithm of the form HE(U∪U ′), where U ′ is obtained from
U by applying the same renaming as the one defining (R′, E).

Proof. Consider the morphism ι replacing each symbol f ′ ∈ Σ′\Σ0 by the cor-
responding function symbol f ∈ Σ\Σ0. For any terms s,t, s =E ◦ →R∪R′ ◦ =E t
implies ι(s) =E ◦ →R ◦ =E ι(t). Thus, =E ◦ →R ◦ =E is terminating im-
plies =E ◦ →R∪R′ ◦ =E is terminating. By Lemmas 5 and 4, (R ∪ R′, E) is an
E-constructed layer-preserving TRS and HE(U ∪ U ′) is a sound and complete
R∪R′∪E-unification procedure. For each inference P `HE(U∪U ′) Q, there exists
an inference ι(P ) `HE(U) ι(Q). Thus, the termination w.r.t HE(U) implies the
termination w.r.t HE(U ∪ U ′). ut

Example 5. Consider the two E-constructed layer-preserving TRSs (RD, E) and
(RD1, E) defined in Proposition 2, and their copies R′D = {h′(x ∗ y) → h′(x) ∗
h′(y)} and R′D1 = {f ′(x ∗ y, z) → f ′(x, z) ∗ f ′(y, z)}. The theories RD ∪ E
and RD1 ∪ E admit unification algorithms of the form HE(UD) and HE(UD1),
respectively. By Theorem 2, RD ∪R′D ∪E and RD1 ∪R′D1 ∪E admit unification
algorithms of the form HE(UD ∪ U ′D) and HE(UD1 ∪ U ′D1), respectively.

4.2 Combining Forward-Closed E-Constructed TRSs

The union of two forward-closed E-constructed TRSs remains a forward-closed E
constructed TRS. Thus, a hierarchical unification algorithm can be constructed
in a modular way in unions of forward-closed E-constructed TRSs.

Theorem 3. Assume E is a regular and collapse-free theory such that an E-
unification algorithm is known. Let (R1, E) and (R2, E) be two forward-closed
E-constructed TRSs sharing only symbols in E. Then R1 ∪ R2 ∪ E admits a
unification algorithm of the form HE(BSMR1

∪ BSMR2
).

Proof. (R1∪R2, E) is a forward-closed E-constructed TRS, and so by Lemma 3,
R1 ∪R2 ∪E admits a unification algorithm of the form HE(BSMR1∪R2), which
coincides with HE(BSMR1 ∪ BSMR2). ut

In the following, we investigate the case where E already admits a hierarchi-
cal unification algorithm of the form HE′(U ′) for a subtheory E′ of E, like in
Example 3 where E has a hierarchical unification algorithm of the form HE′(U ′)
for E′ = ∅. In that case, we can consider the following compositionality lemma:

Lemma 6. Let (R,E) be an E-constructed TRS such that R∪E admits a uni-
fication algorithm of the form HE(U), and E admits a unification algorithm of
the form HE′(U ′), where E′ is a subtheory of E. Then R ∪ E also admits a
unification algorithm of the form HE′(U ∪ U ′).

Proof. Consider Σ′ = Σ0 and E is a Σ′-theory of the form E = F ′∪E′. Assume
R ∪ E (resp., F ′ ∪ E′) has a unification algorithm of the form HE(U) (resp.,
HE′(U ′)), where U (resp., U ′) is sound, complete, and parameterized by some
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finite set S (resp., S′) of R∪E-equalities (resp., F ′∪E′-equalities) such that the
soundness of each inference `U (resp., `U ′) follows from at most one equality in
S (resp., S′).

Since E-unification is complete for solving the Σ′-fragment of R∪E-unifica-
tion, U ′ is also sound and complete for R∪F ′ ∪E′. Hence, the inference system
U ∪ U ′ is sound and complete. Moreover, S ∪ S′ is a finite set of R ∪ F ′ ∪ E′-
equalities such that the soundness of each inference `U∪U ′ follows from at most
one equality in S ∪ S′.

Since E-unification is complete for solving the Σ′-fragment of R∪E-unifica-
tion and E′-unification is complete for solving the Σ′0-fragment of E-unification,
we have that E′ is also complete for solving the Σ′0-fragment of R ∪ F ′ ∪ E′-
unification.

Consequently, E′, R ∪ F ′ ∪ E′ and U ∪ U ′ satisfy all the assumptions of
Definition 1, and so HE′(U ∪U ′) is well-defined. Since HE′(U ∪U ′) corresponds
to an “unfolding” of HE(U), it is terminating, sound and complete, just like
HE(U). Thus, HE′(U ∪ U ′) is a unification algorithm for R ∪ E = R ∪ F ′ ∪ E′.

ut

Example 6. (Example 3 continued) R ∪E admits a unification algorithm of the
form H∅(BSMR ∪ U ′) where H∅(U

′) is a hierarchical E-unification algorithm.

Example 7. Let us consider a theory used in practice to model a group messag-
ing protocol [9]. For this protocol, the theory modeling the intruder can be de-
fined [27] as a combination RENC∪K where K = {keyexch(x, pk(x′), y, pk(y′)) =
keyexch(x′, pk(x), y′, pk(y))} and (RENC ,K) is the forward-closedK-constructed
TRS where

RENC =


adec(aenc(m, pk(sk)), sk)→ m

getmsg(sign(m, sk))→ m
checksign(sign(m, sk),m, pk(sk))→ ok

sdec(senc(m, k), k)→ m


K is a theory closed by paramodulation and so K-unification is finitary [23].
By Lemma 3, RENC ∪ K has a hierarchical unification algorithm of the form
HK(BSMRENC ). The mutation-based unification algorithm known for theories
closed by paramodulation [23] can be reworded as a hierarchical unification al-
gorithm, of the form H∅(UK) for K. By Lemma 6, H∅(BSMRENC

∪UK) is another
RENC ∪K-unification algorithm.

Applying Lemma 6, we can easily obtain a hierarchical unification algorithm
for a forward-closed E-constructed TRS combined with a regular and collapse-
free E-constructed TRS.

Lemma 7. Assume E is a regular and collapse-free theory such that an E-
unification algorithm is known. Let (R1, E) and (R2, E) be two E-constructed
TRSs sharing only symbols in E such that (R1, E) is forward-closed, and R2∪E
is a regular and collapse-free theory E2 admitting a unification algorithm of
the form HE(U2). Then (R1, E2) is a forward-closed E2-constructed TRS and
R1 ∪ E2 admits a unification algorithm of the form HE(BSMR1 ∪ U2).



16 S. Erbatur et al.

Proof. (R1, E2) is forward-closed because (R1, E) is forward-closed and the equa-
tional theory =E coincides with =E2

on Σ1-terms. By Lemma 3, R1∪E2 admits a
unification algorithm of the form HE2(BSMR1). According to Lemma 6, R1∪E2

also admits a unification algorithm of the form HE(BSMR1 ∪ U2). ut

Example 8. Let (R,AC(~)) be a forward-closed AC(~)-constructed TRS such
that ~ is the only function symbol shared by R∪AC(~) and EAC (resp., FAC).
By Lemma 7, R ∪ EAC (resp., R ∪ FAC) admits a unification algorithm of
the form HAC(BSMR ∪ UE) (resp., HAC(BSMR ∪ UF )). According to Exam-
ple 4, EAC ∪ FAC admits a unification algorithm of the form HAC(UE ∪ UF ).
Then, by Lemma 7, R ∪ EAC ∪ FAC admits a unification algorithm of the form
HAC(BSMR ∪ UE ∪ UF ).

5 Conclusion

We have introduced a hierarchical unification framework as a generic tool to
construct unification procedures for (combined) equational theories defined by
E-constructed TRSs. We have presented new combination results for the simplest
case of subterm collapse-free theories, and a natural follow-up would be to study
the case of regular and collapse-free theories. A challenging future work is to
investigate the general case of arbitrary theories.

Hierarchical unification allows us to handle syntactic theories R ∪ E while
the E-unification algorithm can be arbitrary. According to this observation, we
plan to study a weakening of syntacticness, in order to allow theories R∪E that
are just syntactic modulo E.

We have also begun the implementation of the above hierarchical combina-
tion procedure. To begin with, we are using E = AC as the background theory.
However, we will explore expanding this to additional equational theories. In
the short term, we plan to experiment the use of our variant-free hierarchical
unification procedures (e.g., the ones introduced in Examples 3 and 7) as an
alternative to variant-based unification procedures in modern protocol verifica-
tion tools [6,18,25]. In the long term, we want to promote the use of non-disjoint
combination procedures [16] and mutation-based procedures [17] in protocol ver-
ification tools, targeting unification problems as well as some decision problems
related to the knowledge of an intruder, such as intruder deduction (a reachabil-
ity problem) and indistinguishability (an equivalence problem) [1,8]. The goal is
to improve automation of verification methods when theories share for instance
AC symbols.
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5. Basin, D.A., Mödersheim, S., Viganò, L.: An on-the-fly model-checker for security
protocol analysis. In: Snekkenes, E., Gollmann, D. (eds.) Computer Security -
ESORICS 2003, 8th European Symposium on Research in Computer Security,
Gjøvik, Norway, October 13-15, 2003, Proceedings. Lecture Notes in Computer
Science, vol. 2808, pp. 253–270. Springer (2003)

6. Blanchet, B.: Modeling and verifying security protocols with the Applied Pi calcu-
lus and ProVerif. Foundations and Trends in Privacy and Security 1(1-2), 1–135
(2016)

7. Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the
finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) Fron-
tiers of Combining Systems - 9th International Symposium, FroCoS 2013, Nancy,
France, September 18-20, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 8152, pp. 327–342. Springer (2013)
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