D. A. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math, vol.30, pp.275-330, 1984.

R. Dupont, Moyenne arithmético-géométrique, suites de Borchardt et applications, 2006.

R. Dupont, Fast evaluation of modular functions using Newton iterations and the AGM, Math. Comp, vol.80, issue.275, pp.1823-1847, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00644845

A. Enge, The complexity of class polynomial computation via floating point approximations, Math. Comp, vol.78, issue.266, pp.1089-1107, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00001040

A. Enge, Computing modular polynomials in quasi-linear time, Math. Comp, vol.78, issue.267, pp.1809-1824, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00143084

A. Enge and E. Thomé, Computing class polynomials for abelian surfaces, Exp. Math, vol.23, pp.129-145, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00823745

C. F. Gauss, . Werke, and . Dietrich, , p.1868

M. Hohenwarter, M. Borcherds, G. Ancsin, B. Bencze, M. Blossier et al.,

J. Igusa, Theta functions, 1972.

H. Klingen, Introductory lectures on Siegel modular forms, vol.20, 1990.

H. Labrande, Computing Jacobi's ? in quasi-linear time, Math. Comp, vol.87, pp.1479-1508, 2018.

H. Labrande and E. Thomé, Computing theta functions in quasi-linear time in genus 2 and above, Algorithmic Number Theory Symposium (ANTS XII), vol.19, pp.163-177, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01277169

P. Molin and C. Neurohr, Computing period matrices and the Abel-Jacobi map of superelliptic curves, Math. Comp, vol.88, issue.316, pp.847-888, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02416012

D. Mumford, Tata lectures on theta. I, Progr. Math. Birkhäuser, vol.28, 1983.

M. Streng, Complex multiplication of abelian surfaces, 2010.