N
N

N

HAL

open science

The Challenges of In Situ Analysis for Multiple
Simulations
Alejandro Ribés, Bruno Raffin

» To cite this version:

Alejandro Ribés, Bruno Raffin. The Challenges of In Situ Analysis for Multiple Simulations. ISAV
2020 - In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, Nov 2020,
Atlanta, United States. pp.1-6. hal-02968789

HAL Id: hal-02968789
https://inria.hal.science/hal-02968789
Submitted on 16 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/hal-02968789
https://hal.archives-ouvertes.fr

The Challenges of In Situ Analysis for Multiple Simulations

Alejandro Ribés
EDF Lab Paris-Saclay
Palaiseau, France

alejandro.ribes@edf.fr
ABSTRACT

In situ analysis and visualization have mainly been applied to the
output of a single large-scale simulation. However, topics involving
the execution of multiple simulations in supercomputers have only
received minimal attention so far. Some important examples are
uncertainty quantification, data assimilation, and complex opti-
mization. In this position article, beyond highlighting the strengths
and limitations of the tools that we have developed over the past
few years, we share lessons learned from using them on large-scale
platforms and from interacting with end users. We then discuss
the forthcoming challenges, which future in situ analysis and vi-
sualization frameworks will face when dealing with the exascale
execution of multiple simulations.

KEYWORDS

In Situ Analysis, Uncertainty Quantification, Data Assimilation,
Exascale Computing

1 INTRODUCTION

The focus of in situ analysis has largely been exploratory analysis
of the output of a single large-scale simulation [9]. This is clearly
observed when looking at the applications of the most popular
in situ visualization libraries, Catalyst [4] and Libsim [20]. The
technical literature typically presents the case where a single large
simulation struggles with the I/O bottleneck. Leveraging in situ
approaches, like Catalyst or Libsim, enables to alleviate this I/O
problem by processing and reducing data close to their production
source, before being written to disk, so as to reduce the need for
storage.

In section 2 we summarize important developments that have
been performed by the in situ community. However, it is clear
that, in all the years of evolution of in situ technologies, an un-
derlying assumption exists: a single large-scale simulation is run,
this generates several problems, either technical or methodological,
and the community tackles these problems. This position paper

Bruno Raffin
Univ. Grenoble Alpes, Inria, CNRS, LIG
Grenoble, France
bruno.raffin@inria.fr

analyzes the challenges and opportunities for extending in situ
processing beyond a single large-scale simulation, considering use
cases where the analysis needs to combine data from multiple sim-
ulation runs (also commonly called ensemble run). Such use-cases
are becoming more common with the need to sample the simulation
behavior within some parameter ranges for extracting knowledge
using statistical or machine learning based methods, combined with
the availability of large supercomputers capable today of running
thousands of large simulation instances. Each simulation being
potentially large, the amount of data generated by multiple runs
is huge, leading to a pressing need for frugal I/O solutions like in
situ processing. In this paper, we analyze the challenges and oppor-
tunities that multi-simulation analytics represents for the in situ
community. This category of applications calls for the development
of novel in situ solutions.

In the following: Section 2 presents related work; Section 3 in-
troduces several important examples where multi-run simulations
are of fundamental importance; Section 4 describes lessons learned
from the development of the open-source software Melissa (Mod-
ular External Library for In Situ Statistical Analysis)[42], which
already deals with multi-run simulations in the context of large
scale uncertainty quantification; Section 5 discusses the challenges
associated to the in-situ treatment of multi-run simulations; A short
conclusion and a bibliography section end up the chapter.

2 RELATED WORK

Before dedicated visualization libraries existed, in situ visualization
was possible but very cumbersome, examples are the visualization of
large-scale combustion simulations in 2010 [43] or the visualization
of a trillion particle simulation in 2012 [10]. This is the reason
why finding standardized solutions for the struggling case of large
simulations have historically been driving the in situ community.

Catalyst [4] and Libsim [20] are examples of these standardized
solutions. These libraries are compiled and linked to the solver and
thus access the same computer resources and memory addresses
than the simulations (see for instance [36] or [11] for examples
concerning computational fluid dynamics). They indeed alleviate
the I/O bottleneck but this tightly-coupled paradigm also presents
some disadvantages, for instance an error in the visualisation library
could propagate and block the solver. Thus the in situ community
developed the so-called loosely-coupled paradigm, also commonly
called in transit processing, which can be defined (from [19]) as
when the simulation transfers data over the network to a separate
set of processing or visualization nodes. Reference [29] gives some
examples of in transit visualizations. Again, in transit techniques
were studied for the single large simulation case.

Another aspect of in situ visualization that has received attention
is the visualization pipeline, usually defined in a python script, that
needs to be defined prior to the simulation run. This introduces


https://doi.org/10.1145/3426462.3426468
https://doi.org/10.1145/3426462.3426468
raffin


raffin



ISAV’20, 12 Nov, 2020, Atlanta, GA, USA

rigidity in the methodology, in the sense that the visualization oper-
ations must be a priori defined, preventing the post-hoc exploratory
analysis of the simulations results. Several strategies have been pro-
posed to alleviate this problem. One possible solution is the use of
steering for interacting with scientific simulations while they are
executing [18]. This solution introduces flexibility because the visu-
alization operations can be changed while the simulation is being
performed. This approach is implemented in Catalyst and Libsim.
Another popular solution is Cinema [2], where in situ visualization
tools create an “image database” as a way to save a highly com-
pressed sample of the simulation results. Then, a post-hoc viewer
allows the user to browse and interact with the collection of pre-
computed images, possibly changing some rendering parameters.

In the recent past years, in situ visualization became more and
more mature. Then authors started to be interested in how to use
the in situ paradigm to perform not only visualization but other
kind of analysis on the simulation outputs. This requires the devel-
opment of shared data models that can be used for both simulation
and visualization/analysis alike [9]. Efforts to standardize the data
models have been performed, important examples are Alpine [22],
ADIOS [25], and SENSEI [5]. This naturally leads to the interac-
tion of in situ techniques with computation workflows. Decaf [15],
Damaris [13], FlowVR [16] or DataSpace [12] are examples of frame-
works designed to support flexible workflows that can combine
data processing and visualization, being in situ, in transit or a mix
of both.

But so far the in situ community has clearly focused on process-
ing on-line the data produced by a single simulation run. A few
papers have stressed uses-cases requiring efficient, I/O savy, multi
simulations data analysis that we discuss with a general perspective
in the following section.

3 MULTI SIMULATION DATA PROCESSING
USE CASES

We identify three main categories of applications relying on multi-
ple simulation runs, namely uncertainty quantification, data assim-
ilation and complex optimization. The two first ones are identified
as important techniques by Jim Gray in The Fourth Paradigm of
Scientific Discovery [17]. Complex optimization can take different
forms that we also discuss.

3.1 Uncertainty Quantification

Uncertainty quantification (UQ) is the science of quantitative char-
acterization and reduction of uncertainties. In the context of in situ
techniques, we refer to computational uncertainties of numerical
simulations. Several ways of defining and classifying uncertainties
exist, a quite general one being the difference between epistemic
and aleatoric uncertainty. A more practical classification refers to
the element where the uncertainty is considered. For instance a
mathematical model can be considered uncertain, or the input pa-
rameters of a solver of differential equations can be considered
uncertain. This uncertainty is what is commonly found when deal-
ing with numerical simulations.

The ability to fully quantify uncertainty in high performance
computational simulations provides new capabilities for verification

Ribés and Raffin

and validation of simulation codes [17]. Moreover, reducing uncer-
tainty is needed for regulatory processes or for allowing simulation
based decision making.

Why UQ needs the execution of multiple simulations? The UQ
methodology [41] involves preparing a design of experiments,
which explains how to sample the variables of interest of the sim-
ulation to extract the most information with the lowest computa-
tional costs. The variables of interest are usually values of initial
or boundary conditions, or parameters of the solver. Next, multi-
ple simulations are run, each instance with a different variable set
drawn as defined by the design of experiments. Simulation outputs
are combined through statistical estimators to support the under-
standing of how the outputs are influenced by the variability of
sampled variables. Let consider the use-case presented in [21] to
understand the challenge it represents from an I/O perspective. For
a study with 9 varying paramaters they ran 60 000 simulations on
the Trinity supercomputer, accounting for 34 million core hours
and producing 5 Petabytes of intermediate files.

3.2 Data Assimilation

Data Assimilation (DA) can be viewed as a method for combining
observations with a model state with the objective of improving the
latter [3]. DA is about integrating observations, typically acquired
by on-the-field sensors, with the simulation codes. The general
approach consists in periodically correcting the progress of the
simulation by minimizing the global error obtained from the combi-
nation of the observation and simulation errors. Data assimilation is
particularly used in domains like weather forecast and climate sim-
ulation where numerical models are highly sensible to parameter
values.

Why DA needs the execution of multiple simulations? Two main
approaches are used for DA, variational and statistical. Statistical
DA relies on multiple concurrent simulations to compute an esti-
mate of the numerical model error. Several methods exist depending
on the context for combining the simulation and observation data
and derive steering decisions on the simulations. At the moment,
the most popular statistical method is the Ensemble Kalman Filter
(EnKF).

3.3 Complex Optimization

Complex optimization problems require large computational re-
sources and often the use of multiple simulations. We cite three
examples:

e Shape Optimization consists in finding an optimal shape,
i.e. the shape that minimizes a certain cost functional un-
der some given constraints. In many cases, the functional
being solved depends on the solution of a partial differential
equation defined on the variable domain.

Why shape optimization needs the execution of multiple simu-
lations? The domain of possible solutions can be explored
by repeating simulations, each one considering a different
candidate shape that is tested under the given constraints.
This kind of problem is often not only complex but very
time consuming. An example could be finding the shape of
a boat under specific conditions of sea currents and weather



The Challenges of In Situ Analysis for Multiple Simulations

conditions. Computational Fluid Dynamics (CFD) simula-
tions could be repeated to find the optimal shape of the boat,
for instance for a minimal use of fuel or for a maximal boat
stability.

e Reinforcement Learning (RL) consists in learning how to

choose a sequence of actions in a given environment (based
on a simulation code) to maximize a cumulative reward crite-
ria. A typical example is to self-learn to play chess. Learning
takes place through an iterative process, where the learning
algorithm intends to progressively build a wining strategy
by submitting actions to an environment and correcting its
strategy according to the environment feedback.
Why reinforcement learning needs the execution of multiple
simulations? To speed-up the learning process multiple envi-
ronments are running in parallel, enabling to explore faster
different scenarios. The most visible success of RL is probably
AlphaGo Zero that outperformed the best human go-players.
The learning process required to run 4.9 million go games
during 70 hours using 64 GPU workers and 19 CPU parame-
ter servers. Today, in most cases the environment requires
limited compute resources satisfied by a single node and/or
one GPU. But RL is also emerging as an optimization tech-
nique for scientific applications, such as in [44]. We can
expect that training with advanced parallel simulations will
thus require supercomputers.

e Hyper-parameter Tuning for machine learning. A hyper-

parameter is a parameter whose value is used to control
a learning process. Tuning hyper-parameters consists in
choosing a set of optimal hyper-parameters for a learning
algorithm. Automatic approaches for hyper-parameter tun-
ing are today a major research challenge, for instance, for
deep learning.
Why hyper-parameter tuning needs the execution of multi-
ple simulations? Learning a model over a dataset with fixed
hyper-parameters is a computational process that can be
performed in a supercomputer. Finding the best set of hyper-
parameters consists in repeating multiple times the learning
process and compare its final quality via a established crite-
ria.

4 LESSONS LEARNED

Over the last 5 years, we have developed the Melissa framework
for enabling large scale sensitivity analysis from multiple simula-
tion runs!. Please refer to [42] for a description of its architecture.
Combining in transit methods and iterative statistics enabled to
develop an elastic and file-avoiding approach. We share here the
lessons learned through the development and use of Melissa.

4.1 Probes and Subsampling

An ensemble (the results from multiple simulation runs) is multi-
variate, its members (the result from one run) multidimensional
(both in space and time) and multivalued (several quantities such
as temperature, pressure, or velocity are considered). In our inter-
action with users, we observed that the usual way to deal with
ensembles is to limit their size to reduce I/O pressure and facilitate

!https://melissa-sa.github.io/

ISAV’20, 12 Nov, 2020, Atlanta, GA, USA

the post hoc data analysis. Two main techniques are used for this
purpose:

e Subsample the simulation outputs. In general the numerical
simulation is performed at full resolution but the outputs
are subsampled in the temporal/spatial domain.

e Using probes. The analysis is limited to several spatial lo-
cations or probes. This leads to smaller and more tractable
ensembles of functional outputs, typically an ensemble of
curves (see [38] for an example of this strategy).

Tightly-coupled in situ solutions are not directly applicable in
this context because the data from different simulations need to
be combined to compute statistics. On the other side, in transit
solutions, where the intermediate data produced by members are
not saved to disk but rather sent to dedicated staging nodes in
charge of computing these statistics, would enable to bypass the file
system and thus compute results at significantly higher resolution.
However, the memory capabilities of these in transit nodes are
several order of magnitude smaller than the file system. Specific
strategies need to be developed to be able to gather and process
the results from members, while staying within the node memory
capabilities.

4.2 Iterative Statistics Unlock In Transit
Analysis

Computing statistics from N samples classically requires O(N)
memory space to store these samples. But if the statistics can be
computed in one-pass (also called iterative, on-line or even parallel),
i.e. if the current value can be updated as soon as a new sample is
available, the memory requirement goes down to O(1) space. With
this approach, not only simulation results do not need to be saved,
but they can be consumed in any order, loosening synchroniza-
tion constraints on the simulation executions. This is the key that
enables an in transit approach.

4.3 Design of Experiments and Elasticity

The design of experiments defines how to sample the parameters
of a UQ study. It can go from classical monte carlo sampling to
more advanced approaches. The motivation is to try to keep a good
coverage of the parameter space while reducing the sample size,
i.e. the number of runs. The selected approach can influence the
elasticity, or in other words the capability for asynchronism. Monte
carlo sampling is extremely flexible as drawing a new set of param-
eters is independent from previous samples. The order of member
execution is not constrained. The number of members can be ad-
justed online, according to convergence criteria for instance. Faulty
parameter sets can be replaced with new ones (see subsection 4.4).
In case of a run failure linked to a given parameter choice, the
fault tolerance protocol can replace the faulty run with a new one,
drawing a new set of parameters.

Other designs of experiments can require to increase the granu-
larity of jobs. For instance, Melissa computes Sobol’s indices using
the pick-freeze method, requiring to execute simulations by groups
of P+2 members (P being the number of varying parameters)[42].


https://melissa-sa.github.io/

ISAV’20, 12 Nov, 2020, Atlanta, GA, USA

4.4 Fault Tolerance and Statistical Sampling

Melissa asynchronous client/server architecture and the iterative
statistics computation enable to support a simple yet robust fault
tolerance mechanism [42]. The protocol fully leverages the fact
that data processing relies on iterative statistics, which enables to
process data produced by members in any order. Thus, a failing
simulation can be restarted independently from the others. Ad-
ditionally, faults mainly come from numerical errors related to a
specific set of input parameters. Restarting the same simulation
usually leads to the same error. However, it is often statistically
valid (in accordance with the design of experiments) to replace the
failing simulation by another one running with a new generated
parameter set.

5 CHALLENGES

In this section, we identify four different challenges to be addresses
to enable high performance multi-simulations data processing:
parallelism, iterative mathematics, software infrastructure, visu-
alisation and monitoring. These encompass and extend the chal-
lenges usually identified for single simulation in situ data process-
ing [14, 34].

5.1 Parallelism

Based on our experience, an important question concerning par-
allelism appears straightforward: is it possible to keep the level of
massive parallelism achieved by Melissa in other cases such us Data
Assimilation or Complex Optimization? For this to be performed,
some specific aspects should be studied:

o Elasticity. Can the proposed solutions enable the dynamic
adaptation of compute resource usage according to availabil-
ity? Data Assimilation needs synchronization points each
time observation data are available for assimilation. Complex
optimization needs feedback on how the objective function
is being reduced. Thus, these two cases present a lower level
of massive parallelism and elasticity than UQ. An important
challenge would consist in finding methods that will utilize
the highest level of concurrent execution respecting the con-
straints that impose synchronizations between simulations.

e Fault Tolerance. Can a failed simulation be substituted by a
different one in the design of experiences without modifying
the result? This is possible for UQ studies. However, is that
also valid, for instance, for optimization problems? It should
be possible for a category of optimization algorithms using
statistical sampling but other methods may not be compati-
ble with such assumptions. Studying how optimization and
DA algorithms allow for fault tolerance is an open question
worth to be studied.

5.2 Iterative Mathematics

The combination of iterative mathematics and in situ techniques is a
game changer because it allows the on-line data aggregation of high-
resolution ensemble runs [42]. Indeed, as soon as each available
simulation provides its results, the current value of the desired
statistic can be iteratively updated. This in transit processing mode
enables to fully avoid storage of intermediate data on disks.

Ribés and Raffin

However, this approach implies that the problem to solve can
be expressed in iterative terms, which is not necessarily easy or
even doable. For instance, Melissa currently implements the on-line
computation of quantiles [37]. The iterative computation of quan-
tiles presents mathematical challenges and it is currently an active
research subject. This illustrates that collaboration with mathemati-
cians is often needed to unlock this kind of problems.

Finding iterative optimization or DA algorithms that could be
efficient in an in situ context is a challenge worth to be studied.
Questions such as "What mathematical guarantees can we put on
the resulting analyses?" or "What are the convergence and precision
of the results?" should be answered if we want users to be confident
in the use of in situ techniques in this context.

5.3 Software Infrastructure

A question of practical importance arises for the treatment of multi-
run simulations: should we develop specific platforms for these
new problems or can we re-use/extend existing tools?

We first cite some open questions formulated in [9] concerning
future platforms in this context:

e How can we develop workflows and abstractions that allow
users to handle multiple simultaneous goals? This covers the
aspects of both the technical integration of multiple simulta-
neous workflows as well as the user interface implications
regarding the control of such a complex system.

e How can we support ensembles scaling to a billion members
and beyond and enable an analysis of the resulting high-
dimensional data space?

e How can we develop robust multi-scale and multi-physics
models that are suitable for reliable, reproducible science?
Among other aspects, this requires effective data integration
techniques, which may or may not be transferred from ex-
isting approaches designed for classical post hoc workflows.

Frameworks are available for the different use-cases identified.
Dakota [1], UQLab [27] and OpenTurn[8] for UQ, EnTK [7] and
PDAF [31] for DA, RLIib [23] for Reinforcement Learning, Scikit-
learn [33] or Tune [24]for Hyperparameter search. Some, like RL-
lib, Tune, Sciki-learn and EnTK rely on a emerging generation of
Python based distributed task based programming frameworks,
like Dask [39], Ray [30], Parsl [6] or Radical-Pilot [28], to provide
some level of flexible parallelization. But often scalability is limited,
coupling with large-scale parallel simulations is not supported or
data exchange is file based.

5.4 Visualisation

Uncertainty visualization has been long advocated as one of the
top challenges in visualization [32]. Another challenge of the visu-
alization community has been how to deal with the multivariate
nature of the ensembles [26]. This leaded to the construction of
tools for the post hoc visualization of ensembles (see for instance
[40] or [35]). With the emergence of multi simulation studies (UQ,
DA and complex optimization) at exascale, visualization techniques
for ensembles will certainly need to be revisited and extended.
Furthermore, visualization may also be important in answering
the following question: how can we monitor that these massive
multiple simulations runs are being correctly executed? When, for



The Challenges of In Situ Analysis for Multiple Simulations

instance, executing 10,000 simulations, using log files or debugging
in order to understand its execution becomes impossible. The mon-
itoring of these complex exascale processes becomes a challenge
for itself.

6 CONCLUSIONS

In the past years, we have developed the open-source software
Melissa targeting in transit analysis for UQ studies. Melissa pro-
poses a new approach to compute statistics at large scale by avoid-
ing to store the intermediate results produced by multiple simula-
tion runs.

We have identified other use cases relying on multiple simula-
tion runs, Data Assimilation (DA) and Complex Optimization (CO),
showing that data analysis for multiple simulations has a growing
importance. Based on the Melissa experience, we have analyzed and
extracted lesson from the treatment of UQ studies. Thus, we have
identified similarities and challenges specific to other scenarios.
Taking an in situ perspective on problems such as DA or CO could
certainly bring innovative solutions.

ACKNOWLEDGEMENT

This work has been partly funded by the European Union’s Horizon
2020 research and innovation program under grant agreement No
824158 (EoCoE-2).

REFERENCES

[1] Brian M. Adams, Mohamed S. Ebeida, Michael S. Eldred, Gianluca Geraci, John D.
Jakeman, Kathryn A. Maupin, Jason A. Monschke, Laura P. Swiler, J. Adam
Stepheans, Dena M. Vigil, Timothy M. Wildey, William J. Bohnhoff, Keith R.
Dalbey, John P. Eddy, Joseph R. Frye, Russell W. Hooper, Kenneth T. Hu, Patri-
cia D. Hough, Mohammad Khalil, Elliott M. Ridgway, and Ahmad Rushdi. [n.d.].
Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization,
Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version
6.6 User’s Manual. Technical Report. Sandia Technical Report SAND2014-4633,
July 2014. Updated May 2017.

[2] J. Ahrens, S. Jourdain, P. OLeary, J. Patchett, D. H. Rogers, and M. Petersen. 2014.
An Image-Based Approach to Extreme Scale in Situ Visualization and Analysis. In
SC ’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 424-434.

[3] Mark Asch, Marc Bocquet, and Maélle Nodet. 2016. Data assimilation: methods,
algorithms, and applications. Vol. 11. SIAM.

[4] Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, Kenneth Moreland,
Nathan Fabian, and Jeffrey Mauldin. 2015. Paraview catalyst: Enabling in situ
data analysis and visualization. In Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization. 25-29.

[5] U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie, and E. W. Bethel.
2016. The SENSEI Generic In Situ Interface. In 2016 Second Workshop on In
Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV).
40-44.

[6] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S Katz, Ben Clifford, Ian Foster,
Michael Wilde, and Kyle Chard. 2019. Scalable Parallel Programming in Python
with Parsl. In Proceedings of the Practice and Experience in Advanced Research
Computing on Rise of the Machines (learning). 1-8.

[7] Vivek Balasubramanian, Matteo Turilli, Weiming Hu, Matthieu Lefebvre, Wenjie
Lei, Guido Cervone, Jeroen Tromp, and Shantenu Jha. 2018. Harnessing the
Power of Many: Extensible Toolkit for Scalable Ensemble Applications. In IPDPS
2018.

[8] M.Baudin, A. Dutfoy, B. Iooss, and A-L. Popelin. 2017. Open TURNS: An industrial

software for uncertainty quantification in simulation. In Springer Handbook on

Uncertainty Quantification, R. Ghanem, D. Higdon, and H. Owhadi (Eds.). Springer,

2001-2038.

Janine C. Bennett, Hank Childs, Christoph Garth, and Bernd Hentschel. 2019. In

Situ Visualization for Computational Science (Dagstuhl Seminar 18271). Dagstuhl

Reports 8,7 (2019), 1-43. http://drops.dagstuhl.de/opus/volltexte/2019/10171

Surendra Byna, Jerry Chou, Oliver Rubel, Homa Karimabadi, William S Daughter,

Vadim Roytershteyn, E Wes Bethel, Mark Howison, Ke-Jou Hsu, Kuan-Wu Lin,

[9

=

[10

ISAV’20, 12 Nov, 2020, Atlanta, GA, USA

et al. 2012. Parallel I/O, analysis, and visualization of a trillion particle simula-
tion. In SC’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 1-12.

[11] Jose ]J Camata, Vitor Silva, Patrick Valduriez, Marta Mattoso, and Alvaro LGA

Coutinho. 2018. In situ visualization and data analysis for turbidity currents

simulation. Computers & Geosciences 110 (2018), 23-31.

Ciprian Docan, Manish Parashar, and Scott Klasky. 2012. DataSpaces: an Interac-

tion and Coordination Framework for Coupled Simulation Workflows. Cluster

Computing 15, 2 (2012), 163-181.

Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, and Leigh Orf. 2012.

Damaris: How to efficiently leverage multicore parallelism to achieve scalable,

jitter-free I/O. In 2012 IEEE International Conference on Cluster Computing. IEEE,

155-163.

Matthieu Dorier, Matthieu Dreher, Tom Peterka, Justin M Wozniak, Gabriel

Antoniu, and Bruno Raffin. 2015. Lessons learned from building in situ coupling

frameworks. In Proceedings of the First Workshop on In Situ Infrastructures for

Enabling Extreme-Scale Analysis and Visualization. 19-24.

Matthieu Dreher and Tom Peterka. 2017. Decaf: Decoupled dataflows for in situ

high-performance workflows. Technical Report. Argonne National Lab.(ANL),

Argonne, IL (United States).

Matthieu Dreher and Bruno Raffin. 2014. A flexible framework for asynchronous

in situ and in transit analytics for scientific simulations. In 2014 14th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing. IEEE, 277-286.

Tony Hey, Stewart Tansley, Kristin Tolle, et al. 2009. The fourth paradigm: data-

intensive scientific discovery. Vol. 1. Microsoft research Redmond, WA.

James A Kohl, Torsten Wilde, and David E Bernholdt. 2006. Cumulvs: Interacting

with high-performance scientific simulations, for visualization, steering and fault

tolerance. The International Journal of High Performance Computing Applications

20, 2 (2006), 255-285.

[19] James Kress, Scott Klasky, Norbert Podhorszki, Jong Choi, Hank Childs, and
David Pugmire. 2015. Loosely coupled in situ visualization: A perspective on
why it’s here to stay. In Proceedings of the First Workshop on In Situ Infrastructures
for Enabling Extreme-Scale Analysis and Visualization. 1-6.

[20] T Kuhlen, R Pajarola, and K Zhou. 2011. Parallel in situ coupling of simulation
with a fully featured visualization system. In Proceedings of the 11th Eurographics
Conference on Parallel Graphics and Visualization (EGPGV), Vol. 10. Eurographics
Association Aire-la-Ville, Switzerland, 101-109.

[21] Steven H. Langer, Brian Spears, J. Luc Peterson, John E. Field, Ryan Nora, and

Scott Brandon. 2016. A HYDRA UQ Workflow for NIF Ignition Experiments. In

Proceedings of the 2Nd Workshop on In Situ Infrastructures for Enabling Extreme-

scale Analysis and Visualization (Salt Lake City, Utah) (ISAV ’16). IEEE Press,

Piscataway, NJ, USA, 1-6.

Matthew Larsen, James Ahrens, Utkarsh Ayachit, Eric Brugger, Hank Childs, Berk

Geveci, and Cyrus Harrison. 2017. The ALPINE In Situ Infrastructure: Ascending

from the Ashes of Strawman. In Proceedings of the In Situ Infrastructures on

Enabling Extreme-Scale Analysis and Visualization (Denver, CO, USA) (ISAV’17).

Association for Computing Machinery, New York, NY, USA, 42-46.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-

berg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018. RLIib: Abstractions

for distributed reinforcement learning. In International Conference on Machine

Learning. 3053-3062.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,

and Ion Stoica. 2018. Tune: A Research Platform for Distributed Model Selection

and Training. arXiv preprint arXiv:1807.05118 (2018).

[25] Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen Jin.

2008. Flexible IO and Integration for Scientific Codes through the Adaptable IO

System (ADIOS). In Proceedings of the 6th International Workshop on Challenges

of Large Applications in Distributed Environments (Boston, MA, USA) (CLADE

’08). Association for Computing Machinery, New York, NY, USA, 15-24.

Alison L Love, Alex Pang, and David L Kao. 2005. Visualizing spatial multivalue

data. IEEE Computer Graphics and Applications 25, 3 (2005), 69-79.

[27] Stefano Marelli and Bruno Sudret. 2014. UQLab: A framework for uncertainty

quantification in Matlab. In Vulnerability, uncertainty, and risk: quantification,

mitigation, and management. 2554-2563.

Andre Merzky, Mark Santcroos, Matteo Turilli, and Shantenu Jha. 2015.

RADICAL-Pilot: Scalable execution of heterogeneous and dynamic workloads

on supercomputers. CoRR, abs/1512.08194 (2015).

Kenneth Moreland, Ron Oldfield, Pat Marion, Sebastien Jourdain, Norbert Pod-

horszki, Venkatram Vishwanath, Nathan Fabian, Ciprian Docan, Manish Parashar,

Mark Hereld, et al. 2011. Examples of in transit visualization. In Proceedings of the

2nd international workshop on Petascal data analytics: challenges and opportunities.

1-6.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard

Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,

and Ion Stoica. 2017. Ray: A Distributed Framework for Emerging AI Applications.

arXiv:cs.DC/1712.05889

Lars Nerger and Wolfgang Hiller. 2013. Software for ensemble-based data as-

similation systems—Implementation strategies and scalability. Computers &

[12

[13

(14

[15

[16

(17

[18

[22

[23

[24

[26

[28

[29

[30

[31


http://drops.dagstuhl.de/opus/volltexte/2019/10171
http://arxiv.org/abs/cs.DC/1712.05889

ISAV’20, 12 Nov, 2020, Atlanta, GA, USA

Geosciences 55 (2013), 110-118.

Alex Pang, Craig Wittenbrink, and Suresh Lodha. 1997. Approaches to Uncer-
tainty Visualization. The Visual Computer 13, 8 (Nov 1997), 370-390.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825-2830.

Tom Peterka, Deborah Bard, Janine Bennett, E. Wes Bethel, Ron Oldfield, Line
Pouchard, Christine Sweeney, and Matthew Wolf. 2019. ASCR Workshop on In
Situ Data Management: Enabling Scientific Discovery from Diverse Data Sources.
(2 2019). https://doi.org/10.2172/1493245

Kristin Potter, Andrew Wilson, Peer-Timo Bremer, Dean Williams, Charles Dou-
triaux, Valerio Pascucci, and Chris R Johnson. 2009. Ensemble-vis: A framework
for the statistical visualization of ensemble data. In 2009 IEEE International Con-
ference on Data Mining Workshops. IEEE, 233-240.

Alejandro Ribés, Benjamin Lorendeau, Julien Jomier, and Yvan Fournier. 2015.
In-situ visualization in computational fluid dynamics using open-source tools:
integration of catalyst into Code_Saturne. In Topological and Statistical Methods
for Complex Data. Springer, 21-37.

Alejandro Ribes, Théophile Terraz, Bertrand Iooss, Yvan Fournier, and Bruno
Raffin. 2019. Large scale in transit computation of quantiles for ensemble runs.
arXiv:math.ST/1905.04180

Ribés and Raffin

Alejandro Ribés, Joachim Pouderoux, and Bertrand Iooss. 2020. A Visual Sen-
sitivity Analysis for Parameter-Augmented Ensembles of Curves. Journal of
Verification, Validation and Uncertainty Quantification 4, 4 (02 2020). 041007.
Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and
Task Scheduling. In Proceedings of the 14th Python in Science Conference, Kathryn
Huff and James Bergstra (Eds.). 130 - 136.

Jibonananda Sanyal, Song Zhang, Jamie Dyer, Andrew Mercer, Philip Amburn,
and Robert Moorhead. 2010. Noodles: A tool for visualization of numerical
weather model ensemble uncertainty. IEEE Transactions on Visualization and
Computer Graphics 16, 6 (2010), 1421-1430.

R.C. Smith. 2014. Uncertainty quantification. SIAM.

Théophile Terraz, Alejandro Ribés, Yvan Fournier, Bertrand Iooss, and Bruno
Raffin. 2017. Melissa: Large Scale In Transit Sensitivity Analysis Avoiding In-
termediate Files. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’17). Denver.

H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K. Ma. 2010. In Situ Visualization for
Large-Scale Combustion Simulations. IEEE Computer Graphics and Applications
30, 3 (2010), 45-57.

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. 2019.
Optimization of molecules via deep reinforcement learning. Scientific reports 9, 1
(2019), 1-10.


https://doi.org/10.2172/1493245
http://arxiv.org/abs/math.ST/1905.04180

	Abstract
	1 Introduction
	2 Related Work
	3 Multi Simulation Data Processing Use Cases
	3.1 Uncertainty Quantification
	3.2 Data Assimilation
	3.3 Complex Optimization

	4 Lessons Learned
	4.1 Probes and Subsampling
	4.2 Iterative Statistics Unlock In Transit Analysis
	4.3 Design of Experiments and Elasticity
	4.4 Fault Tolerance and Statistical Sampling

	5 Challenges
	5.1 Parallelism
	5.2 Iterative Mathematics
	5.3 Software Infrastructure
	5.4 Visualisation

	6 Conclusions
	References

