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ABSTRACT

To successfully monitor and actively control hydrody-
namic and aerodynamic systems (e.g. aircraft wings), it
can be critical to estimate and predict the unsteady flow
around them in real-time. Thus, we introduce a new al-
gorithm to couple on-board measurements with fluid dy-
namics simulations and prior data in real-time without the
need to rely on large computational infrastructure. This
is achieved through a combination of a Proper Orthogo-
nal Decomposition Galerkin method, stochastic closure –
model under location uncertainty – and a particle filtering
scheme. Impressive numerical results have been obtained
for a 3-dimensional wake flows at moderate Reynolds for
up to 14 vortex shedding cycles after the learning win-
dow, using a single measurement point.

1. INTRODUCTION

Accurate aeroelastic and aerodynamics active control
(e.g. active flutter suppression, flight stability augmen-
tation, gust and loads alleviation) can require state ob-
servers. However, estimating – or even predicting – in
real-time an unsteady turbulent flow state from sparse
measurements can be challenging. Through statistical es-
timation techniques, sensor observations can be assimi-
lated to flow dynamical models’ predictions, but for this
to be a viable strategy, some difficulties must be sur-
mounted first.

Firstly, the system must be able to resolve sufficient
spatio-temporal scales for the system to be stable, and
this in real-time. Though tempting, tackling this prob-
lem with purely data-driven fluid dynamics models (typ-

ically learned through machine learning techniques) may
not be accurate and/or robust enough. On the other hand,
pure physics-based model simulations (e.g. LES, RANS)
are often too slow for real-time applications and a speed-
up would most likely push it to miss important spatio-
temporal scales. Hence, Reduced Order Models (ROM)
represent a nice compromise (see e.g. [7] for some aeroe-
lastic applications). In particular, the Proper Orthogonal
Decomposition (POD) -Galerkin method is a model that
relies on physical equations while constraining the solu-
tion to live inside a small subspace learned from data.
Nevertheless, the unsteady CFD ROM state of art limits
itself mostly to deterministic ROMs (often linear and/or
with purely data-driven calibration) with limited predic-
tion capabilities, especially due to the chaotic and inter-
mittent nature of turbulence, and closure problems. The
simulation-measurement coupling, known in the litera-
ture as data assimilation, can be in itself a challenging
task too, but thanks to the weather forecast community,
there have been many advances in the field, with promis-
ing research and many operational perspectives thriv-
ing lately. Notwithstanding, algorithms fully addressing
non-linear dynamics – like fluid mechanics – are limited
by the available computational power and the dynamical
model’s accuracy quantification. The former could easily
be overcome by the use of the use of our proposed ROM,
whereas the second would require a method that can com-
bine two distinct information sources, each with its own
accuracy: predictions and measurements. As this not cur-
rently possible with the ROM alone, we will rely on so-
called dynamics under location uncertainty – a random
fluid mechanics framework designed specifically for this
purpose [3, 5]. This paper will be organized as follows:
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section 2 will recall the main aspects of POD-Galerkin
ROM, section 3 will present our main contribution: a
randomized version of POD-Galerkin ROM, and explain
the data assimilation procedure, and finally, section 5 will
showcase its potential through some of our numerical re-
sults.

2. POD-ROM

The goal of Reduced Order Models (ROM) is to reduce
the computational cost of simulations by drastically con-
stricting the solution’s degrees of freedom. This gain is
typically enabled by a combination of simulation data and
modeling based on physical equations. In CFD, solutions
i.e. the velocity field have as many degrees of freedom
as there are grid points in the spatial domain (typically in
the order of 106). Thus, to achieve such a dimensional-
ity reduction using ROMs, velocity fields are traditionally
decomposed as follows:

v(x, t) = w(x, t)︸ ︷︷ ︸
Resolved

by the ROM

+ v′(x)︸︷︷︸
Unresolved
by the ROM

, (1)

with

w(x, t) = v(x)︸︷︷︸
Time

averaged

+
n

∑
1=1

bi(t)φ i(x)︸ ︷︷ ︸
Unsteady

component

, (2)

with n ∈ [1,102]. Proper orthogonal decomposition
(POD) learns the time averaged v(x) and the spatial
modes φ(x) through principal component analysis (PCA)
applied to a set of high-resolution simulation solutions
(learning period). Then, one can project the physical
equations (e.g. Navier-Stokes equations) onto these spa-
tial modes, thus providing a system of n coupled ordi-
nary differential equations that describe the evolution of
the temporal modes bi(t). Through the time integration
of this low-dimensional system and from equation (2),
we can predict an a priori estimation of the velocity field
at any given time. Consequently, this ROM construction
scheme can be seen as a midpoint between fully data-
driven methods and pure physics-based model, as it takes
advantage of both, the available simulation data and phys-
ical modeling in order to infer reliable predictions more
efficiently.

3. MODEL UNCERTAINTY QUANTIFI-
CATION AND DATA ASSIMILATION

Models under location uncertainty are a type of random
CFD model [3, 5] that provides both an efficient closure
(i.e. an efficient way to model the effect of the neglected
dynamics degrees of freedom v′) and an efficient quan-
tification of the error induced by this closure. Though for

it to be tractable, two assumptions must be made: i) the
time decorrelation of the unresolved velocity component
v′ (see eq. (1)) and the stochastic transport – up to some
forces F – of the resolved velocity component w. With
Ito stochastic calculus notations, this reads:

Dwk

Dt
= ∂twk +

(
w− 1

2 (∇·a)
T + v′

)
·∇wk− 1

2 ∇·(a∇wk) ,

= Fk, (3)

with
apq = v′pv′q τv′ , (4)

being the unresolved velocity (Eulerian) absolute diffu-
sivity, and τv′ the unresolved velocity correlation time.
In order to express that uncertainty (inherent to any clo-
sure in CFD), multiple simulations are run in parallel us-
ing the stochastic model so as to efficiently realize the
most probable future states of the fluid system. Since that
stochastic closure is based on physics, its robustness is
proved and calibrations can be performed from available
physical quantities, hence almost no tuning nor fitting is
required.

[6] makes use of this formalism in a POD-Galerkin
context for data analysis, but without considering the
noise term v′ ·∇wk. Here, we do consider this noise term.
As per chapter 8 of [4], we have implemented the POD-
Galerkin of the Navier-Stokes model under location un-
certainty (3), along with the corresponding technical sta-
tistical estimations based on stochastic calculus presented
there. Interested readers can refer to [4] for more de-
tails. The ensuing low-dimensional system incorporates
noise terms, thus enabling model uncertainty quantifica-
tion and strengthening its forecasting capabilities to allow
for more stable forecasts beyond the learning period.

4. MEASUREMENTS AND DATA AS-
SIMILATION

The final block in our stochastic POD-ROM model’s
pipeline is a particle filter [1] to integrate the real-
time measurements coming from all the different sen-
sors. In particular, this scheme was tested with a two
dimensional, two components particle image velocime-
try (2D2C PIV) experimental arrangement with a linear
observation model as per 6.

y = Hv+ εy, (5)
= ∑

i
(Hφ i)bi +

(
Hv′+ εy

)
, (6)

where, in order to mimic the PIV measurement process,
the linear operator H incorporates a 3-dimensional spa-
tial smoothing operation, the occlusion of the horizontal
plane and its corresponding component in the velocity
field. Additionally, to make the data assimilation task
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Figure 1: Q-criterion – 13 vortex shedding cycles after
the learning period – from the 3D DNS at Reynolds 300.

more challenging, the information relating to a subset
of points in the grid was obscured though this opera-
tor. Indeed, estimating a vector b of n ∼ 10 components
from a noisy linearly-dependent observation vector y of
MPIV ∼ 104(� n) components could otherwise be solved
using a simple least-squares procedure. The parameters
inside H and εy are estimated using experimental data,
comparing the hot wire and PIV measurements’ spec-
trum (using a Taylor assumption). Note that the unre-
solved velocity v′’s strong influence on the final observa-
tion model’s uncertainty is taken into account through a
noise term in (6).

For the first tests presented here, we consider only syn-
thetically generated measurements produced using the
aforementioned observation model (5), as this allow us
to know the exact values of the velocity field everywhere
on the 3-dimensional space.

5. NUMERICAL RESULTS

Our data assimilation procedure has been applied to a
3-dimensional cylinder wake flows at Reynolds number
300. In wake flows, vortices are shed from the cylinder in
a pseudo-periodic way. As shown by figure 1, even at this
moderate Reynolds, the flow is already three-dimensional
and very complex. Before our data assimilation tests,
we performed direct numerical simulations (DNS) us-
ing Incompact3d, a high-order flow solver based on the
discretization of the incompressible Navier-Stokes equa-
tions [2]. The simulation’s spatial grids correspond to
state space dimensions of about 107. 80 vortex shedding
cycles are used for the ROM constructions (learning pe-
riod). The remaining vortex shedding cycles are used to
test and to build synthetic measurements.

Figures 2, 3, 4 and 5 show the Q-criterion1 isosurfaces
of the data assimilation results, with n = 2 , 4, 6 and
8 modes respectively . Here, a single spatial resolution
point of the synthetic PIV data is assimilated ten times for
each of the vortex shedding cycles. The observation point
is outside but close to the recirculation zone. Specifi-

1Q-criterion is a classical visual tool of CFD to visualize vortices.

cally, its coordinates are x = 1.31D (streamwise direc-
tion), z= 0 (spanwise direction) and y=−1.48D (orthog-
onal direction), where the cylinder is centered on (0,0,−)
and has a diameter D. Despite the little amount of infor-
mation contained in the measurements, the ROM shows
a very good predictive power even outside the learning
period. The proposed observers are almost identical to
the references, positively demonstrating the huge poten-
tial of our approach. Those references (top plots in fig-
ures 2, 3, 4 and 5) are the theoretical performance limits:
they correspond to the case of exactly known temporal
modes bi(t) in the equation (2). The differences between
those theoretical optimums and the DNS reference (see
figure 1) is the unresolved velocity v′, this difference is
restricted to small scales and 3 dimensional effects at 300.
In order to better appreciate the potential of our method,
figures 2, 3, 4 and 5 display predictions from a bench-
mark POD-ROMs – POD-Galerkin with optimally fitted
eddy viscosity and additive noise. The same data assim-
ilation algorithm is used there. Nevertheless, the bench-
mark method strongly differs from the reference whereas
our method sticks to it.

Q-criterion iso-surfaces provide a good qualitative
analysis. For a quantitative one, figures 6, 7, 8 and 9
plot the global velocity prediction normalized error from
the end of the learning period until 14 vortex shedding
cycles later. Again, our method performs extremely well
whereas the benchmark perform extremely bad.

To generate the simulation dataset, the offline high-
resolution highly-optimized CFD code needs to run for
several hours on a supercomputer, whereas the off-line
ROM construction just takes a few hours on a laptop for
the current non-parallelized MATLAB code. Meanwhile,
the online ROM should allow for measurements to be as-
similated on the fly (i.e. at one vortex shedding cycle ev-
ery 5 seconds) on a non-parallelized Python implementa-
tion, also on a laptop computer. Consequently, a consid-
erable speed-up should be expected for their conversion
to C++ and code parallelization.

6. CONCLUSION

In this paper, we have presented a novel accurate yet effi-
cient method to estimate and predict a flow velocity field
globally in space from sparse measurements. Our algo-
rithm is based on a stochastic, low-dimensional system
built using the knowledge of physics equations and sim-
ulated DNS data, and enabling the coupling with real-
time measurements. Comparisons with a benchmark ap-
proach have shown a remarkable improvement. With our
method, a single measurement point was enough to ac-
curately predict the unsteady velocity field in the whole
3-dimensional space.

Naturally, as a continuation to this work we will per-
form some tests with actual particle velocimetry (PIV)
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Figure 2: Q-criterion – 13 vortex shedding cycles after
the learning period – from the reference 2-dimensional
representation (projection of the 3D DNS at Reynolds
300 onto the POD modes) (top), our reduced data assim-
ilation (middle) and a reduced data assimilation bench-
mark (bottom).

Figure 3: Q-criterion – 13 vortex shedding cycles after
the learning period – from the reference 4-dimensional
representation (projection of the 3D DNS at Reynolds
300 onto the POD modes) (top), our reduced data assim-
ilation (middle) and a reduced data assimilation bench-
mark (bottom).
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Figure 4: Q-criterion – 13 vortex shedding cycles after
the learning period – from the reference 6-dimensional
representation (projection of the 3D DNS at Reynolds
300 onto the POD modes) (top), our reduced data assim-
ilation (middle) and a reduced data assimilation bench-
mark (bottom).

Figure 5: Q-criterion – 13 vortex shedding cycles after
the learning period – from the reference 8-dimensional
representation (projection of the 3D DNS at Reynolds
300 onto the POD modes) (top), our reduced data assim-
ilation (middle) and a reduced data assimilation bench-
mark (bottom).
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Figure 6: Global velocity prediction normalized error (af-
ter the learning period) with n = 2 modes for our reduced
data assimilation (dark blue) and a reduced data assim-
ilation benchmark (light blue). The shade colors (grey
and light blue) correspond to the respective estimated a
posteriori standard deviations. The dashed black line at
the bottom is the POD truncation error. The solid black
line at the top is the error obtained by setting all tempo-
ral modes bi to 0, i.e. keeping only the time averaged
velocity v.
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Figure 7: Global velocity prediction normalized error (af-
ter the learning period) with n = 4 modes for our reduced
data assimilation (dark blue) and a reduced data assim-
ilation benchmark (light blue). The shade colors (grey
and light blue) correspond to the respective estimated a
posteriori standard deviations. The dashed black line at
the bottom is the POD truncation error. The solid black
line at the top is the error obtained by setting all tempo-
ral modes bi to 0, i.e. keeping only the time averaged
velocity v.
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Figure 8: Global velocity prediction normalized error (af-
ter the learning period) with n = 6 modes for our reduced
data assimilation (dark blue) and a reduced data assim-
ilation benchmark (light blue). The shade colors (grey
and light blue) correspond to the respective estimated a
posteriori standard deviations. The dashed black line at
the bottom is the POD truncation error. The solid black
line at the top is the error obtained by setting all tempo-
ral modes bi to 0, i.e. keeping only the time averaged
velocity v.
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Figure 9: Global velocity prediction normalized error (af-
ter the learning period) with n = 8 modes for our reduced
data assimilation (dark blue) and a reduced data assim-
ilation benchmark (light blue). The shade colors (grey
and light blue) correspond to the respective estimated a
posteriori standard deviations. The dashed black line at
the bottom is the POD truncation error. The solid black
line at the top is the error obtained by setting all tempo-
ral modes bi to 0, i.e. keeping only the time averaged
velocity v.
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measurements. Some enhancements to address more tur-
bulent flows are also underway. Finally, we envisage the
introduction of parametric ROMs and ROM construction
from noisy and/or incomplete data.
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