N

N

Estimation of the impact of I/O forwarding on
application performance

Francieli Zanon Boito

» To cite this version:

Francieli Zanon Boito. Estimation of the impact of I/O forwarding on application performance.
[Research Report] RR-9366, Inria. 2020, pp.20. hal-02969780

HAL Id: hal-02969780
https://inria.hal.science/hal-02969780
Submitted on 16 Oct 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-02969780
https://hal.archives-ouvertes.fr

Estimation of the impact
of I/0 forwarding on

application performance

Francieli Zanon Boito

RESEARCH
REPORT

N° 9366

October 2020

ISSN 0249-6399 ISRN INRIA/RR--9366--FR+ENG

Project-Team TADaaM

V4

: in]armutics,mathemutics

Estimation of the impact of I/O forwarding on
application performance

Francieli Zanon Boito
Project-Team TADaaM

Research Report n° 9366 — October 2020 — [20] pages

Abstract: In high performance computing architectures, the I/O forwarding technique is often
used to alleviate contention in the access to the shared parallel file system servers. Intermediate
I/0 nodes are placed between compute nodes and these servers, and are responsible for forwarding
requests. In this scenario, it is important to properly distribute the number of available I/O nodes
among the running jobs to promote an efficient usage of these resources and improve I/O perfor-
mance. However, the impact different numbers of I/O nodes have on an application bandwidth
depends on its characteristics. In this report, we explore the idea of predicting application perfor-
mance by extracting information from a coarse-grained aggregated trace from a previous execution,
and then using this information to match each of the application’s I/O phases to an equivalent
benchmark, for which we could have performance results. We test this idea by applying it to five
different applications over three case studies, and find a mean error of approximately 20%. We
extensively discuss the obtained results and limitations to the approach, pointing at future work
opportunities.

Key-words: high performance computing, parallel 1/O, tracing, performance prediction

RESEARCH CENTRE
BORDEAUX - SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

Estimation du impact de 'utilisation d’I/O forwarding sur
les performances des applications

Résumeé : Dans les plate-formes pour calcul hautes performances, la technique d’I/O forward-
ing est souvent utilisée pour atténuer les conflits d’accés aux serveurs du systéme de fichiers
paralléle, qui sont partagés par les applications. Les noeuds d’I/O intermédiaires sont placés
entre les noeuds de calcul et ces serveurs et sont responsables de la transmission des deman-
des. Dans ce scénario, il est important de répartir correctement le nombre de noeuds d’I/O
disponibles parmi les jobs en cours d’exécution pour promouvoir une utilisation efficace de ces
ressources et améliorer les performances d'I/O. Cependant, 'impact de différents nombres de
noeuds intermédiaires sur la bande passante d’une application dépend de ses caractéristiques.
Dans ce rapport, nous explorons 'idée de prédire les performances de I'application en extrayant
des informations d'une trace agrégée a gros grain d’une exécution précédente, puis en utilisant
ces informations pour faire correspondre chacune des phases d’I/O de 'application & un bench-
mark équivalent, pour lequel on pourrait avoir des résultats de performance. Nous testons cette
idée en 'appliquant & cinq applications différentes sur trois études de cas, et trouvons une er-
reur moyenne d’environ 20%. Nous discutons longuement les résultats obtenus et les limites de
I’approche, en indiquant des opportunités pour travaux futures.

Mots-clés : calcul hautes performances, E/S paralleles, I/O forwarding, traces, prediction de
performance

Estimation of the impact of I/0 forwarding on application performance 3

Contents

1__Introduction| 4
|2 Application 1/O phases| 6
I3 Case study I — Single-phase synthetic applications| 7
4 Case study II — Periodic synthetic applications| 9
[6 Case study III — HACC-IO] 12
|6 Estimation of the impact of 1/O forwarding on application performance 14
[7_Conclusion| 16

RR n° 9366

4 Zanon Boito

1 Introduction

In high-performance computing (HPC) architectures, parallel file systems (PFS) provide persis-
tent storage to applications though a set of dedicated data and metadata servers. The storage
infrastructure, illustrated in Figure often includes a set of intermediate I/0 nodes that receive
requests from the clients and forward them to the PFS. This approach is called I/O forwarding,
and has the advantage of alleviating contention in the access to the shared servers. Moreover, it
provides optimization opportunities such as request reordering, aggregation, and scheduling. [6] 8]

The assignment of I/O nodes to applications is often made statically, i.e. for N processing
and M I/0 nodes, each I/O node is connected to N/M processing nodes, which are not able to
communicate with other I/O nodes. Hence the I/O nodes that an application will use depend
on its placement. Nonetheless, other alternatives are possible. In some systems such as Tianhe-2
and Sunway TaihuLight, it is possible to configure how many and which I/O nodes each job
accesses [10] A].

Using a variable number of I/O nodes per application, instead of simply choosing it based
on the used compute nodes, is useful because the processing needs of the application (which
affects the number of processors) are not necessarily correlated to the data access needs (which
affects the utilization of I/O nodes). Static approaches result in load imbalance and wastes
resources (the I/O nodes) that could be used to improve the performance of other concurrent
applications [12].

Related work has focused on proposing better allocation strategies that try to assign more
I/0 nodes to data-intensive applications, and that try not to co-locate jobs that could impose too
much interference to each other [4]. Nonetheless, their approach assumes having more I/O nodes
always translates in better application I/O performance if it imposes a heavy-enough workload.
However, as we show in this report, the I/O performance an application will have with different
numbers of I/O nodes depend not only on its intensitivity, but also on its access pattern —
aspects such as the number of accessed files, the spatiality of these accesses, the size of requests,
etc. Figure [illustrate this using as example three applications that will appear later in this
report as case studies.

That means we need better allocation strategies that take the applications’ characteristics
into consideration in order to promote a better usage of the I/O forwarding layer and improve I/O
performance across the machine. Nevertheless, such a technique requires the knowledge of the
performance each application would experience with different numbers of 1/O nodes. Therefore,
in this report, we focus on the first step towards better allocation strategies for
the I/0 forwarding layer of HPC architecture: on estimating, to an application, its
performance as a function of the number of used I/0 nodes.

Processing nodes © 1/Onodes : : Parallel File
: : ' ' System

Figure 1: High-level view of the storage infrastructure of HPC architectures

Inria

Estimation of the impact of I/0 forwarding on application performance 5

400 800
7500
Z 300 F 600 =
[0a) o) =
=3 =3 = 5000
3 200 3 400 2
= = ©
g g g
< = & 2500
M 100 @ 200
0 0 B
0 2 4 6 8 0 2 4 6 8
Number of 1/0 nodes Number of 1/0 nodes Num'ber of I/0 nodes)
(a) SINGLE-A (Section B (b) PERIODIC-A (Section[f) () HACCIO with 100000 parti-

cles per process (Section

Figure 2: Three applications, executed on the environment described in the Appendix B, are
impacted differently when changing the number of I/O nodes. Lines are added to aid the visu-
alization of the tendencies. The y axis in different for each plot.

The challenge here is that jobs submitted to run on a supercomputer only contain the in-
formation of expected execution time and number of processors, not about I/O activity. This
information is also not easily obtained from the application binary or even from the users. More-
over, even with a description of what is done by the application, today there are not good,
comprehensive, accurate performance models that would allow us to simply achieve such an es-
timation (and for good reason: building such models is a complex task because performance is
affected by too many factors). A solution could be to run the application with different numbers
of I/O nodes (multiple times, because of variability) and use this result for future submissions.
Nonetheless, requiring such profiling runs would have a high cost, and any allocation technique
based on this information would only be able to benefit applications after they were executed
many times.

In this report, we test the hypothesis that we could estimate application perfor-
mance by extracting its I/O characteristics from a coarse-grained aggregated trace
and then leveraging results observed for benchmarks with similar characteristics.
The use of benchmark results would decrease the cost of obtaining the required information, as
benchmarks run faster than the application (they don’t have the processing and communication
parts) and be useful to multiple applications that present similar access patterns.

We assume a database of I/O traces from previously executed applications is available, sim-
ilarly to what was done in other research efforts [4]. For our case studies, we use Darshan
traces [3], because they are generated by default in many supercomputersﬂ Still, our solution
is not dependent on the use of Darshan and could be used with other monitoring tools. In this
situation, when a job is submitted, we would find traces from previous executions of
the same application (which will often be possible because HPC machines are used to run the
same applications multiple times), extract the different I/0 phases’ characteristics, iden-
tify similar benchmarks to each I/O phase, and then use the observed bandwidth of
these benchmarks to estimate the I/O performance of the application.

This report is organized as follows. Section [2| discusses how we estimated I/O phases from

Thttps://www.mcs.anl.gov/research/projects/darshan/

RR n° 9366

https://www.mcs.anl.gov/research/projects/darshan/

6 Zanon Boito

Darshan traces in the presented case studies. Then, in Sections [3] to [our hypothesis is
tested through a sequence of case studies of increasing complexity. Section [6] summarizes
the proposed technique, and its advantages and limitations observed during the case studies, and
identifies future work opportunities. Section [7] closes this report with final considerations.

2 Application I/O phases

Many supercomputers activate some monitoring tools by default for all their jobs, as is often the
case for Darshan. In its traditional usage, this I/O monitoring tool intercepts I/O operations
and keeps per-node counters during the execution of the job. At the end of the execution, the
first rank aggregates all information into statistics that are compressed and written to a per-job
file, called a Darshan trace. These counters include the number of reads and writes and of bytes
accessed through different interfaces, timestamps of the first and the last accesses to each file,
etc. Although the generation of more detailed finer-grained traces being possible with Darshan,
the traditional aggregated coarse-grained traces are preferred because they minimize overhead
and because they are smaller in size and hence easier (and cheaper) to store and handle.

In this work, we want to leverage information from the aggregated coarse-grained traces to
predict how the application’s I/O performance would be impacted by the use of different numbers
of intermediate I/O nodes. We choose to use these traces because they are already generated at
many supercomputers, so our prediction would not impose further overhead to the applications
or require changes in the infrastructure.

From the set of counters in the Darshan trace of a job, we generate a set of /0 phases. Each
I/0O phase is characterized by:

e timestamps of start and end;

e operation type (read or write);

e involved ranks (the rank if a single one, or the number of ranks in case of multiple ones);
e amount of data;

e time spent on I/O (which may be smaller than end — start);

e API;

e number of requests;

e spatiality (consecutive, sequential, or random for POSIX, collective or unknown for MPI-

10);
e number of files and access fashion (file-per-process or shared file).

These fields were chosen based on the hypothesis that they allow for performance prediction,
and limited by what is available from the Darshan counters. Details on how the I/O phase
characterization is estimated from the Darshan traces using the SummarlO tool are presented in
the Appendix This strategy was inspired by the one proposed by Bez. et al [1], but expanded
to include more information about the phases and to group similar phases to present a more
concise view of the application. The SummarlO tool is freely available at https://gitlab.
inria.fr/hpc_io/summario .

A limitation of the obtained phases is that the timestamps of start and end of the phase come
from the first and last accesses to a file, hence do not necessarily represent the start and end of

Inria

https://gitlab.inria.fr/hpc_io/summario
https://gitlab.inria.fr/hpc_io/summario

Estimation of the impact of I/0 forwarding on application performance 7

an I/O-intensive part of the application execution. Indeed, multiple “logical” application phases
could appear as a single phase if they access the same file. Indeed, the use of high-level aggregated
traces means the identified application I/O phases are estimations, as detailed information could
have been lost.

It is important to notice that the performance estimation part of this work does not depend
on the phase estimation. Therefore, our proposal is not dependent on the use of Darshan
traces. Indeed, information of the I/O phases of an application could be obtained from another
monitoring tool, including a more detailed one.

3 Case study I — Single-phase synthetic applications

The first case study is the simplest possible scenario: the application is composed of a single
POSIX I/0 phase, without any processing to be done. That is the simplest case because more
information is available about POSIX phases (notably the spatiality) and because the single
phase of “concentrated” I/O activity will be easier to estimate. To represent this scenario, we
use two benchmarks obtained from the benchmarking tool IORP, SINGLE-A and SINGLE-B.
They are described in the Table[I] The choice of parameters for this report was arbitrary, while
seeking to represent multiple realistic patterns and performance “curves” across the case studies.

Table 1: Description of SINGLE-A and SINGLE-B applications. Both write data using POSIX.

Amount of Request

Nodes Processes Files Spatiality data (total) size

SINGLE-A 16 128 shared-file contiguous 16 GB 2 MB

SINGLE-B 64 512 file-per-— tiguous 32 GB 4 MB
process

The two codes were executed with the goal of obtaining their Darshan traces, which were
then provided to the SummarIO code. The result is presented in Table A single phase was
identified to each application. For SINGLE-A we know that 128 processes wrote contiguous
requests to a shared-file. Request size is easily obtained by dividing bytes by #requests. For
SINGLE-B, we know all processes were involved in phases where a single process accessed its
own file (therefore a file-per-process phase). We can estimate the number of processes from the
number of files.

Table 2: 1/O phases from applications SINGLE-A and SINGLE-B, estimated with SummarIO.

job start end type rank bytes time
SINGLE-A 0.026459 71.625603 write all 17179869184 47.51776984375
. 1 mode of
api #requests spatiality files #files tprocesses
POSIX 8192 contiguous shared 1 128
job start end type rank bytes time
SINGLE-B 0.064315 99.164715 write all 34359738368 99.092545
. 1 mode of
api #requests spatiality files #files 4tprocesses
POSIX 8192 contiguous unique 512 1

%https://github.com/hpc/ior

RR n° 9366

https://github.com/hpc/ior

8 Zanon Boito

The estimated phases match therefore the characteristics presented in Table [II That means
that, using IOR as the benchmarking tool, in this particular case the benchmarks generated to
mimic these phases will be the applications themselves. Therefore, to evaluate our approach in
this case study, we executed the SINGLE-A and SINGLE-B applications 10 times each, and then
randomly marked half of the executions as “benchmark” and half as “application”. Results are pre-
sented in Figure[3] All experiments presented in this report were conducted using the Grid’5000
platform [2]. Details of the experimental methodology are presented in the Appendix

Although the three curves in each plot are obtained from repetitions of the same code, they
present some differences. That happens because of the variability observed in these executions.
Figure [4] illustrated this variability by plotting the bandwidth of all ten repetitions of each
application with each number of I/O nodes. The performance of SINGLE-A with 4 I/O nodes
varied from 286 to 512 MB/s, and the performance of SINGLE-B with 0 I/O nodes from 217 to
365 MB/s. The standard variation was between 58 and 99 MB/s for SINGLE-A and between 21
and 67 MB/s for SINGLE-B. Variability in I/O performance is a well-known phenomenon [9, [7],

All Application Benchmark
400
w
g 200 v—\
ES
2 200
©
c
[
@ 100
0

0O 2 4 6 80 2 4 6 8
Number of 1/0 nodes
(a) SINGLE-A

o
N
N
(o]
(o0]

All Application Benchmark

400
2

& 300
£
e

S 200
=
©
8

m 100

0

o 2 4 6 80 2 4 6 80 2 4 6 8
Number of 1/0 nodes
(b) SINGLE-B

Figure 3: Performance (mean of multiple executions) of SINGLE-A and SINGLE-B applications
as a function of the number of I/O nodes. The ten executions were randomly separated into
“application” and “benchmark”. “All” presents the mean of all ten results. The lines are added
to aid the visualization of tendencies.

Inria

Estimation of the impact of I/0 forwarding on application performance 9

SINGLE-A SINGLE-B

’U? []
o 400
= $
- 54 Hu =
=
T 200
©
m

0

0 1 2 4 8 0 1 2 4 8
Number of /O nodes
Figure 4: Boxplots of the ten results obtained for each number of I/O nodes, separated by
application. The line in the middle represents the median, and the lower and upper hinges show
the first and third quartiles. The whiskers extend to other values at a distance from the hinges
of up to 1.5xIQR, which is the distance between the first and third quartiles. Points beyond
that distance are “outliers” and plotted as points.

and is has been shown to depend on the application access pattern [5].

The pairs of samples to each number of I/O nodes were compared using the Dunn statistical
test . The p-value has higher than a/2 for all pairs (except for 0 I/O nodes in SINGLE-B),
meaning we cannot say the application and benchmark executions are significantly different.
Indeed, the differences between the “Application” and “Benchmark” curves are due to luck in the
random labeling of the repetitions. It is possible a higher number of repetitions would result in
more similar curves, as larger samples would represent better the distribution they come from.

We calculated the error we would cause when estimating application performance by the mean
bandwidth observed for the benchmark. The error is calculated to each of the five application
repetitions with each number of I/O nodes as |By, — Bg|/Ba, where B, is the performance of
the benchmark and B, of the application. The distribution of the 25 obtained values for each
application are described in Table [8] The error observed for SINGLE-B was smaller than for
SINGLE-A because the former presented less variability in the results of different executions, as
showed in Figure [4]

Both estimations allow for identifying the best number of I/O nodes (four for SINGLE-A and
8 for SINGLE-B). However, some differences are “deformed”.

4 Case study II — Periodic synthetic applications

The second case study consists also of two synthetic applications, generated with the IOR bench-
marking tool. These applications, PERIODIC-A and PERIODIC-B, are composed of eight peri-

Table 3: Distribution of error when using the mean of benchmark executions as the estimate for
each application execution.

minimum mean median maximum
SINGLE-A 0.1 0.25 0.26 0.45
SINGLE-B 0.0 0.14 0.16 0.33

RR n° 9366

10 Zanon Boito

odic I/0 phases, separated by 10-second compute phases. Their details are presented in Table

Table 4: Description of applications PERIODIC-A and PERIODIC-B. Both write data via
POSIX in eight regular phases, separated by 10-second intervals (representing a compute phase).
In PERIODIC-A, a new shared file is created at each phase.

Amount of Request

Nodes Processes Files Spatiality data (total) size

PERIODIC-A 24 24 Sh;{gd' 1D-strided 24 GB 512 KB
PERIODIC-B 24 24 file-per- tiguous 24 GB 4KB
process

Similar to what was done in the previous Section, to the first case study, applications were
executed at first to obtain the traces, which were parsed with the SummarIO tool to generate an
estimation of their I/O phases. Eight identical phases (differing only on start and end timestamps
and slightly on duration) were obtained for each application. The first phase of each application
is presented in Table

Table 5: First I/0O phase of PERIODIC-A and PERIODIC-B, estimated with SummarIO.

job start end type rank bytes time
PER.-A 10.031531 24.02671 write all 3221225472 11.1388105416667
. 1 mode of
api #requests spatiality files #files tprocesses
POSIX 6144 sequential shared 1 24
job start end type rank bytes time
PER.-B 10.030157 20.391011 write all 3221225472 10.334366
. s mode of
api #requests spatiality files #files tprocesses
POSIX 786432 contiguous unique 24 1

From this information we can identify that:

e During each phase from PERIODIC-A, all 24 processes performs a write to a shared file
in 512 KB requests for a total of 3 GB of data. The “sequential” spatiality means not
contiguous, but also not random. Considering HPC applications tend to output structured
data, we assume “sequential” spatiality represents the 1D-strided access pattern.

e During each PERIODIC-B’s phase, all ranks are involved in the access to 24 per-process
files to write a total of 3 GB in 4KB requests.

We therefore generated, with IOR, the benchmarks that correspond to these two phases.
Because the eight phases of each application are identical, we use directly the bandwidth of the
benchmark to estimate for the application. Details about the experimental methodology are
discussed in the Appendix [B] Figure [5| compares the performance observed for application and
benchmark. A third graph was added to compare PERIODIC-B results excluding the ones with
0 I/O nodes, because the very high point made the visualization of the other points difficult.

We can see in Figure[5a]that the two curves for PERIODIC-A are similar, with the benchmark
consistently underestimating performance. A large difference was observed only when using a

Inria

Estimation of the impact of I/0 forwarding on application performance 11

Application Benchmark Application Benchmark
800 8000
- —~
5 600 g 6000
>3 >3
< e
© 400 © 4000
= =
© o
3 8
m 200 m 2000
0 0 | (O~y—o > °
0 2 4 6 80 2 4 6 8 0O 2 4 6 80 2 4 6 8
Number of I/O nodes Number of /0O nodes
(a) PERIODIC-A (b) PERIODIC-B
Application Benchmark
250
@ 200
foa)
= 150
e
he
£ 100
c
[
0 50
0

2 4 6 8 2 4 6 8
Number of I/O nodes
(¢c) PERIODIC-B (number of I/O nodes > 0)

Figure 5: Performance (mean of five executions) of PERIODIC-A and PERIODIC-B applications
as a function of the number of I/O nodes. The lines are added to aid the visualization of
tendencies.

single I/O node (737 vs. 444 MB/s). These experiments did not present a high variability, with
standard deviations between 2 and 36 MB/s. However, if we investigate the performance of each
I/0 phase of the application when running with 1 I/O node, it varies from 513 to 1195 MB/s.
Still, the corresponding benchmark did not present such a variation. A similar phenomenon
can was observed for PERIODIC-B (Figures [5b| and when using zero 1/0 nodes (7862 vs.
250 MB/s): the performance of each application phase varied between 280 MB/s and 12 GB/s,
while the equivalent benchmark presented a stable lower performance.

Such a difference in behavior is not explained by differences in the codes of application and
benchmark, because they were both generated with IOR using the same parameters (except
for number of phases and time between them for the application). The only distinction is that
the benchmark repetitions were not executed in sequence, but randomly in a mix of multiple
experiments, as detailed in the Appendix[B] We conclude thus that in some situations periodic
phases present a high performance variability that seems to comes from the fact of
being executed in sequence, benefiting from a ‘“warmed up” system.

Table [6] presents the error obtained when using the benchmark average performance to es-

RR n° 9366

12 Zanon Boito

timate each of the five application executions. Despite the divergent cases discussed above, we
observed a 20% mean error, similarly to what was observed for the first case study (Section .
The estimated curves allow for the identification of the optimal number of I/O nodes to be used
for each application.

Table 6: Distribution of error when using the mean of benchmark executions as the estimate for
each application execution.

minimum mean median maximum
PERIODIC-A 0.10 0.20 0.16 0.44
PERIODIC-B 0.0 0.2 0.2 0.98

5 Case study III — HACC-10

In the previous sections, synthetic applications were used to explore situations where the appli-
cation is composed of a single or multiple periodic I/O phases. In this third case study, we use
HACC—Iqﬂ which is the I/O kernel of a real scientific application called HACC. It was executed
will default options, in the write-only version, using 8 processes on 8 nodes and 100,000 particles
per process. The only phase obtained from the Darshan trace with the SummarIO tool are
presented in Table [7}

Table 7: 1/O phases from the HACC-IO application, estimated with SummarIO.

job start end type rank bytes time
HACC-IO 0.032241 2.386244 write all 1853812736 2.337255
. 1 mode of
api #requests spatiality files #files 4tprocesses
POSIX 640 contiguous unique 64 1

From these phases, we can conclude that HACC-IO has a single file-per-process write where
64 processes issue 2.8 MB requests for a total of 27.6 MB per file. These exact values not being
accepted by IOR, we estimate performance for this application using a benchmark with these
characteristics, but where each process accesses 30 MB in 3 MB requests. The first two boxes
in the plots of Figures [6a] and [6b] compares the performance obtained for the application and for
this first benchmark. The second plot is the same as the first, but removing the point for 0 I/O
nodes to allow for the visualization of the other points. The main difference between the two
curves was for 0 I/O nodes (8745 vs. 564 MB/s). Notably, in this case best number of I/O nodes
for the benchmark (1, followed by 4) was not the same as for the application (0, followed by 2).

Studying the code of the application, one can find out that it actually does not generate ten
3 MB requests. Each process generates 10 requests of different sizes — 9 to write the contents
of 9 different arrays, for a total of approximately 3.6 MB (which depends on the number of
particles), and a last one to write a 24 MB header. We cannot identify that from the phase
presented in Table [7} as that is a limitation imposed by the use of a coarse-grained aggregated
Darshan trace — detailed information about individual requests is lost. To have an idea of the
estimate we could get with more detailed information, we generated with IOR a file-per-process
benchmark where each process generates a single request of 24 MB, emulating therefore the
portion of HACC that handles the most data. The performance observed for this benchmark

Shttps://github.com/glennklockwood/hacc-io/

Inria

https://github.com/glennklockwood/hacc-io/

Estimation of the impact of I/0 forwarding on application performance 13

Application Bench. (3 MB requests) Bench. (24 MB request)
20000
Q
o 15000
£
=
S 10000
=
©
8
o 5000
0 - - — | | o= - . — —e
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Number of I/O nodes
(a) 0-8 I/O nodes
Application Bench. (3 MB requests) Bench. (24 MB request)
600 S~
o
s}
>
< 400
b
=
2
g 200
o0
0
2 4 6 8 2 4 6 8 2 4 6 8

Number of I/O nodes
(b) Number of I/O nodes > 0

Figure 6: Performance (mean of five executions) of HACC application and estimation benchmarks
as a function of the number of I/O nodes. Processes executing the benchmark in the second box
of each plot access 30 MB of data in 3 MB requests. The benchmark in the third box of each
plot generates a single 24 MB request per process. The lines are added to aid the visualization
of tendencies.

is presented in the third box of the plots in Figure [f] Although still quite different from the
application curve, with this benchmark we would be able to find the best number of I/O nodes
is zero, and that among the other options 8 is the one with the worst performance.

Table [§] summarizes the error obtained by using the average performance of each benchmark
to estimate the bandwidth of each of the five HACC-IO executions. The relative better quality of
the estimation obtained with the benchmark that generates a single 24 MB request per process
does not translate into a lower mean or median error, in part because of the large difference in
performance for 0 I/O nodes (8745 vs. 20711 MB/s).

Table 0] lists the performance observed for the application and the second benchmark when
running without I/0 forwarding (zero I/O nodes). Both seem to present two groups of results:
one in the hundreds of MB/s, and another at tens of GB/s. If that is the case, then the large
difference in average bandwidth would be coming from the small number of repetitions (we could
think it was due to luck that the application had a single high-performance execution while the

RR n° 9366

14 Zanon Boito

Table 8: Distribution of error when using the mean of benchmark executions as the estimate for
each application execution, separated by benchmark. In the first one, each process generates 10
requests of 3 MB each, and in the second a single 24 MB request is generated by process. The
benchmarks are identical regarding other parameters. The first one is what would be used in our
approach for I/O performance estimation.

minimum mean median maximum
Bench. (10 x 3 MB requests) 0.10 0.22 0.12 0.99
Bench. (a 24 MB request) 0.1 7.77 0.15 61.47

Table 9: Bandwidth (MB/s) of each repetition of the application HACC-IO and of the second
estimation benchmark (where each process generates a single 24 MB request) with 0 I/O nodes.
The repetition number of only to identify them and is not related to the order in which they
were executed.

Repetition 1 2 3 4 5
Application 488.3 526.2 331.5 419714 409.7
Bench. (a 24 MB request) 370.1 287.1 52145.5 50370.5 383.0

benchmark had two).

6 Estimation of the impact of I/O forwarding on application
performance

In this report, we aim at testing the hypothesis that it is possible to estimate application perfor-
mance as a function of the number of I/O nodes by using an aggregated trace from a previous
execution and benchmark results.

For a given application, the tested approach consists of estimating its I/O phases from the
Darshan trace using the SummarIO tool. Then, a benchmark is identified to each I/0
phase with the following characteristics:

1. In shared-file phases, the number of processes come from the mode of #processes. In
file-per-process phases, it comes from the number of files.

2. Operation (read or write), API, and file strategy (shared or file-per-process) are taken
directly from corresponding fields.

3. The amount of data per process is estimated by dividing the total amount of data by the
number of processes, and the request size by dividing by the number of requests.

4. Consecutive spatiality is represented by a contiguous benchmark, sequential by 1D-strided
(as discussed in Section , and unknown MPI-IO phases are supposed to be contiguous.

5. Finally, the number of nodes is not available in the Darshan trace, so it cannot be obtained
by SummarlO. Still, we consider that information can be easily obtained from the resource
manager of the machine.

As discussed in the first item above, the number of processes of file-per-process phases is
estimated from the number of files. That could lead to an incorrect quantity if each process
accesses multiple files one after the other (with a short time between them), because these

Inria

Estimation of the impact of I/0 forwarding on application performance 15

consecutive file-per-process phases could be aggregated in the third step of SummarlO, as detailed
in Appendix[A] As an improvement, we could imagine obtaining the number of processes used by
the application from the command line used to execute it, if available. In that case, the number
of running processes would be an upper limit to the number of involved in an I/O phase.

The amount of data accessed by process and the size of each request is supposed to be ho-
mogeneous, which would be incorrect for applications with load imbalance among the processes,
or that make requests of different sizes during the same I/O phase. The latter is the case of
HACC with 100,000 particles per process, as discussed in Section [5] Both the amount of data
and request size are crucial for a good performance estimation, and therefore worse results are
expected to these cases then to the homogeneous ones. As future work, we plan to improve
request size estimation by using the histogram of the five most frequent request sizes provided
among the Darshan counters for each phase. That is expected to improve results for these sit-
uations, as illustrated in the Case Study III when we added results with a benchmark closer to
the application characteristics.

If an application has multiple I/O phases, then their bandwidths will be used to calculate an
estimation of the I/O time (based on how much data each I/O phase will access), and then the
application bandwidth will be calculated from this estimated I/O time.

In the periodic applications studied in Section [d] we observed that in some scenarios the
phases present a higher variability than an equivalent benchmark, with higher performance due
to the phases being executed one after the other. That limits the effectivity of our approach,
unless we were to detect periodic phases (which is possible with the obtained information from
traces) and then design periodic benchmarks to estimate their performance. Nonetheless, the
main goals of using benchmarks in this case are to use the same results for multiple applications
and to decrease profiling time (because the benchmark will have shorter execution than the whole
application). This type of specification would go against our goals. Despite the fact that the
benchmark underestimated performance in these situations, it still produced a curve that allowed
for the identification of the best number of I/O nodes.

Among some results for the HACC-IO application, notably the ones presented in Table [0} we
observed an “extreme” variability, with results apparently divided into two groups: one of much
higher bandwidth than the other. For such scenarios, the arithmetic mean seems inappropriate
to represent and compare their performance. As future work, we plan on exploring other options
to represent (and estimate) performance distributions.

Another curious observation from the Case Study III was that the error metric, used in this
report, indicated that the second benchmark was worse for estimation of application performance
than the first, whereas the observation of the produced curves indicates the contrary. In fact,
for future work we plan on finding and using a metric that quantifies how well the “curve” is
estimated. That will be important for an eventual allocation policy that uses these estimations
because it must be able to identify the best number of I/O nodes for each application.

Finally, in the estimations discussed in the case studies, we used benchmarks matching the
application I/O phase characteristics. However, in a real-life application, it would be more
efficient and practical to use approximate values for request size and amount of data. For
instance, we could try representing all data amounts between 1 and 10 GB by one of these
extremes, or by 5 GB. Nonetheless, finding these values is not an easy task because performance
is very sensitive to the amount of accessed data (and in some cases to the request size), specially
when dealing with small sizes. That happens because the amount of data impacts the success of
caching and prefetching techniques. As a future work, we plan on exploring this idea.

RR n° 9366

16 Zanon Boito

7 Conclusion

In this report, we test the hypothesis that we can estimate the performance of an application
as a function of the number of used I/O nodes by using benchmarks that mimic its I/O phases,
with these phases being estimated from a coarse-grained aggregated trace. Such an estimation
would be useful to be used by allocation strategies that assign I/0 nodes to applications seeking
to maximize performance (individual or global).

To test our hypothesis, we developed the SummarIO tool to estimate I/O phases from Darshan
aggregated traces, and proposed a technique to match the description of an I/O phase to a
corresponding benchmark. We applied our approach to five applications (four synthetic and a
real one) over three case studies of increasing complexity. We found our technique resulted in a
mean error of approximately 20% when using the benchmark performance to estimate it for the
application.

This result indicate the approach is promising, with some improvements expected as future
work. The observed error means that, when proposing an allocation policy that uses this ap-
proach for application performance estimation, it is important to make it robust to a certain
degree of estimation error.

In addition to the future work listed in Section [6] we would like to expand our analysis to
more applications, with more different behaviors, to enrich our conclusions. Furthermore, most
of the observed drawbacks of our proposal come from limitations in the information available
from Darshan traces. Therefore, we would like to look for other monitoring tools to obtain the
desired metrics, or possibly propose a new one.

All results presented in this report, as well as code used to generate and analyze them,
are available at the companion repository: https://gitlab.inria.fr/hpc_io/iofwd_perf_
impact.

Acknowledgements

Experiments presented in this paper were carried out using the Grida5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER and several Universities
as well as other organizations (see https://www.grid5000.fr).

References

[1] J. L. Bez, A. R. Carneiro, P. J. Pavan, V. S. Girelli, F. Z. Boito, B. A. Fagundes, C. Osthoff,
P. L. da Silva Dias, J.-F. Méhaut, and P. O. Navaux. I/o performance of the santos dumont
supercomputer. The International Journal of High Performance Computing Applications,
34(2):227-245, 2020.

[2] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet, E. Jeannot, S. Lanteri,
J. Leduc, N. Melab, G. Mornet, R. Namyst, B. Quetier, and O. Richard. Grid’5000: a
large scale and highly reconfigurable grid experimental testbed. In The 6th IEEE/ACM
International Workshop on Grid Computing, 2005., page 8 pp., Seattle, WA, USA, 2005.
IEEE.

[3] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and R. Ross. Understanding
and Improving Computational Science Storage Access through Continuous Characterization.
ACM Transactions on Storage, 7(3):1-26, oct 2011.

Inria

https://gitlab.inria.fr/hpc_io/iofwd_perf_impact
https://gitlab.inria.fr/hpc_io/iofwd_perf_impact
https://www.grid5000.fr

Estimation of the impact of I/0 forwarding on application performance 17

[4]

[5]

(6]

7]

18]

19]

[10]

[11]

[12]

X. Ji, B. Yang, T. Zhang, X. Ma, X. Zhu, X. Wang, N. El-Sayed, J. Zhai, W. Liu, and
W. Xue. Automatic, Application-Aware I/O Forwarding Resource Allocation. In 17th
USENIX Conference on File and Storage Technologies (FAST 19), pages 265—279, Boston,
MA, 2019. USENIX Association.

G. K. Lockwood, W. Yoo, S. Byna, N. J. Wright, S. Snyder, K. Harms, Z. Nault, and
P. Carns. UMAMI: A recipe for generating meaningful metrics through holistic I/O perfor-
mance analysis. In Proceedings of the 2nd Joint International Workshop on Parallel Data
Storage Data Intensive Scalable Computing Systems - PDSW-DISCS ’17, pages 55—60, New
York, New York, USA, 2017. ACM Press.

K. Ohta, D. Kimpe, J. Cope, K. Iskra, R. Ross, and Y. Ishikawa. Optimization techniques
at the I/O forwarding layer. In Proceedings - IEEE International Conference on Cluster
Computing, ICCC, pages 312-321, 2010.

S. Oral, J. Simmons, J. Hill, D. Leverman, F. Wang, M. Ezell, R. Miller, D. Fuller, R. Gu-
nasekaran, Y. Kim, S. Gupta, D. Tiwari, S. S. Vazhkudai, J. H. Rogers, D. Dillow, G. M.
Shipman, A. S. Bland, O. Ridge, L. Computing, and O. Ridge. Best Practices and Lessons
Learned from Deploying and Operating Large-Scale Data-Centric Parallel File Systems. In
International Conference for High Performance Computing, Networking, Storage and Anal-
ysis on (SC), 2014.

V. Vishwanath, M. Hereld, K. Iskra, D. Kimpe, V. Morozov, M. E. Papka, R. Ross, and
K. Yoshii. Accelerating I / O Forwarding in IBM Blue Gene / P Systems. In International
Conference for High Performance Computing, Networking, Storage and Analysis on (SC),
number November, 2010.

B. Xie, Z. Tan, P. Carns, J. Chase, K. Harms, J. Lofstead, S. Oral, S. S. Vazhkudai,
and F. Wang. Applying Machine Learning to Understand Write Performance of Large-
scale Parallel Filesystems. In 2019 IEEE/ACM Fourth International Parallel Data Systems
Workshop (PDSW), pages 30-39, 2019.

W. Xu, Y. Lu, Q. Li, E. Zhou, Z. Song, Y. Dong, W. Zhang, D. Wei, X. Zhang, H. Chen,
J. Xing, and Y. Yuan. Hybrid hierarchy storage system in MilkyWay-2 supercomputer.
Frontiers of Computer Science, 8:367-377, 2014.

B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed, H. Lan, Y. Yang, J. Zhai,
W. Liu, and W. Xue. End-to-end I / O Monitoring on a Leading Supercomputer. In 16th
USENIX Symposium on Networked Systems Design and Implementation, NSDI 2019, pages
379-394, Boston, MA, USA, 2019. USENIX Association.

J. Yu, G. Liu, W. Dong, X. Li, J. Zhang, and F. Sun. On the load imbalance problem of I/O
forwarding layer in HPC systems. In 2017 3rd IEEE International Conference on Computer
and Communications (ICCC), volume 2018-Janua, pages 2424-2428. IEEE, dec 2017.

Appendix A — Estimation of I/O phases from Darshan traces

This section describes the process of estimating an application’s I/O phases from a Darshan trace.

For

all case studies presented in this report, Darshan version 3.2.4 was used. We developed the

SummarlO tool, which is available at https://gitlab.inria.fr/hpc_io/summario.

Counters in a trace are separated by API (POSIX, MPI-IO, etc), accessed file and rank

that generated the access. In some situations, instead of a single rank the value —1 means

RR

n° 9366

https://gitlab.inria.fr/hpc_io/summario

18 Zanon Boito

that all ranks participated in that access. The set of counters presented to each (handle, rank)
pair depends on the API (for instance, MPI-IO include counters of collective operations, while
POSIX counters allow for the detection of spatiality), but they always include a number of bytes
read/written and timestamps for the first and last accesses. The SummarlO tool receives such
Darshan traces as input and produces an output csv file containing a set of I/O phases with the
set of fields listed in Section[2] This generation happens in three steps, listed below and detailed
in the following.

1. The counters for each present (file handle, API, operation, rank) combination are read
and parsed. Each such combination will result in a single phase which will be either to a
shared-file (with all ranks being involved) or to a single file by a single rank.

2. If phases for the same (file handle, API, operation) combination but with different ranks
are found, they are combined to generate a single phase. The goal of this step if to merge
shared-file phases that were not reported as such by Darshan. That happens notably when
multiple ranks, but not all of them, share a file.

3. The whole set of phases is then sorted by start timestamp. Phases with similar character-
istics that happen close in time are combined into a single one. The first goal of this step
is identifying file-per-process phases, which will be reported once to each involved rank. A
secondary goal is to gather similar consecutive phases (for instance if all ranks access two
shared-files) to present a more concise view of the application activity.

Step 1 — parsing the counters

For the initial set of phases most information is obtained directly from the counters, such
as amount of data, number of requests, start, and end. At this point, a phase can either be a
shared-file phase where all ranks are involved, or a file-per-process phase of a single process.

For POSIX phases, the counters provide a number of consecutive and sequential accesses,
which can be compared to the total number of accesses. Consecutive means the start offset of
the request in the file is the same as the end offset of the previous request, i.e. consecutive
requests are contiguous. On the other hand, sequential requests have increasing start offsets,
meaning the file is accessed from beginning to end but not contiguously.

To decide the phase spatiality, we use a configurable threshold parameter, which defines the
percentage of the requests inside the phase that can differ in classification from the others. In
other words, 1 — threshold gives how many of the requests must be consecutive/sequential for
the whole phase to be considered consecutive/sequential. If the phase cannot be classified as
consecutive or sequential, it is considered random. A similar strategy is used for MPI-1O phases
to decide between collective or unknown spatiality. For the results discussed in this report,
threshold was set to 0.2.

Step 2 — combining similar phases from different ranks to the same file

After having parsed the counters to obtain a single phase for each present (file handle, API,
operation, rank) combination, phases that differ only by rank are combined in this second step.
Such “duplicates” will only happen for phases corresponding to single-rank accesses.

e The generated phase starts at the shortest start timestamp and ends and the highest end
timestamp.

e The number of requests is the sum of the requests generated in the sub-phases, similarly
to the amount of data.

Inria

Estimation of the impact of I/0 forwarding on application performance 19

e The number of involved ranks is calculated by creating a set of the ranks involved in the
combined phases.

e The number of requests per type is calculated to re-estimate the spatiality of the phase in
the same way as discussed in

e The I/O time of the phase is the longest among the different phases’ duration. In other
words, we assume they correspond to a parallel phase.

Step 3 — combining similar phases to different files

We traverse the list of I/O phases, ordered by start timestamp, and compare each phase to
all the ones that start up to time_ distance after its end, where the amount of time distance is
a configurable parameter of the tool. If two phases happen this close in time and are deemed
“compatible”, the end timestamp is updated (with the max between the two) to continue searching
for more phases. Phases are considered compatible if they use the same API, operation (read or
write), spatiality, and file strategy (shared or unique). For the results presented in this report,
the used time_ distance parameter was of 1 second.

After traversing the list, we will possibly have identified sets of phases that should be com-
bined. That will be done following the same approach as described in

This approach works to identify file-per-process phases. However, a limitation is that when
other types of similar consecutive phases are aggregated (for instance if an application accesses
multiple shared files one after the other), the I/O time estimation will be wrong, because we
take the maximum I/O time among the combined phases (and in the second case the phases
are not parallel, we should sum their duration). This is a limitation of using the coarse-grained
aggregated traces, because there is no other way of identifying a file-per-process phase, even
if this is one of the most popular access patterns among HPC applications [I1]. We sacrifice
therefore the precision on the phase estimation duration in exchange for being able to identify
these file-per-process phases.

Appendix B — Experimental methodology

This section details the experimental methodology used for all presented results. All tests were
executed in the Nancy site of the Grid’5000 platform [2], using clusters Grimoire and Grosﬂ

Three nodes from Grimoire were used as Lustre servers (an MDS and two OSS+OST). This
cluster has 8 nodes, each of them powered by two eight-core Intel Xeon E5-2630 v3 and 128 GB
of RAM memory. For storage, the MDS used a 200 GB SSD SCSI Toshiba PX02SSF020 SSD,
and the OSTs used a 600 GB HDD SCSI Seagate ST600MMO0088 HDD each. Up to Gros nodes
were used as compute and I/O nodes. It has 124 nodes, each containing an 18-core Intel Xeon
Gold 5220 and 96 GB of RAM. Gros nodes are interconnected by 25 Gbps Ethernet links to
two switches, which are connected to the Grimoire switch by two 40 Gbps links each. The third
switch is connected to Grimoire nodes by four 10 Gbps links.

Lustre version 2.12.5 was used. Servers run a CentOS 7.7.1908 , and clients a Centos 8. The
file system was installed with default parameters, and then configured to stripe files across the
two data servers, with stripe size of 1 MB. All contents of the file system were erased between
consecutive experiments.

dnttps://www.grid5000. fr/w/Nancy : Hardware

RR n° 9366

https://www.grid5000.fr/w/Nancy:Hardware

20 Zanon Boito

To emulate the use of I/O forwarding in this setup, we dedicated up to 8 Gros nodes to work
as I/O nodes, and used GekkoFleﬂ to intercept applications’ I/O requests and forward them
to these I/O nodes, which used the locally mounted Lustre file system for storage. Applications
were equally distributed among the I/O nodes, and this setup was completely reinstalled before
each experiment.

Experiments that were executed with the goal of obtaining a Darshan trace used version
3.2.4, and other experiments (with the goal of measuring performance) did not use Darshan.

The whole set of experiments (five repetitions of each) was executed in random order over
multiple days. That was done to minimize the impact of temporal system slow-downs and partic-
ular testing orders in our results. Moreover, the whole clusters were reserved for the experiments,
even when not all nodes were used, to avoid network interference from other applications.

For each experiment, the bandwidth is calculated by dividing the total amount of data ac-
cessed by the application by the parallel I/O time (the time of the slowest process). All re-
sults and scripts used to generate and analyze them are available at the companion repository:
https://gitlab.inria.fr/hpc_io/iofwd_perf_impact.

Shttps://jeanbez.gitlab.io/forwarding-arbitration/

Inria

https://gitlab.inria.fr/hpc_io/iofwd_perf_impact

V4

: in[ormarics,mutheman’cs

RESEARCH CENTRE
BORDEAUX - SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Application I/O phases
	Case study I — Single-phase synthetic applications
	Case study II — Periodic synthetic applications
	Case study III — HACC-IO
	Estimation of the impact of I/O forwarding on application performance
	Conclusion

