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Abstract
For joint estimation of states and parameters in time varying time-delay systems (TDS)
involving both distributed and lumped time-delays, a general approach is proposed in this
paper to transforming existing (non adaptive) observers to adaptive observers. In addition
to the convergence conditions of the considered existing observers, a persistent excitation
condition is introduced in order to ensure the convergence of parameter estimation. In contrast
to implicitly formulated convergence conditions, which are usually assumed jointly for both state
and parameter estimations in most TDS adaptive observers, the persistent excitation condition
in the proposed approach is explicitly formulated and decoupled from the conditions initially
assumed for state estimation.
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1. INTRODUCTION

Due to the increasing importance of time-delays in control
systems equipped with more and more digital components,
a great deal of interest has been given to state observer
design for time-delay systems (TDS). In this respect,
systems with time-delays involved in state equations have
been studied in e.g. Germani et al. [2001], Xia et al. [2002],
Yeganefar et al. [2008]. Similar interests have been given
to systems with delayed output measurements Kazantzis
and Wright [2005], Besançon et al. [2007], Cacace et al.
[2010], Cacace et al. [2014], Kahelras et al. [2018].

For TDS involving unknown parameters, the problem of
adaptive observer design is still not sufficiently investigated.
In Mondal and Chung [2013], an adaptive observer
design, following an approach similar to nonlinear adaptive
observer design Cho and Rajamani [1997], has been
proposed for a class of time-invariant TDS. In Sassi
et al. [2016], a functional adaptive observer has been
proposed for a bilinear TDS. In each of these recalled
results, the asymptotical convergence of the designed
adaptive observer is ensured by some implicitly formulated
condition: the existence of a solution to some inequalities,
which are specific to each design method.

This paper proposes a general approach to transforming
(non adaptive) observers to adaptive observers for joint
state-parameter estimation in linear time varying (LTV)
TDS. In the case of classical (delay-free) LTV state-space
systems, a general method has been proposed in Zhang
[2002] for such a transformation. The results of this paper
are essentially an extension of this method to TDS, but

some non trivial difficulties have to be overcome to achieve
this extension, as highlighted in the following sections.

Basically, it is assumed that

• if the parameters involved in the considered TDS
were all known, then an exponentially convergent
(non adaptive) observer would be available for state
estimation;

• an explicitly formulated persistent excitation (PE)
condition is satisfied.

It is well known in classical adaptive estimation problems
that PE is essential for parameter estimation Narendra
and Annaswamy [1987], Shi, Nar, Karl and Bjorn [1994].
This paper proposes a natural extension of the classical
PE condition to the design of TDS adaptive observers.
The considered existing observers may have been designed
with different methods, yet their transformations to
adaptive observers follow the same general approach.
This generality covering existing observers designed with
different methods, and the decoupling of the parameter
estimation condition (the PE condition) from the state
estimation condition, are important particularities which
distinguish the presented results from existing results.

The results of this paper have been inspired by the
preliminary idea summarized in the working note Zhang
[2017].

The paper is organized as follows: the problem under
study is formulated in Section II; the observer design and
analysis are respectively dealt with in Sections III and IV.
The conclusion in section VI.



2. PROBLEM STATEMENT

Consider the class of time varying linear differential
time-delay systems (TDS) in the form of

ẋ(t) = A0(t)x(t) +A1(t)x(t− h) + Φ(t)θ (1a)

y = C0(t)x(t) + C1(t)x(t− h) (1b)

where x(t) ∈ Rn denotes the states, y ∈ Rm the outputs,
θ ∈ Rp the unknown parameters, h a positive constant
specifying the time delay, A0(t), A1(t), C0(t), C1(t),Φ(t)
are matrices of appropriate sizes filled with real-valued
functions which are bounded and piecewise continuous in
t.

All quantities in this model are known or accessible from
sensor measurements, except the state vector x(t) and the
parameter vector θ.

An additional term B(t)u(t) could be inserted into the
TDS (1) in order to represent (control) inputs. Because
such a term would imply trivial modifications of the results
of this paper, it is omitted for lighter presentations.

As mentioned in the introduction, such a TDS is an infinite
dimensional system. By abuse of terminology, the term
“state” is still used to refer to the finite dimensional vector
x(t), by analogy to classical state-space systems, in order
to ease the presentation. The “state equation” (1a) is
sometimes called a delay differential equation (DDE).

The problem considered in this paper is to design an
adaptive observer for joint estimation of x(t) and θ under
two assumptions:

• the existence of an exponentially convergent (non
adaptive) state observer for the TDS (1) in the case
where θ is known, and
• a persistent excitation condition, as typically required

in parameter estimation problems.

The designed adaptive observer will be in the form of a
DDE, so that it can be numerically solved with efficient
DDE solvers.

The first assumption is more accurately formulated below,
whereas the second one will be completed later.

Assumption 1. There exists a (time varying) bounded
matrix gain L(t) ∈ Rn×m such that the following DDE
:

ξ̇(t) = (A0(t)− L(t)C0(t))ξ(t)

+(A1(t)− L(t)C1(t))ξ(t− h) (2)

is exponentially stable in the sense that (Yegafner et al.
[2008]) :

|ξ(t)| ≤ sup
t0≤s≤t0+h

|ξ(s)|M0e
−σt, ∀t > t0 + h (3)

for some positive scalars M0 and σ. 2

Remark 1. This assumption simply means that, if the true
parameter vector θ was known, then an exponentially
convergent (non adaptive) observer of system (1) (for state
estimation only) would be available in the form of

˙̂x(t) = A0(t)x̂(t) +A1(t)x̂(t− h) + Φ(t)θ − L(t)ỹ(t) (4a)

ỹ(t) = C0(t)x̂(t) + C1(t)x̂(t− h)− y(t), (4b)

where L(t) is the same gain matrix as in Assumption 1.
2

Lemma 1. Add an additive input term d(t) into the
homogeneous system (2), then Assumption 1 implies that
the resulting TDS

ξ̇(t) = (A0(t)− L(t)C0(t))ξ(t)

+(A1(t)− L(t)C1(t))ξ(t− h) + d(t) (5)

is input-to-state stable, i.e., ∀t > t0 + h,

|ξ(t)| ≤ β( sup
t0≤s≤t0+h

|ξ(s)|, t) + γ(ess. sup
t0+h≤s<t

|d(s)|) (6)

where s → γ(s) is a K function (γ is strictly increasing
and γ(0) = 0) and (t, s) → β(t, s) is a KL function (for
each fixed t, the function s→ β(s, t) is a K function, and
for each fixed s the function t → β(s, t) is non increasing
and goes to zero as t→∞) . 2

This result is a simple consequence of the Theorem 3.2 in
(Yegafner et al. [2008]).

3. ADAPTIVE OBSERVER DESIGN

The proposed method for adaptive observer design will be
based on the state-parameter decoupling transformation
approach, initially introduced in the case of classical
(delay-free) LTV systems Zhang [2002].

3.1 Adaptive observer structure

In order to transform the (non adaptive) state observer (4)
to an adaptive observer for joint estimation of x(t) and θ,
a natural idea is to replace in (4) the unknown parameter

vector θ by its estimate θ̂(t), which is computed by a
somehow designed adaptive law. The following design will
essentially follow this idea, except an extra term v0(t) in
the state estimation equation, yielding an estimator in the
form of

˙̂x(t) = A0(t)x̂(t) +A1(t)x̂(t− h)

+ Φ(t)θ̂(t)− L(t)ỹ(t) + v0(t) (7a)

ỹ(t) = C0(t)x̂(t) + C1(t)x̂(t− h)− y(t). (7b)

The extra term v0(t) is added in order to compensate
the parameter estimation error introduced in the state
estimation equation (7a), due to the fact that the true

θ has been replaced by its estimate θ̂(t).

Before designing an adaptive law computing the parameter

estimate θ̂(t), it will be first shown that an appropriately
chosen v0(t) will greatly help the convergence analysis of
the designed algorithm.

3.2 Decoupling transformation

Define the state and parameter estimation errors

x̃(t) , x̂(t)− x(t) (8)

θ̃(t) , θ̂(t)− θ, (9)

then it is straightforward to derive the state estimation
error dynamics equation

˙̃x(t) = (A0(t)− L(t)C0(t))x̃(t)

+ (A1(t)− L(t)C1(t))x̃(t− h) + Φ(t)θ̃(t) + v0(t). (10)

The key step of the error analysis is the decoupling
transformation, which has been proposed originally for



the design of adaptive observers of classical (delay-free)
systems Zhang [2002], in the form of

η(t) = x̃(t)−Υ(t)θ̃(t), (11)

where Υ(t) ∈ Rn×p is a time varying matrix to be specified
so that the transformed error variable η(t) is decoupled

from θ̃.

Some simple computations then lead to

η̇(t) = [A0(t)− L(t)C0(t)][η(t) + Υ(t)θ̃(t)]

+ [A1(t)− L(t)C1(t)][η(t− h) + Υ(t− h)θ̃(t− h)]

+Φ(t)θ̃(t)− Υ̇(t)θ̃(t)−Υ(t)
˙̃
θ(t) + v0(t)

= ω1(t) + ω2(t) + ω3(t), (12)

with

ω1(t) = [A0(t)− L(t)C0(t)]η(t) + [A1(t)− L(t)C1(t)]η(t− h)

ω2(t) =
[
(A0(t)− L(t)C0(t))Υ(t) + Φ(t)− Υ̇(t)

]
θ̃(t)

ω3(t) = (A1(t)− L(t)C1(t))Υ(t− h)θ̃(t− h)−Υ(t)
˙̃
θ(t) + v0(t).

At this point, if the decoupling technique proposed
in Zhang [2002] was naively followed, then one would
choose Υ(t) ensuring ω2(t) = 0 for all t ≥ t0, as a solution
of the differential equation

Υ̇(t) = (A0(t)− L(t)C0(t))Υ(t) + Φ(t); (13)

and then choose v0(t) so that ω3(t) = 0 for all t, yielding

v0(t) = Υ(t)
˙̃
θ(t)− (A1(t)− L(t)C1(t))Υ(t− h)θ̃(t− h). (14)

With ω2(t) and ω3(t) annihilated, equation (12) would
become simply

η̇(t) = [A0(t)− L(t)C0(t)]η(t)

+ [A1(t)− L(t)C1(t)]η(t− h), (15)

and η(t) governed by this equation would converge
exponentially to zero, according to Assumption 1. This
decoupling technique worked well for classical (delay-free)
systems, as in Zhang [2002], Li et al. [2011], where the
variable v0(t) as chosen in (14) was simply

v0(t) = Υ(t)
˙̃
θ(t), (16)

because the terms in (14) involving delays did not exist.

Moreover,
˙̃
θ(t) =

˙̂
θ(t) − θ̇ and θ̇ = 0, therefore v0(t) was

simply written, in the classical case, as

v0(t) = Υ(t)
˙̂
θ(t), (17)

which could be readily computed with an appropriately
designed parameter adaptation law.

However, for the systems considered in this paper, the
situation is more complicated due to the presence of
the terms involving time-delays. The trouble is that the
variable v0(t) chosen in (14) cannot be computed in

practice, since θ̃(t − h) = θ̂(t − h) − θ would require
the true value of θ, which is of course unknown in the
considered estimation problem! Apparently, this is a non
trivial difficulty that did not exist in the classical case as
considered in Zhang [2002] and Li et al. [2011].

Fortunately, this difficulty can be addressed as follows.

Add the term (A1(t)−L(t)C1(t))Υ(t−h)θ̃(t) to ω2(t) and
subtract the same term from ω3(t), so that the sum in (12)

remains unchanged. Accordingly, the second term of v0(t)
in (14)

−(A1(t)− L(t)C1(t))Υ(t− h)θ̃(t− h), (18)

which could not be computed due to the dependence of
θ̃(t − h) on the unknown true parameter vector θ, then
becomes

(A1(t)− L(t)C1(t))Υ(t− h)[θ̃(t)− θ̃(t− h)]

= (A1(t)− L(t)C1(t))Υ(t− h)[θ̂(t)− θ − θ̂(t− h) + θ] (19)

= (A1(t)− L(t)C1(t))Υ(t− h)[θ̂(t)− θ̂(t− h)], (20)

which no longer involves the unknown θ, and therefore
can be computed with a parameter adaptation law to be
designed.

Then ω2(t) and ω3(t) become

ω2(t) =

[
(A0(t)− L(t)C0(t))Υ(t) + Φ(t)− Υ̇(t)

+ (A1(t)− L(t)C1(t))Υ(t− h)

]
θ̃(t) (21)

ω3(t) = [A1(t)− L(t)C1(t)]Υ(t− h)[θ̃(t− h)− θ̃(t)]

−Υ(t)
˙̃
θ(t) + v0(t). (22)

Accordingly, let Υ(t) be generated through the TDS

Υ̇(t) = (A0(t)− L(t)C0(t))Υ(t)

+ (A1(t)− L(t)C1(t))Υ(t− h) + Φ(t) (23)

with an arbitrary initial condition, so that ω2(t) = 0 for
all t > t0 + h. Moreover, choose v0(t) as

v0(t) = Υ(t)
˙̃
θ(t)− [A1(t)− L(t)C1(t)]Υ(t− h)[θ̃(t− h)− θ̃(t)]

= Υ(t)
˙̂
θ(t)− [A1(t)− L(t)C1(t)]Υ(t− h)[θ̂(t− h)− θ̂(t)]

so that ω3(t) = 0 for all t > t0 + h, by noticing that
˙̂
θ(t) =

˙̂
θ(t)− θ̇ =

˙̃
θ(t) and θ̃(t−h)− θ̃(t) = θ̂(t−h)− θ̂(t).

Now in (12), ω2(t) = ω3(t) = 0, therefore η(t) is indeed
governed by the TDS (15), which is exponentially stable
according to Assumption 1.

At this point, it is only shown that the decoupled
estimation error η(t) as defined in (11) converges to zero
exponentially. Based on this result, the convergences of
the state estimation error x̃(t) and of the parameter

estimation error θ̃(t) will be analyzed. For this purpose,
the adaptive law for parameter estimation should designed
appropriately.

3.3 Parameter estimation law design

If the output error ỹ(t) was available, then a linear
regression parameter estimation algorithm inspired by the
classical least squares estimator would be in the form of

˙̂
θ(t) = −R(t)Λ(t)T

·
[
ỹ(t)− C1(t)Υ(t− h)[θ̂(t− h)− θ̂(t)]

]
(24a)

Ṙ(t) = λR(t)−R(t)Λ(t)TΛ(t)R(t) (24b)

Λ(t) = C0(t)Υ(t) + C1(t)Υ(t− h) (24c)

where the scalar λ > 0 is an exponential forgetting factor.

Of course, the output error ỹ(t) as defined in (7b) cannot

be obtained without computing x̂(t) and θ̂(t). Therefore,
parameter estimation should be jointly performed with
state estimation, by combining (24a) with (7).

The whole adaptive observer for joint state-parameter
estimation is then expressed in the following algorithm,



where x0(t) : [t0, t0 +h]→ Rn is the initial state estimate,
θ0 ∈ Rp the initial parameter estimate, 0n×p the n×p zero
matrix, Ip the p× p identity matrix, r0 > 0 a scalar value,
and λ > 0 a forgetting factor.

Adaptive observer algorithm

For t ∈ [t0, t0 + h]:

x̂(t) = x0(t), θ̂(t) = θ0, Υ(t) = 0n×p. (25)

For t = t0 + h:

R(t) = r0Ip (26)

For t > t0 + h:

ỹ(t) = C0(t)x̂(t) + C1(t)x̂(t− h)− y(t) (27a)

Λ(t) = C0(t)Υ(t) + C1(t)Υ(t− h) (27b)

v0(t) = −Υ(t)R(t)Λ(t)T
[
ỹ(t)

− C1(t)Υ(t− h)[θ̂(t− h)− θ̂(t)]
]

− [A1(t)− L(t)C1(t)]Υ(t− h)[θ̂(t− h)− θ̂(t)] (27c)

Υ̇(t) = (A0(t)− L(t)C0(t))Υ(t)

+ (A1(t)− L(t)C1(t))Υ(t− h) + Φ(t) (27d)

Ṙ(t) = λR(t)−R(t)Λ(t)TΛ(t)R(t) (27e)

˙̂
θ(t) = −R(t)Λ(t)T

·
[
ỹ(t)− C1(t)Υ(t− h)[θ̂(t− h)− θ̂(t)]

]
(27f)

˙̂x(t) = A0(t)x̂(t) +A1(t)x̂(t− h)

+ Φ(t)θ̂(t)− L(t)ỹ(t) + v0(t). (27g)

4. ADAPTIVE OBSERVER CONVERGENCE
ANALYSIS

Before analyzing the convergence of the state and parameter
estimation errors, it is important to ensure that the
auxiliary variables computed in the adaptive observer (27)
are all bounded.

4.1 Boundedness of auxiliary variables

Let us start with the recursively computed Υ(t).

Proposition 1. Under Assumptions 1, the recursively generated
matrix Υ(t) through the DDE (27d) from bounded
matrices A0(t), A1(t), C0(t), C1(t),Φ(t), L(t) is bounded.
2

Further boundedness results will require a persistent
excitation assumption, as typically required in parameter
estimation problems.

Assumption 2. There exist positive scalar constants T and
δ, such that for all t > t0 + h,∫ t+T

t

Λ(s)T Λ(s)ds ≥ δIp, (28)

where the inequality X ≥ Y means that X−Y is a positive
semidefinite matrix. 2

Remark 2. The symmetric integral in (28) is by construction
a positive semidefinite matrix. Assumption 2 states that it
is positive definite with a strictly positive lower bound.
This integral is also upper bounded due to the already
established boundedness of Λ(t). 2

Remark 3. The matrix Λ(t) is generated from Φ(t) through
(27d) and (27b). For more clarity, let us group these two
equations as

Υ̇(t) = (A0(t)− L(t)C0(t))Υ(t)

+ (A1(t)− L(t)C1(t))Υ(t− h) + Φ(t) (29a)

Λ(t) = C0(t)Υ(t) + C1(t)Υ(t− h). (29b)

It is then clear that Λ(t) is the output of a linear TDS
driven by the input Φ(t). In other words, Λ(t) is obtained
by linearly filtering Φ(t) through a TDS. Therefore, the
persistent excitation condition stated in Assumption 2
is indeed an assumed property of Φ(t). In practice,
inequality (28) can be monitored by numerically solving
the TDS (29) with a DDE solver. 2

Proposition 2. Under Assumptions 1 and 2, the recursively
generated matrix R(t) through the ODE (27e) from Λ(t) is
bounded for all t > t0 + h. Moreover, R(t) is an invertible
matrix and its inverse is also bounded for all t > t0 + h.
2

4.2 Convergence of estimation errors

The convergence of θ̃(t) and x̃(t) will be analyzed, based
on the already established convergence of η(t).

Proposition 3. Under Assumptions 1 and 2, both the state
estimation error x̃(t) = x − x̂(t) and the parameter

estimation error θ̃(t) = θ−θ̂(t) of the adaptive observer (27)
converge to zero exponentially when t→ +∞. 2

Proof. Let us first analyze θ̃(t). Notice that
˙̃
θ =

˙̂
θ− θ̇ =

˙̂
θ,

then
˙̃
θ(t) = −R(t)Λ(t)T [C0(t)Υ(t) + C1(t)Υ(t− h)]θ̃(t)

+ C0(t)η(t) + C1(t)η(t− h)] (30)

= −R(t)Λ(t)TΛ(t)θ̃(t)

−R(t)Λ(t)T [C0(t)η(t) + C1(t)η(t− h)] (31)

where Λ(t) is as defined in (27b).

By viewing R(t)Λ(t)T Λ(t) as a (bounded) time varying

matrix, θ̃(t) is the state of a linear time varying (LTV)
system, driven by the inputs η(t) and η(t−h), which tend
exponentially to zero. Before studying the behavior of this
LTV system, let us first consider its homogeneous part,
namely

ϑ̇ = −R(t)Λ(t)T Λ(t)ϑ(t). (32)

In order to study the stability of this homogeneous LTV
system, define a Lyapunov function candidate

V (ϑ(t), t) = ϑT (t)M(t)ϑ(t) (33)

with M(t) = R−1(t), which is positive definite, has a finite
upper bound and a strictly positive lower bound, according
to Proposition 2. Then

d

dt
V (ϑ(t), t) = −ϑT (t)M(t)R(t)Λ(t)TΛ(t)ϑ(t)

− ϑT (t)Λ(t)TΛ(t)R(t)M(t)ϑ(t)

+ ϑT (t)[−λM(t) + Λ(t)TΛ(t)]ϑ(t) (34)

= −ϑT (t)Λ(t)TΛ(t)ϑ(t)− ϑT (t)Λ(t)TΛ(t)ϑ(t)

+ ϑT (t)[−λM(t) + Λ(t)TΛ(t)]ϑ(t) (35)

= −λϑT (t)M(t)ϑ(t)− ϑT (t)Λ(t)TΛ(t)ϑ(t) (36)

≤ −λϑT (t)M(t)ϑ(t) (37)

≤ −λV (ϑ(t), t). (38)



This result then implies that the homogeneous part of the
LTV system (31), as expressed in (32), is exponentially

stable. Therefore, the state θ̃(t) of the LTV system (31)
driven by exponentially vanishing η(t) and η(t − h)
converges exponentially to zero.

Finally, it follows from (11), the exponential convergences

to zero of η(t) and of θ̃(t), and the boundedness of Υ(t)
that

x̃(t) = η(t) + Υ(t)θ̃(t) (39)

converges exponentially to zero. 2

5. CONCLUSION

A general approach has been proposed in this paper
to transforming existing (non adaptive) state observers
to adaptive observers, for linear time varying TDS.
This approach greatly simplifies the design of adaptive
observers for joint state-parameter estimation, under
an explicitly formulated persistent excitation condition
for parameter estimation, which is decoupled from the
conditions initially assumed by existing state observers.
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