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Abstract

A synaptic theory of Working Memory (WM) has been developed in the last decade as a

possible alternative to the persistent spiking paradigm. In this context, we have developed a

neural mass model able to reproduce exactly the dynamics of heterogeneous spiking neural

networks encompassing realistic cellular mechanisms for short-term synaptic plasticity. This

population model reproduces the macroscopic dynamics of the network in terms of the firing

rate and the mean membrane potential. The latter quantity allows us to gain insight of the

Local Field Potential and electroencephalographic signals measured during WM tasks to

characterize the brain activity. More specifically synaptic facilitation and depression inte-

grate each other to efficiently mimic WM operations via either synaptic reactivation or persis-

tent activity. Memory access and loading are related to stimulus-locked transient oscillations

followed by a steady-state activity in the β-γ band, thus resembling what is observed in the

cortex during vibrotactile stimuli in humans and object recognition in monkeys. Memory jug-

gling and competition emerge already by loading only two items. However more items can

be stored in WM by considering neural architectures composed of multiple excitatory popu-

lations and a common inhibitory pool. Memory capacity depends strongly on the presenta-

tion rate of the items and it maximizes for an optimal frequency range. In particular we

provide an analytic expression for the maximal memory capacity. Furthermore, the mean

membrane potential turns out to be a suitable proxy to measure the memory load, analo-

gously to event driven potentials in experiments on humans. Finally we show that the γ
power increases with the number of loaded items, as reported in many experiments, while θ
and β power reveal non monotonic behaviours. In particular, β and γ rhythms are crucially

sustained by the inhibitory activity, while the θ rhythm is controlled by excitatory synapses.

Author summary

Working Memory (WM) is the ability to temporarily store and manipulate stimuli repre-

sentations that are no longer available to the senses. We have developed an innovative

coarse-grained population model able to mimic several operations associated to WM. The
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novelty of the model consists in reproducing exactly the dynamics of spiking neural net-

works with realistic synaptic plasticity composed of hundreds of thousands of neurons in

terms of a few macroscopic variables. These variables give access to experimentally mea-

surable quantities such as local field potentials and electroencephalographic signals. Mem-

ory operations are joined to sustained or transient oscillations emerging in different

frequency bands, in accordance with experimental results for primate and humans per-

forming WM tasks. We have designed an architecture composed of many excitatory pop-

ulations and a common inhibitory pool able to store and retain several memory items.

The capacity of our multi-item architecture is around 3–5 items, a value similar to the

WM capacities measured in many experiments. Furthermore, the maximal capacity is

achievable only for presentation rates within an optimal frequency range. Finally, we have

defined a measure of the memory load analogous to the event-related potentials employed

to test humans’ WM capacity during visual memory tasks.

Introduction

Working memory (WM) allows us to keep recently accessed information, available for manip-

ulation: it is fundamental in order to pass from reflexive input-output reactions to the organi-

zation of goal-directed behaviour [1–6]. Starting from the seminal work of Fuster and

Alexander [7], several experiments have shown that neurons in higher-order cortex, including

the prefrontal cortex (PFC), are characterized by elevated levels of spiking activity during

memory delays related to WM tasks. Experimental results seem to suggest that WM mainte-

nance is enhanced by delayed spiking activity, engaging executive functions associated with

large part of the cortex, from frontal to posterior cortical areas [8, 9]. In particular, it has been

shown that neurons in the PFC exhibit persistent activity selective to the sample cue during

oculomotor delayed-response task [10] as well as during vibrotactile response task [11] and

that this activity is robust to distractors [12]. Therefore, classic models proposed persistent

spiking for online maintenance of information, since neural ensembles in an active state

appear more prone to fast processing [13, 14]. These models have been able to describe multi-

item loading and maintenance in WM [15], spatial WM in the cortex [16], and two interval

discrimination tasks [17].

A further relevant aspect, associated to WM operations, is the presence of neural oscilla-

tions, whose increase in the oscillatory power during WM maintenance and rehearsal has been

reported for humans in the θ-band (4-8 Hz) [18, 19], as well as in the β (12-25 Hz) and γ-range

(25-100 Hz) [20, 21], while for monkeys it has been reported in the θ and γ-range [22, 23]

joined to a decrease in the β-band [23]. The results for the activity in the α-band (8-11 Hz) are

somehow more complex: on one side it has been shown that during WM retention in humans

no variations are observable [20] while, on the other side, that it can be associated to the inhibi-

tory action suppressing irrelevant stimuli [24]. Despite many studies, the role played by oscilla-

tions in WM is still unclear; however numerical studies have suggested that different cycles of

a high frequency oscillation in the γ-band can encode a sequence of memory items if nested

within a slower θ or β rhythm [25–27]. Moreover, it has been shown in computational models

that oscillatory forcing in different frequency bands may provide effective mechanisms for

controlling the persistent activity of neural populations and hence the execution of WM tasks

[28, 29].

Recently, the persistent state paradigm has been criticized on the basis of the inconsistencies

emerging in data processing: persistent activity is the result of specific data processings, being
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neural spiking averaged over time and across trials. In particular, averaging across trials can

create the appearance of persistent spiking even when, on individual trials, spiking is actually

sparse [30, 31]. Anyhow there are examples of single neurons that show real persistent spiking

on individual trial rasters, but they represent a small percentage, while the bulk of neurons

spike sparsely during WM delays [32, 33].

A pioneering study [34] revealed that the interactions among pyramidal neurons in the

PFC display synaptic facilitation lasting hundreds of milliseconds. This study paved the way

for a development of an alternative model for WM based on synaptic features. In particular,

memory items can be stored by spiking-induced changes in the synaptic weights and these

items can be maintained in WM by brief bursts of spiking restoring the synaptic strengths

[35–38]. As a result this kind of model is more justifiable from a metabolic point of view, since

the memory requires less resources to be held with respect to the persistent activity. Moreover,

multiple memory items can be maintained in WM at the same time by having different neuro-

nal populations emitting short bursts at different times. This would solve problems usually

observables in models based on persistent spiking: namely, the interference among different

stored items and the disruption of memories associated to new sensory inputs [38, 39].

In this context, a fundamental model for WM based on short-term synaptic plasticity (STP)

has been introduced by Mongillo et al. in [35]. In particular, in this model, synapses among

pyramidal neurons display depressed and facilitated transmissions based on realistic cellular

mechanisms [40–42]. Synaptic facilitation allows the model to maintain an item stored for a

certain period in WM, without the need of an enhanced spiking activity. Furthermore, synap-

tic depression is responsible for the emergence of population bursts (PBs), which correspond

to a sub-population of neurons firing almost synchronously within a short time window [43,

44]. This WM mechanism is implemented in [35] within a recurrent network of spiking neu-

rons, while a simplified firing rate model is employed to gain some insight into the population

dynamics. The rate model, like most of the models investigated in literature [45, 46], is heuris-

tic, i.e. the macroscopic description had not a precise correspondence with the microscopic

neuronal evolutions.

Recent results for the primate PFC have revealed that the mnemonic stimuli are encoded at

a population level allowing for a stable and robust WM maintenance, despite the complex and

heterogeneous temporal dynamics displayed by the single neurons [47]. This analysis suggests

that the development of population models able to reproduce the macroscopic dynamics of

heterogeneous spiking networks can be extremely useful to shed further light on the mecha-

nisms at the basis of WM. An ideal candidate to solve this task is represented by a neural mass

model of new generation able to exactly reproduce the macroscopic dynamics of spiking neu-

ral networks [48–50]. This exact derivation is possible for networks of Quadratic Integrate and

Fire (QIF) neurons, representing the normal form of Hodgkin’s class I excitable membranes

[51], thanks to the analytic techniques developed for coupled phase oscillators [52]. This new

generation of neural mass models has been recently used to describe the emergence of collec-

tive oscillations (COs) in fully coupled networks [53–56] as well as in balanced sparse networks

[57]. Furthermore, it has been successfully employed to reveal the mechanisms at the basis of

theta-nested gamma oscillations [58, 59] and of the coexistence of slow and fast gamma oscilla-

tions [60]. However, to our knowledge, such models have not been yet generalized to spiking

networks with plastic synapses.

Our aim is to develop a next generation neural mass model encompassing short-term syn-

aptic facilitation and depression [41]. This model will enable us to revise the synaptic theory of

working memory [35] with a specific focus on the emergence of neural oscillations and their

relevance for WM operations. In particular, the newly derived neural mass model will capture

the macroscopic evolution of the network not only in terms of the firing rate, as the standard
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heuristic models do [45], but also of the mean membrane potential [50]. This will allow for a

more direct comparison with the results of electrophysiological experiments often employed

to characterize WM processes. Indeed, as shown in [61], electroencephalograms (EEGs),

event-related potentials (ERPs) and Local Field Potentials (LFPs) have the same information

content as the mean membrane potentials.

The paper is organized as follows. Firstly, we will report clear evidence that the employed

neural mass model reproduces, with extreme accuracy, the macroscopic dynamics of heteroge-

neous networks of QIF neurons with STP. Secondly, we will show that the model is able to

mimic the fundamental operations required for WM functioning, whenever memory items

are maintained either via spontaneous and selective reactivation or via persistent activity. In

particular, we will devote particular attention to the spectral features of COs emerging during

such operations and to their analogy with experimental findings reported for EEG responses

to vibrotactile stimuli in primary somatosensory cortex in humans [62] and for LFP measure-

ments performed in PFC of primates during objects coding in WM [31, 39]. In this context,

we will show that a heuristic firing rate model, despite being specifically designed to reproduce

the mean-field dynamics of QIF networks, is unable to sustain fast oscillations, which usually

characterize the neural activity during WM tasks. Then we will perform a detailed analysis of

the competition between two consecutively loaded memory items, whenever the memory

maintenance is realised in terms of either synaptic facilitation or persistent spiking. Moreover,

we will analyze how the memory capacity depends on the presentation rate of a sequence of

items and which frequency bands are excited during loading and maintenance of multiple

items in WM. We will also derive an analytic estimation of the maximal working memory

capacity for our model, by extending recent results obtained in [46]. Furthermore, we will

show that the mean membrane potential can represent a proxy to investigate memory load

and capacity, in analogy with a series of experiments on neurophysiological measures of the

WM capacity in humans [5, 63]. Finally, we will conclude with a discussion on the obtained

results and their possible relevance for the field of neuroscience.

Results

We develop a model for WM able to memorize discrete items by following [64], in particular

we consider Npop coupled excitatory populations, each coding for one item, and a single inhib-

itory population connected to all the excitatory neurons. This architecture is justified by recent

experimental results indicating that GABAergic interneurons in mouse frontal cortex are not

arranged in sub-populations and that they densely innervate all pyramidal cells [65]. The role

of inhibition is to avoid abnormal synchronization and to allow for a competition of different

items once stored in the excitatory population activity. Furthermore, in order to mimic synap-

tic-based WM we assume that only the excitatory-excitatory synapses are plastic displaying

short-term depression and facilitation [35].

The macroscopic activity of Npop excitatory and one inhibitory populations of heteroge-

neous QIF neurons can be exactly described in terms of the population firing rate rk(t) and

mean membrane voltage vk(t) of each population k by the following set of ODEs [50]:

tn
m _rk ¼

Dk

tn
mp
þ 2rkvk k ¼ 0; 1; . . . ;Npop ð1aÞ

tn
m _vk ¼ v2

k þHk � ðpt
n
mrkÞ

2
þ IB þ IðkÞS ðtÞ þ tn

m

XNpop

l¼0

~J klðtÞrl ; ð1aÞ

where tn
m

denotes the membrane time constant of excitatory (inhibitory) populations n = e (n
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= i) and IB is a constant background current common to all populations, whereas the (time

dependent) stimulus current IðkÞS ðtÞmay be population specific. Excitatory populations are

characterized by k> 0, the inhibitory by k = 0. In absence of STP and for instantaneous synap-

ses the synaptic weights are constant in time ~J klðtÞ ¼ Jkl and their sign determines whether the

connections are excitatory (Jkl> 0) or inhibitory (Jkl< 0). The heterogeneous nature of the

neurons is taken into account by considering randomly distributed neural excitabilities,

reflecting their biological variability. In particular, we assumed that the distribution of the neu-

ral excitabilities is a Lorentzian characterized by a median Hk and a half width half-maximum

(HWHM) Δk
1. This choice allows us to derive the neural mass model from the spiking QIF

network analytically. However, the overall dynamics does not change substantially by consid-

ering other distributions for the neural excitabilities, like Gaussian and Binomial ones [50, 60].

Plasticity enables synapses to modify their efficacy in response to spiking activity and hence

to stimuli. As opposed to long-term plasticity, STP occurs on short time scales in the order of

hundred milliseconds to a few seconds. In particular one distinguishes between synaptic

depression, i.e. the weakening, and facilitation, i.e. the strengthening of synapses. The

phenomenological model for neocortical synapses, introduced by Tsodyks and Markram to

reproduce the synaptic depression of pyramidal neurons [40], assumes that each synapse is

characterized by a finite amount of resources: each incoming pre-synaptic spike activates a

fraction of resources, which rapidly inactivates in a few milliseconds and recover from synaptic

depression over a longer time-scale τd (� hundreds of milliseconds). The formulation of a

facilitating mechanism has been subsequently developed by Tsodyks, Pawelzik and Markram

[41]: in this case, the fraction of resources is increased at each pre-synaptic spike and returns

to the baseline value with a time constant τf� 1 s. The idea behind these phenomenological

STP models is that the magnitude of post-synaptic potentials (PSPs) is weighted by the relative

amount Xi 2 [0, 1] of available pre-synaptic resources and by the fraction Ui 2 [0, 1] of these

resources utilized to generate the PSP. Whenever the neuron i emits a spike, neurotransmitters

are released and Xi decreases, while at the same time calcium accumulates in the pre-synaptic

terminals, increasing the neurotransmitter release probability at the next spike emission and

hence the fraction Ui of utilized resources. This form of STP is purely pre-synaptic, i.e., depres-

sion and facilitation are influenced only by spikes emitted by the pre-synaptic neuron, this jus-

tifies why we can assume that the state of all the efferent synapses of a neuron i is described by

only the single couple of variables (Xi, Ui) [28]. Furthermore, it is fundamental that the facilita-

tion timescale τf is longer than that associated to the recover from depression τd [35]. In this

way the information provided by the stimulus will be carried over a time τf by the facilitated

synapse.

The inclusion of the depression and facilitation STP mechanisms in the spiking networks is

reflected in the modification of the synaptic weights entering in the neural mass model (Eq

(1)). In particular, these are rewritten as ~J klðtÞ ¼ JklulðtÞxlðtÞ if k and l are both excitatory

populations, and simply as ~J klðtÞ ¼ Jkl if either k or l is inhibitory. The terms xk(t) and uk(t)
represent the mean available resources and the mean utilization factor of the population k,

respectively. If we neglect the very fast inactivation of the depression terms, the dynamical evo-

lution of xk and uk is regulated by the following ODEs

dxkðtÞ
dt

¼
1 � xkðtÞ

td
� ukðtÞxkðtÞrkðtÞ ð2aÞ

dukðtÞ
dt

¼
U0 � ukðtÞ

tf
þ U0ð1 � ukðtÞÞrkðtÞ k ¼ 1; . . . ;Npop ; ð2bÞ

where U0 = 0.2 is the baseline value of the utilization factor, while τd = 200 ms, τf = 1500 ms
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represent the depression and facilitation time scales, respectively. These parameter values are

fixed for all the simulations reported in this paper.

The model (1) and (2) describes the dynamics of one inhibitory and Npop excitatory coupled

neuronal populations with STP in terms of their population firing rates rk, mean membrane

voltages vk, mean available resources xk and mean utilization factors uk. Details on the deriva-

tion of the neural mass model Eqs (1) and (2) and on the underlying spiking networks can be

found in the sub-sections Spiking neuronal network model, Exact neural mass model with

STP, Multi-populations models in Methods.

Network dynamics versus neural mass evolution

The neural mass model (1) reproduces exactly the population dynamics of a network of QIF

spiking neurons, in absence of STP, in the infinite size limit, as analytically demonstrated and

numerically verified in [50]. In order to verify if this statement is valid also in presence of STP,

we will compare for a single excitatory neural population the macroscopic evolution given by

Eqs (1) and (2) with those obtained by considering QIF networks with synaptic plasticity

implemented at a microscopic (μ-STP) and at a mesoscopic (m-STP) level. The results of these

comparisons are reported in Fig 1: column A (B) for μ-STP (m-STP).

Fig 1. Comparison among neural mass and network models. The results of the neural mass model (solid line) are

compared with the network simulations (shaded lines) for a single excitatory population with μ-STP (column A) and

with m-STP (column B). The corresponding raster plots for a subset of 2000 neurons are reported in (A1-B1), the

profiles of the stimulation current IS(t) in (A2-B2), the instantaneous population firing rates r(t) in (A3-B3), the

available synaptic resources x(t) in (A4-B4), and the utilization factors u(t) in (A5-B5). The variables of the neural

mass model are initialized to values coinciding with those of the corresponding network simulations. Since the

numerical experiments for the single excitatory population with μ-STP (column A) and with m-STP (column B) are

independent, the initial values of the synaptic variables do not coincide, even though a similar dynamical evolution is

observable in both cases. Simulation parameters are te
m
¼ 15 ms, H = 0, Δ = 0.25, J = 15, IB = −1 and network size

N = 200, 000.

https://doi.org/10.1371/journal.pcbi.1008533.g001

PLOS COMPUTATIONAL BIOLOGY Exact neural mass model for synaptic-based working memory

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008533 December 15, 2020 6 / 42

https://doi.org/10.1371/journal.pcbi.1008533.g001
https://doi.org/10.1371/journal.pcbi.1008533


A spiking network of N neurons with μ-STP is described by the evolution of 3N variables,

since each neuron is described in terms of its membrane voltage and the two synaptic variables

Ui(t) and Xi(t) accounting for the dynamics of its N efferent synapses. The explicit dynamical

model is reported in Eqs (5), (9) and (10) in sub-section Short-term synaptic plasticity in

Methods. In the m-STP model, the dynamics of all synapses is treated as a mesoscopic variable

in terms of only two macroscopic variables, namely u(t) and x(t). In this case the network

model reduces to a set of N + 2 ODEs, namely Eqs (5) and (11) reported in sub-section Short-

term synaptic plasticity in Methods.

In order to compare the different models we examine their response to the same delivered

stimulus IS(t), which consists of two identical rectangular pulses of height IS = 2 and duration

0.15 s separated by a time interval of 0.15 s (see Fig 1 (A2-B2)). The stimulus is presented when

the system is in a quiescent state, i.e. it is characterized by a low firing rate. For both compari-

sons the neural mass model has been integrated starting from initial values of r, v, x and u as

obtained from the microscopic state of the considered networks (for more explanations see

sub-section Exact neural mass model with STP in Methods). The response is the same in both

network models: each pulse triggers a series of four PBs of decreasing amplitude followed by

low activity phases in absence of stimuli (see Fig 1 (A1-B1)). As shown in Fig 1 (A3-B3), the

population firing rate r(t) obtained from the neural mass model (solid line) is almost coinci-

dent with the results of the network simulations both with μ-STP and m-STP (shaded curves).

For all models, the average synaptic variables x and u displayed in Fig 1 (A4-B4) and 1 (A5-B5)

reveal the typical temporal evolution of STP upon excitatory stimulation: the available

resources x (utilization factor u) decrease (increases) due to the series of emitted PBs in a step-

wise fashion. Furthermore, in the absence of stimulation x and u tend to recover to their sta-

tionary values x = 1 and u = U0 for μ-STP (x = 0.73 and u = 0.59 for m-STP) over time-scales

dictated by τd and τf, respectively. Due to the fact that τd� τf, the synapses remain facilitated

for a time interval’ 1 s after the pre-synaptic resources have recovered from depression. The

time courses of x and u for the neural mass compared to the network ones, shown in Fig 1

(A4-B4) and 1 (A5-B5), reveal an almost perfect agreement with the simulations of the net-

work with m-STP, while some small discrepancies are observable when compared with the

network with μ-STP. We have verified that these discrepancies are not due to finite size effects.

Further increasing the network size, did not improve the agreement. Instead, these residual

discrepancies are probably due to the correlations and fluctuations of the microscopic vari-

ables {Xi} and {Ui}, which are not taken into account in the mesoscopic model for STP [41], as

pointed out in [66] (see also the discussion on this aspect reported in sub-section Short-term

synaptic plasticity in Methods). We can conclude this sub-section by affirming that the devel-

oped neural mass model reproduces in detail the macroscopic dynamics of spiking networks

of QIF neurons with both μ-STP and m-STP, therefore in the following we can safely rely on

the mean-field simulations to explore the synaptic mechanisms at the basis of WM.

Multi-item architecture

In order to illustrate the architecture employed to store more than one item simultaneously in

WM, we will analyze the simplest non-trivial situation where we want to store two items. For

this purpose, we consider two excitatory populations with STP employed to store one item

each, and an inhibitory one, necessary to allow for item competition and a homoeostatic regu-

lation of the firing activity. In particular, we restrict to non-overlapping memories: neurons

belonging to a certain excitatory population encode only one working memory item. Further-

more, incoming information on a WM item, in form of an external stimulus, target only the

excitatory population which codes for that item, hence making the response selective.
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As previously mentioned, only excitatory-excitatory synapses are plastic, therefore we will

have no time dependence for synaptic strength involving the inhibitory population. Moreover,

the WM items should be free to compete among them on the same basis, therefore we assume

that the synaptic couplings within a population of a certain type (inhibitory or excitatory) and

among populations of the same type are identical. In summary, we have

~J 00ðtÞ ¼ Jii; ~J 0kðtÞ ¼ Jie; ~J k0ðtÞ ¼ Jei; for k > 0 ;

~J kkðtÞ ¼ JðsÞee xkðtÞukðtÞ; JkjðtÞ ¼ JðcÞee xjðtÞujðtÞ; 8k; j > 0
ð3Þ

where we have denoted inhibitory (excitatory) populations by i (e) index. Furthermore, synap-

tic connections within each excitatory population, coding for a certain memory, will be stron-

ger than connections between different excitatory populations, thus we assume JðsÞ
ee
> JðcÞ

ee
. A

common background input current IB impinges on all three populations, thus playing a crucial

role in controlling the operational point of the network. The selective storage and retrieval of

memory items induced by incoming stimuli is mimicked via time dependent external currents

IðkÞS ðtÞ applied to the excitatory populations. The discussed multi-item architecture is displayed

in Fig 2.

Due to the fact that each excitatory population is indistinguishable from the others and we

have only one inhibitory pool, we set for clarity H0 = H(i), Hk = H(e) 8 k> 0 and Δ0 = Δ(i), Δk =

Δ(e) 8 k> 0. Furthermore, in order to better highlight the variations of the synaptic parame-

ters, in the following we report normalized available resources ~xk and normalized facilitation

factors ~uk
2.

Memory maintenance with synaptic facilitation

To show the capability of our model to reproduce WM activity we report in this sub-section

three different numerical experiments. In particular, we will show that the model is able to

reproduce specific computational operations required by WM: namely, memory load, memory

maintenance during a delay period, selective or spontaneous reactivation of the memory and

memory clearance. The results of this analysis are reported in Fig 3, where we compare the

neural mass simulations with the network dynamics with m-STP for the topological architec-

ture displayed in Fig 2. More specifically, for the network simulations we considered three cou-

pled populations for a total of 600,000 neurons. An analogous comparison is reported also in

Fig 5, where the competition between two memory items is studied.

Fig 2. Two-item architecture. The reported network is composed of two identical and mutually coupled excitatory

populations and an inhibitory one: this architecture can at most store two WM items, one for each excitatory population.

https://doi.org/10.1371/journal.pcbi.1008533.g002
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Fig 3. Memory loading, maintenance and rehearsal. The results of three experiments are reported here for different background currents: selective reactivation of the

target population (IB = 1.2, A); WM maintenance via spontaneous reactivation of the target population (IB = 1.532, B) and via a persistent asynchronous activity (IB = 2,

C). Raster plots of the network activity for the first (blue, A1-C1) and second (orange, A3-C3) excitatory population; here the activity of only 400 neurons over 200,000

ones is shown for each population. Profiles of the stimulation current IðkÞS ðtÞ for the first (A2-C2) (second (A4-C4)) excitatory population. Population firing rates rk(t)
(A5-C5), normalized available resources ~xkðtÞ (A6-C6) and normalized utilization factors ~ukðtÞ (A7-C7) of the excitatory populations calculated from the simulations

of the neural mass model (solid line) and of the network (shading). Spectrograms of the mean membrane potentials v1(t) (A8-C8), v2(t) (A9-C9), and v0(t) (A10-C10)

obtained from the neural mass model; for clarity the frequencies in these three cases have been denoted as f1, f2 and f0, respectively. Red arrows in columns (B) and (C)

indicate the time t = 2.15 s at which the background current is set to the value IB = 1.2 employed in column (A). The network simulations have been obtained by

considering three populations of N = 200, 000 neurons each (for a total of 600,000 neurons) arranged with the architecture displayed in Fig 2. Other parameters:

te
m ¼ 15 ms H(i) = H(e) = 0, Δ(i) = Δ(e) = 0.1, JðcÞ

ee
¼ 5

ffiffiffi
a
p

, JðsÞ
ee
¼ 35

ffiffiffi
a
p

, Jie ¼ 13
ffiffiffi
a
p

, Jei ¼ � 16
ffiffiffi
a
p

, Jii ¼ � 14
ffiffiffi
a
p

with a = 0.4.

https://doi.org/10.1371/journal.pcbi.1008533.g003
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Selective reactivation. Let us start from an example of selective reactivation of the target

item via a non specific read-out signal, targeting both excitatory populations, as shown in the

left column (A) of Fig 3. Since the observed dynamics does not depend on the population into

which an item is loaded, without loss of generality we always load the item in population one

(coded by the blue colour in Fig 3). The system is initialized in an asynchronous state of low

firing activity common to both populations (as shown in panel (A5)), therefore the synaptic

variables have equal values (namely, ~x1 ¼ ~x2 ¼ 0:79 and ~u1 ¼ ~u2 ¼ 0:26) dictated by the aver-

age firing rate (see panels (A6-A7)).

The memory load is performed at time t = 0 s, by delivering a stimulation current in the

form of a step with amplitude ΔI(1) = 0.2 and width ΔT1 = 350 ms only to population one

(panel (A2)). In response to this stimulus, the population displays PBs, as shown by the raster

plot in panel (A1). The frequency of these COs is in the β band (namely,’ 21.6 Hz), as evident

from the spectrogram in panel (A8). In addition to this, the PBs in population one trigger PBs

in the inhibitory population with a delay of’ 1 − 2 ms, while the same COs’ frequency is

maintained, as evident from the inhibitory population spectrogram in panel (A10). Therefore,

the PBs are generated via a mechanism analogous to the pyramidal interneuronal network

gamma (PING) one [67], despite the fact that the frequency of the COs is now in the β band.

The intense firing of neurons in population one changes the internal state of its efferent

synapses, thus leading to an initial drop (increase) of x1 (u1) (panels (A6-A7)). Depression pre-

vails on short time scales’ τd, while at longer times t> 0.5 s, ~x1 recovers to almost its initial

value and the synapses remain facilitated, with ~u1 > 0:73, for one or two seconds (see panel

(A7)).

Population two (denoted by the orange colour in Fig 3) is not particularly affected by the

memory loading. Indeed, population two shows only a slight reduction in its asynchronous

activity, which is reflected in a small increase (decrease) of ~x2 (~u2) (see panels (A3) and

(A6-A7)). This is due to the action of the inhibitory bursts, which are unable to support PBs in

population two, but sufficient to modulate its asynchronous activity as revealed by the spectro-

gram in panel (A9).

Since the information on the initial stimulus is stored in the facilitation of the synapses, we

expect that, by presenting a weak non-specific read-out signal to both populations, the mem-

ory will be reactivated, even if the population activity is back to the spontaneous level. Indeed,

if after a delay period of 1.2 s from the initial memory load, we inject a weak stimulation cur-

rent of amplitude 0.1 for a time interval ΔT = 250 ms to all the excitatory neurons, we observe

that only neurons of the blue population respond by emitting a PB of brief duration. The other

neurons not associated to the loaded item remain at the baseline activity level, despite the stim-

ulus (panel (A3)). The emission of the PB in population one has also the effect to refresh the

memory, i.e. the utilization factor u1 which has decreased towards the initial value during the

delay period, returns to the value reached when the item was loaded. Therefore the memory

can be maintained for a longer time period.

Spontaneous reactivation. In a second example, shown in the central column (B) of Fig

3, we consider a case where the target population reactivates spontaneously by emitting a regu-

lar series of PBs even in absence of read-out signals. To obtain such situation we increase the

background signal from IB = 1.2 up to IB = 1.532, thus the system is in a regime where the

spontaneous low activity state coexists with states in which one of the excitatory populations

periodically emits PBs (for more details on the emerging states see the sub-section Bifurcation

analysis within the section Methods). As in the previous experiment, the system is initialized

in a low firing activity state, where only spontaneous activity is present. The memory item

is loaded in population one (see panels (B1-B5)). In this case population one encodes the

item by emitting a series of PBs with a slightly higher frequency (’ 24.1 Hz) with respect to
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the previous case, due to the increase in IB, but still in the β range (as shown in panels

(B8-B10)). After a short time delay, PBs emerge regularly in a self-sustained manner: each

reactivation leads to an increase of ~u1 and a decrease of ~x1. The time interval between two PBs

is dictated by the time required to recover sufficient synaptic resources in order to emit a new

PB, i.e. by the time scale τd controlling the depression [43, 44] (as shown in panel (B6)). Thus,

we have memory maintenance through synaptic facilitation, which is refreshed by PBs. As one

can appreciate from the spectrogram of population one reported in panel (B8), whenever a PB

is delivered, a transient oscillation in the δ band, at a frequency’ 3 Hz, is observed. Similar

transient oscillations have been observed when items are loaded in the PFC of monkeys during

WM tasks [39]. Signatures of these oscillations are present also in the spectrogram of the other

excitatory population (panel (B9)) but, in this case, they are due to a modulation of the sub-

threshold membrane potentials and not to PBs. It is interesting to note that δ-oscillations are

only sustained by the activity of the excitatory populations, since in the inhibitory spectrogram

(panel (B10)) there is no trace of them.

The sequence of PBs can be terminated by reducing the excitation IB: this operation is per-

formed at time t = 2.15 s after the initial stimulation and signaled by the red arrow in panels

(B1) and (B3). Also in this experiment the memory load and retrieval is selective, since the sec-

ond population activity is almost unaffected by these operations as it turns out from the raster

plot reported in panel (B3).

Persistent activity. As a third experiment, we consider a situation where the memory

item is maintained via the persistent activity of the target population, as shown in the right col-

umn (C) of Fig 3. This is possible when the non-specific background input IB is increased fur-

ther such that we can observe multistability among three asynchronous states: one

corresponding to the spontaneous activity at low firing rate of both excitatory populations and

the other two corresponding to population one (two) in a persistent state with increased firing

activity and population two (one) at a spontaneous level of activity. More details can be found

in Bifurcation analysis. When at time t = 0 the memory item is loaded in population one, the

population responds by emitting a series of PBs at a frequency’ 27.2 Hz in the β-γ band (see

panels (C8-C10)). As shown in panels (C1) and (C5), once the loading is terminated the blue

population enters into a regime of persistent firing characterized by an almost constant firing

rate r1’ 8.6 Hz joined to constant values of the synaptic variables. In particular, the available

resources of population one remain at a constant and low value due to the continuous firing of

the neurons (~x1 ¼ 0:13) (see panel C6). However, the lack of resources is compensated by the

quite high utilization factor ~u1 ¼ 0:98 (reported in panel (C7)). Indeed in this case the mem-

ory is continuously refreshed by the persistent spiking activity. At time t = 2.15 s, indicated by

red arrows in panels (C1) and (C3), the value of IB is reduced to IB = 1.2 and the persistent

activity is interrupted. This would correspond to a memory clearance if WM would be based

on the spiking activity only. Instead in this case, it represents only the interruption of the per-

sistent activity, the memory clearance occurring when the facilitation returns to its original

value after few more seconds (the decay of u1 is evident in panel (C7)). The second population,

not involved in the memory loading, remains always in a low firing rate regime (panels (C3)

and (C5)).

As expected, the neural mass dynamics reproduces almost perfectly the network dynamics

with m-STP for all the three considered experiments. In particular, this can be appreciated

through the agreement among shaded lines, corresponding to network simulations, and

solid ones, referring to the neural mass evolution, reported in Fig 3 (A5-C5),3 (A6-C6) and 3

(A7-C7).

Furthermore, it should be remarked that memory loading is characterized by similar spec-

tral features for all three experiments. As shown in Fig 3 (A8-B8-C8) and 3 (A9-B9-C9), a
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transient broad-band response of the excitatory populations is observable in the range 3-18

Hz, locked with the stimulation onset and followed by a steady-state activity in the β-γ range

(namely 21-27 Hz), which lasts for the whole duration of the stimulation. The broad-band

oscillations emerge due to the excitation of the harmonics of a fundamental frequency’2 − 3

Hz, associated to one item loading in the memory. Similarly, the β-γ activity is initiated by

memory loading that induces, in this case, damped oscillations towards a focus equilibrium

state in the stimulated excitatory population: the damped oscillations are sustained by the

inhibitory pool via a PING-like mechanism. Quite astonishingly, similar evoked power spectra

have been reported for stimulus-locked EEG responses to vibrotactile stimuli in primary

somatosensory cortex in humans [62]. In more details, as shown in Fig 1B of Ref. [62], the

stimulus onset induces a broad-band activity in the 4-15 Hz range followed by a stationary

activity at’ 26 Hz during the vibrotactile stimulations.

Comparison with a heuristic firing rate model. To close this sub-section, let us compare

the population dynamics obtained by employing the exact neural mass model with STP (Eqs

(1), (2)) and a heuristic firing rate model developed to mimic the dynamics of a QIF network

with m-STP (for more details see sub-section Heuristic firing rate model). Recent studies have

shown that this firing rate model, in absence of plasticity, is unable to capture some macro-

scopic behaviour displayed by the corresponding QIF networks [29, 53]. In particular, it does

not reproduce fast COs present in inhibitory networks [53] and it does not feature memory

clearance via nonlinear resonance with an external β-forcing, contrary to the spiking network

under forcing [29]. Here, we want to understand which network’s dynamics are eventually lost

by employing such a heuristic model with STP.

Therefore we have repeated the experiments leading to memory maintenance via spontane-

ous reactivation and persistent activity, previously reported in Fig 3 (B) and 3 (C), with the

same topological configuration. The results of this analysis are shown in Fig 4: namely, Col-

umn (A) is devoted to spontaneous reactivation and Column (B) to persistent activity. In more

detail, the multi-population network is initialized in the quiescent state with asynchronous

activity and low firing rates (see panels (A2-B2)); at time t = 0 s, a current step of amplitude

ΔI(1) = 0.2 and time width ΔT1 = 350 ms is injected into population one (blue line), as shown

in panels (A1-B1). When a background current IB = 1.520 is chosen, as soon as the stimulation

is removed, population one enters into a cycle of periodic PBs, each one refreshing the synaptic

facilitation and allowing for the memory maintenance (column (A)). By increasing the current

to IB = 2.05, the stimulus leads population one into a state of persistent firing activity, which

maintains the synaptic variables at almost constant values (column (B)). Therefore, the heuris-

tic firing rate model is able to reproduce the WM operations performed by the exact neural

mass model. However, when comparing the firing rate time traces of the QIF network and of

the exact neural mass model (reported in Fig 3 (B5-C5)) with the ones corresponding to the

heuristic firing rate model (shown in Fig 4 (A2-B2)), we note that, after the onset of stimula-

tion, the population firing rates of the QIF network and of the exact neural mass model exhibit

fast damped COs in the β-γ range, which are completely absent in the heuristic rate model.

These findings are confirmed by the spectrograms3 (compare Fig 3(B8-B10) and 3(C8-C10)

with Fig 4 (A6-A8) and 4 (B6-B8)), which reveal a vanishingly small power in the β-γ bands

for the heuristic model in both experiments.

The reason for this absence is related to the fact that the stimulation leads population one in

an excited state, which turns out to be a stable node equilibrium and not a focus, as for the

exact neural mass model; therefore in this case it is not possible to observe transient PBs associ-

ated to memory loading. As a consequence, the heuristic model does not show any activity in

the β and γ bands, despite this kind of activity has been reported experimentally in the PFC of

monkeys performing WM tasks [31] and in the primary somatosensory cortex of humans due
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to vibrotactile stimuli [62], and associated to memory loading and recall in WM models [68].

Furthermore, as we will discuss in detail in the sub-section Multi-item memory loading, the

loading of many items in WM is usually associated with γ-power enhancement, as shown by

various experiments [21, 69, 70]. While this effect is present in our exact neural mass model,

where the high frequency oscillations are enhanced due to a resonant mechanism with the

transient oscillations towards the focus equilibrium, this aspect cannot be clearly reproduced

by this heuristic firing rate model.

Competition between two memory items

In this sub-section we verify the robustness of the investigated set-up when two memory items

are loaded, one for each excitatory population. In particular, we will examine the possible out-

comes of the competition between two loaded items with emphasis on the mechanisms leading

to memory juggling [71]. More specifically, we will consider three different operational modes,

where the items are maintained in the WM due to different mechanisms: namely, in the first

Fig 4. WM operations for a heuristic firing rate model. The results of two experiments are reported here for different

background currents: WM maintenance via spontaneous reactivation of the target population (IB = 1.520, A) and via a

persistent asynchronous activity (IB = 2.05, B). Profiles of the stimulation current IðkÞS ðtÞ for the excitatory populations

(A1-B1). Population firing rates rk(t) (A2-B2), local field potentials LFPk defined in Eq (28) (A3-B3), normalized

available resources ~xkðtÞ (A4-C4) and normalized utilization factors ~ukðtÞ (A5-C6) of the excitatory populations

calculated from simulations of the firing rate model (19), (21). Spectrograms of the local field potentials: LFP1(t)
(A6-B6), LFP2(t) (A7-B7), and LFP0(t) (A8-B8). All the other parameter values as in Fig 3.

https://doi.org/10.1371/journal.pcbi.1008533.g004
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case thanks to periodic stimulations; in the second one due to self-sustained periodic PBs and

in the last one to persistent spiking activity.

Periodic stimulations. First we analyze the two-item memory juggling in presence of a

periodic unspecific stimulation to the excitatory populations. As shown in the left column (A)

of Fig 5, at time t = 0 we load the first item in population one by stimulating the population for

Fig 5. Juggling between two memory items. The memory juggling is obtained in two experiments with different background currents: in presence of a periodic

unspecific stimulation (IB = 1.2, A) and in the case of spontaneous WM reactivation (IB = 1.532, B). Raster plots of the network activity for the first (blue, A1-B1) and

second (orange, A3-B3) excitatory population. Profiles of the stimulation current IðkÞS ðtÞ for the first (A2-B2) (second (A4-B4))) excitatory population. Population

firing rates rk(t) (A5-B5), normalized available resources ~xkðtÞ (A6-B6) and normalized utilization factors ~ukðtÞ (A7-B7) of the excitatory populations calculated from

the simulations of the neural mass model (solid line) and of the network (shading). Spectrograms of the mean membrane potentials v1(t) (A8-B8), v2(t) (A9-B9), and

v0(t) (A10-B10) obtained from the neural mass model. All the other parameter values as in Fig 3.

https://doi.org/10.1371/journal.pcbi.1008533.g005
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ΔT1 = 350 ms, with an excitatory step of amplitude ΔI(1) = 0.2 (see panel (A2)). Population one

encodes the item via the facilitation of its efferent synapses. This is a consequence of a series of

PBs emitted via a PING-like mechanism at a frequency’ 21.6 Hz in the β-range, as evident

from the spectrograms in panels (A8-A10). Subsequently a periodic sequence of unspecific

stimulations of small amplitude and brief duration is delivered to both populations (namely,

step currents of amplitude 0.1 and duration 150 ms applied at intervals of 400 ms). These are

sufficient to refresh the memory associated to population one, that reacts each time, by emit-

ting a brief PB able to restore ~u1 to a high value (panel (A7)). On the contrary population two

remains in the low activity regime (panels (A3) and (A5)).

The second item is loaded at time t = 2.65 s, by presenting to population two a signal equal

to the one presented at time t = 0 (panel (A4)). Also the loading of this item is associated to PBs

emitted in the β range and involving the inhibitory population. During the presentation of the

second item, the previous item is temporarily suppressed. However, when the unspecific stimu-

lations are presented again to both population, PBs are triggered in both populations, resulting

to be in anti-phase, i.e. PBs alternate between the two populations at each read-out pulse. The

period related to each item is therefore twice the interval between read-out signals (see panels

(A1) and (A3)). This is due to the fact that a PB in one excitatory population stimulates the

action of the inhibitory neurons in population zero which, as a consequence, suppresses the

activity of the other excitatory population, leading to the observed juggling between the two

items in working memory. As clear from the spectrograms in panels (A8-A10), the unspecific

stimulations of the excitatory populations induce localized peaks in their spectrograms around

2-3 Hz, not involving the inhibitory population. The latter instead oscillates at a frequency

’ 21.6 Hz, thus inducing a modulation of the neural activity of the two excitatory populations.

This explain the presence of the series of peaks in the three spectrograms around 20-25 Hz.

Self-sustained population bursts. Let us now consider a higher background current

(namely, IB = 1.532), where self-sustained periodic PBs can be emitted by each excitatory pop-

ulation. In this case it is not necessary to deliver unspecific periodic stimuli to refresh the syn-

aptic memory. The loading of the two items is done by applying the same currents as before

(ΔI(1) = ΔI(2) = 0.2, ΔT1 = ΔT2 = 350 ms) to the two populations, as shown in Fig 5 (B2) and 5

(B4). The memory loading occurs, once more, via series of bursts emitted with frequency in

the β range, through a PING-like mechanism. Once the item is loaded, a series of subsequent

PBs is emitted regularly, at a frequency’ 2.90 Hz (see Fig 5 (B1), 5 (B5) and 5 (B8-B10)).

The second population remains quiescent until the second item is loaded (panels (B3) and

(B4)). During the loading period, the activity of the first population is temporarily suppressed

while, at later times, both items are maintained in the memory by subsequent periodic reactiva-

tions of the two populations. In particular it turns out that periodic reactivations are in anti-

phase, with frequency’ 1.5 Hz, i.e., one observes juggling between the two working memory

items (see panel (B5)). Also in this case, the inhibitory population is responsible for sustaining

the β rhythm, while the excitatory ones for the slow oscillations, as revealed by the spectrograms

in panels (B8-B10). As testified by the comparisons reported in Fig 5 (A5-A7) and 5 (B5-B7), the

agreement among the network simulations (solid lines) and the neural mass results (shaded

lines) is impressive even for the two experiments discussed so far in this Section.

For the setup analyzed in column (B) of Fig 5, the competition between the two memory

items can have different final outcomes, depending on the characteristics of the stimuli,

namely their amplitude and duration. For simplicity we fix these parameters for the first stim-

ulation and vary those of the second stimulation. As shown in Fig 6 (A-C), three outcomes are

possible for stimuli with the same amplitude ΔI(2) = 0.2 but different pulse duration: item one

wins, item two wins or they both coexist in the memory (juggling). If ΔT2 is too short, the facil-

itation u2 has no time to become sufficiently large to compete with that of population one
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(column A). Therefore, once the second stimulus is removed, population one recovers its oscil-

latory activity and population two returns to the low firing asynchronous activity (see panel

A2). For intermediate durations ΔT2, at the end of the stimulation period, the facilitation u2

reaches the value u1 (see panel B4), thus leading the two items to compete. Indeed, as shown in

Fig 6 (B2), the two populations display COs of the same period but in phase opposition, analo-

gously to the case reported in Fig 5 (B). The stimulation of the second population suppresses

the activity of the first, leading to a relaxation of the facilitation to the baseline. Hence, when-

ever ΔT2 is sufficiently long, the facilitation of population two prevails on that of population

one (see panel (C4)) and, as a final outcome, population two displays COs, while population

one has a low activity (panel (C2)).

The results of a detailed analysis for different amplitudes ΔI(2) and durations ΔT2 are sum-

marized in Fig 6 (D). Population one always receives the same stimulus at time t = 0 (ΔI(1) =

0.2 and ΔT1 = 0.35 s), while ΔI(2) and ΔT2 of the second stimulus, delivered at time t = 100 s,

are varied 4. In particular, the amplitude has been varied in steps of 0.01 within the interval

ΔI(2) 2 [0, 0.8], while the duration in steps of 0.01 s for ΔT2 2 [0, 1.5] s. The classification of the

final states has been performed three seconds after the second stimulation, by estimating the

time averaged firing rates hr1i and hr2i over an interval of one second. From this we get the

indicator P ≔ hr1i

hr1iþhr2i
. If P> 0.7 (P< 0.3) item one (item two) has been memorized, otherwise

we have juggling between the two items. From Fig 6 (D), we see that, for sufficiently small

amplitudes ΔI(2) < 0.11 or durations ΔT2 < 0.2 s, the second stimulation is unable to change

Fig 6. Competition between two memory items. The loading of two memory items is performed in three different ways via two step currents of equal amplitudes

ΔI(1) = ΔI(2) = 0.2, the first one delivered at t = 0 and the second one at t = 1.5 s. The first step has always a duration of ΔT1 = 0.35 s; the second one ΔT2 = 0.2 s

(column A), ΔT2 = 0.6 s (column B) and ΔT2 = 1.2 s (column C). Stimulation currents IðkÞS ðtÞ (A1-C1), instantaneous population firing rates rk(t) (A2-C2),

normalized available resources ~xkðtÞ (A3-C3) and normalized utilization factors ~ukðtÞ (A4-C4) for the first (blue) and second (orange) excitatory population. Final

memory states as a function of the amplitude ΔI(2) and width ΔT2 of the stimulus to population two (D). In (D) the three letters A, B, C refer to the states examined in

the corresponding columns. The data reported in panel (D) has been obtained by delivering the second stimulation at different phases φ with respect to the period of

the CO of the first population: 20 equidistant phases in the interval ϕ 2 [0, 2π) have been considered. For each of the three possible outcomes an image has been

created with a level of transparency corresponding to the fraction of times it has been measured. The three images have been merged resulting in panel (D). All the

other parameter values as in Fig 3, apart for IB = 1.532.

https://doi.org/10.1371/journal.pcbi.1008533.g006
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the memory state, that remains on item one. This can be understood by looking at the bifurca-

tion diagram shown in Fig 13 (B), from which it is clear that population two, being in the low

firing regime, has a low value of the membrane potential v2 and that such state is separated by

the high activity regime from a barrier Δv2, which is of the order of the distance from the sad-

dle (dotted line in the figure). A frequent outcome of the experiments is the coexistence

between the two memory items, that we observe in a large parameter region for intermediate

pulse durations, namely 0.2 s <ΔT2 < 0.8 s. For sufficiently long perturbations ΔT2 > 0.8 s and

intermediate amplitudes 0.11< ΔI(2) < 0.53, item two is memorized. It is unexpected that, for

larger amplitudes, we observe a multistability among all the three possible outcomes. Indeed,

small variations of amplitude, duration or delivering time can induce a completely different

outcome, thus suggesting that for these parameter values, some transient chaotic behaviour is

observable [72, 73].

Persistent state activity. We have performed the same analysis for the higher current

value IB = 2, which supports a persistent state activity of one of the two populations. We set

initially population one in the persistent state and we deliver a stimulus in form of a step cur-

rent to population two. In this case we can obtain only two possible final outcomes: item one

(two) loaded corresponding to population one (two) in the persistent state, while the other

in the low activity regime. No memory juggling has been observed with persistent states in

our model. The results of this investigation are summarized in Fig 7 (D); for what concerns

the final prevalence of item two, the results are similar to the ones obtained in the previous

analysis, where the item was encoded in self-sustained periodic COs. The main differences

with the previous case are: i) the minimal perturbation amplitude needed to observe an item

switching, that is now larger, namely ΔI(2)’ 0.2; ii) the existence of a narrow stripe in the

Fig 7. Memory item switching with persistent activity. The three columns (A-C) refer to three values of ΔT2 for which we have a memory switching from one item

to the other for a background current IB = 2 supporting persistent state activity. (A) ΔT2 = 70 ms; (B) ΔT2 = 130 ms and (C) ΔT2 = 850 ms. Profiles of the stimulation

current Ið2ÞS ðtÞ for the second excitatory population (A1-C1). Population firing rates rl(t) (A2-C2), normalized available resources ~xlðtÞ (A3-C3) and normalized

utilization factors ~ulðtÞ (A4-C4) of the excitatory populations calculated from the simulations of the neural mass model. Final memory states as a function of the

amplitude ΔI(2) and width ΔT2 of the stimulus to population two (D). In (D) the three letters A, B, C refer to the states examined in the corresponding columns.

Other parameters as in Fig 3, apart for IB = 2.

https://doi.org/10.1371/journal.pcbi.1008533.g007
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(ΔT2, ΔI(2))-plane where item two can be finally selected for brief stimulation duration. The

increased value of the minimal ΔI(2) required to switch to item two is justified by the fact

that, for IB = 2, the barrierΔv2 that has to be overcome to access the high firing regime, is

higher than before, as evident from the phase diagram reported in Fig 13 (B). The origin of

the stripe can be understood by examining the results reported in Fig 7 columns A-C, for

three stimulations with the same amplitude ΔI(2) = 0.4 and different durations. The effect of

the stimulation is to increase the activity of population two and indirectly, also the inhibitory

action on population one. However, for short ΔT2 < 70 ms, the activity of population two is

not sufficient to render its efferent synapses stronger than those of population one. As a mat-

ter of fact, when the stimulation is over, population one returns into the persistent state. For

longer ΔT2� 70 ms, population one is not able to recover its resources before population

two elicits a PB. Population two takes over and the dynamics relax back, maintaining item

two in WM via the persistent activity (as shown in column (A) of Fig 7). For ΔT2� 130 ms

we observe the emission of two or more successive PBs in population two during the stimula-

tion period. These PBs noticeably depress x2, which is unable to recover before population

one, characterized by a larger amount of available resources x1, emits a PB and item one

takes over (see column (B) of Fig 7). However, for much longer ΔT2� 850 ms, the absence of

activity in population one leads to a noticeable decrease of the utilization factor u1. As a mat-

ter of fact at the end of the stimulation period, the item two is finally selected (as shown in

column (C) of Fig 7).

To summarize, item two can be selected when the duration of the stimulation is restricted

to a narrow time interval, sufficiently long to render the efferent synapses of population two

stronger than those of population one, but not so long to highly deplete the resources of the

same synapses. Furthermore, item two can be selected when ΔT2 is sufficiently long to allow

for the decay of the synaptic facilitation of population one towards its baseline value.

Multi-item memory loading

In order to be able to load a higher number of memory items in WM, we consider the neural

mass model (Eq (1)) with m-STP (Eq (2)) arranged in a more complex architecture composed

by Npop = 7 excitatory and one inhibitory populations, each excitatory population coding for

one memory item. The system is initialized with all the populations in the silent state. Then,

each item is loaded by delivering an excitatory pulse of amplitude ΔI(k) = 1 and duration of 0.2

s to the chosen population, while successive items are loaded at intervals of 1.25 s, as shown in

Fig 8 (C).

Let us first consider the successive loading of NL = 3 items shown in Fig 8. As one can

appreciate from the spectrogram reported in panel (D), during the loading phase, each stimu-

lated excitatory population emits a sequence of PBs in the β − γ range (’ 27 Hz) via a PING-

like mechanism mediated by the inhibitory population. This is joined to stimulus locked tran-

sient oscillations in the δ-band around 2 Hz. Furthermore, during each loading period, the

activity of the other populations is interrupted and it recovers when the stimulation ends.

These results resemble the LFP measurement performed in PFC of primates during coding of

objects in short term-memory [31, 39]. In particular, the experimentally measured power spec-

trum of the LFP displays transient oscillations at’ 2 − 4 Hz in the δ range, phase-locked to

stimulus presentation, together with tonic oscillations at’ 32 Hz.

As shown in Fig 8 (A), the loading of each item is followed by the emission of PBs from the

stimulated population at regular time intervals Tc. Therefore, in this case, the number NI of

items retained in the WM coincides with the number NL of the loaded ones. The PBs of all the
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excited populations arrange in a sort of splay state with inter-burst periods Tb = Tc/NI [74].

The period Tc depends on the number of retained items: for NI = 3 we have Tc’ 0.2035 s.

The non stimulated populations display a low firing activity modulated by the slow PB

emission occurring in the excitatory populations and by the fast β − γ transient oscillations

towards the focus equilibrium, sustained by the inhibitory activity (see Fig 8 (B)). In particular,

one observes fast COs (’ 27 Hz) nested in slow oscillations, characterized by a frequency

increasing with the number of loaded items (from the θ-band for 1 item to the β-band for 3

items), somehow similarly to what shown in [25–27].

A more detailed analysis of the spectrogram in Fig 8 (D) reveals that, after each loading

phase, several harmonics of the fundamental frequency fc� 1/Tc’ 5 Hz are excited. In partic-

ular after the complete loading of the three items the most enhanced harmonics are those

corresponding to 3fc’ 15 Hz and 6fc’ 30 Hz. This is due to the coincidence of the frequency

3fc = fb� 1/Tb with the inter-burst frequency fb, while the main peak in the spectrogram,

Fig 8. Multi-item memory loading. Firing rates rk(t) of excitatory populations: blue, orange and green curves corresponds to k = 1, 2, 3 (A), while

the black curve refers to k = 4, . . ., 7 (B). PBs of excitatory populations are shown in (C): horizontal lines in absence of dots indicate low activity

regimes; coloured dots mark the PBs’ occurrences. The coloured bars on the time axis denote the presence of a stimulation pulse targeting the

corresponding population. Only populations k = 1, . . ., 3 are stimulated in the present example. The spectrogram of the average membrane

potential of population one v1(t) is reported in panel (D). Parameters: Npop = 7, te
m
¼ 15 ms, ti

m
¼ 10 ms, JðsÞ

ee
¼ 154, JðcÞ

ee
¼ 4

7
� 18:5, Jei = −26,

Jie ¼
4

7
� 97, Jii = −60, IB = 0, H(e) = 0.05, H(i) = −2, Δ(e) = Δ(i) = 0.1.

https://doi.org/10.1371/journal.pcbi.1008533.g008
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located at 30 Hz, is particularly enhanced due to the resonance with the proximal β − γ rhythm

associated to the PING-like oscillations emerging during memory loading.

It is interesting to notice that the transient δ oscillations related to the stimulation phase are

only supported by the excitatory population dynamics, as evident by comparing the spectro-

grams for v1(t) and for the membrane potential averaged over all excitatory populations

(shown in panels (A2-B2) and (A4-B4) of Fig 9, (B) and (D) of S1 Fig) with those for the inhib-

itory population (shown in panel (A3-B3) of Fig 9, and (C) of S1 Fig). Another important

aspect is that only the harmonics of fb� NI fc are present in the spectrogram of the inhibitory

population, and in that associated to the average excitatory membrane potential, but not all the

other harmonics of fc. This is related to the fact that, in the average of the mean excitatory

membrane potentials, the bursts of all populations will be present with a period Tb, therefore

in this time signal there is no more trace of the periodic activity of the single population. This

is due to the fact that Tc� NI Tb. Furthermore, in the dynamics of the inhibitory population,

the activity of all excitatory populations are reflected with the same weight, therefore also in

this case there is no sign of the fundamental frequency fc.
Memory capacity. If we continue to load more items, we discover that up to five items are

loaded and retained by WM (see S1(A) Fig). However, if we load a sixth item, WM is able to

Fig 9. Maximal capacity. Response of the system when NL = 6 (column (A)) or NL = 7 (column (B)) excitatory

populations are successively stimulated at a presentation rate of 0.8 Hz. Population bursts of excitatory populations

(A1-B1): horizontal lines in absence of dots indicate quiescence phases at low firing rates rk for populations k = 1, . . .7.

Dots mark PBs of the corresponding population. The coloured bars on the time axis mark the starting and ending time of

stimulating pulses, targeting each population. Spectrograms of the mean membrane potential v1(t) (A2-B2), v0(t) (A3-B3)

and of the mean membrane potentials averaged over all the excitatory populations (A4-B4); for clarity the corresponding

frequencies have been denoted as f1, f0 and fExc. Parameter values as in Fig 8.

https://doi.org/10.1371/journal.pcbi.1008533.g009
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maintain all the loaded NL = 6 items only for a short time interval’ 1 s, after which population

five stops delivering further PBs. The corresponding item is not in WM anymore and the

memory load returns to NI = 5 (as shown in Fig 9 (A)). By loading NL = 7 items we can induce

more complex instabilities in the WM, indeed the experiment reported in Fig 9 column (B)

reveals that, in the end, only NI = 4 items can be maintained, suggesting that a too fast acquisi-

tion of new memory items can compromise also already stored WM items. As a matter of fact,

only the oldest and newest items are retained by WM: this in an example of the so-called pri-
macy and recency effect, which has been reported in many contexts when a list of items should

be memorized [75, 76].

To investigate more in detail the memory capacity of our model, we have considered differ-

ent presentation rates fpres for the items. In particular, we have sequentially delivered a stimula-

tion pulse to all the excitatory populations, from the first to the seventh, with a presentation

rate fpres; each pulse is characterized by an amplitude ΔI = 16 and a time width ΔT = 1/fpres.

Results are presented in Fig 10 for presentation rates in the interval [0.5: 80] Hz. From panel

(A) it turns out that the maximal capacity is five, a value that can be mostly achieved for pre-

sentation rates within an optimal range fpres 2[4.5: 24.1] Hz, delimited for better clarity by

green dashed lines in panel (A). For these optimal rates we have estimated the probability of

retrieving a certain item versus its presentation position, as shown in panel (C) (green dashed

line). The probability displays very limited variations (’ 45 − 85%) for the 7 considered items,

suggesting that in this range the retrieval of an item does not strongly depend on its position in

the presentation sequence. Conversely, for slow rates (fpres� 9 Hz) the last loaded items result

to be the retained ones (recency effect), as evident from the orange symbols in panel (B). This is

confirmed by the calculation of the probability of retrieval versus the corresponding serial

position shown in panel (C) (orange curve), obtained by considering 150 equidistant rate

values in the interval [0.5: 9] Hz. Finally, the primacy and recency effect is observable only for

presentation rates faster than 9 Hz (see blue symbols in panel (B)), as confirmed by the proba-

bility shown in panel (C) (blue curve), which has been obtained by considering 150 equidistant

frequencies within the interval [10: 80] Hz.

A theoretical estimation of the maximal capacity Nmax
c

for WM, based on short-term synap-

tic plasticity, has been recently derived in [46]. By following the approach outlined in [46],

we have been able to obtain an analytical expression for Nmax
c

also for our neural mass model,

namely

Nmax
c ’

td
tem

ln
tf=td

1 � U0

� � ffiffiffiffi
C
p

p
; ð4Þ

where C ¼ HðeÞ þ IB þ tem � jJeij þ �Jð Þ

ffiffiffiffiffiffiffiffiffiffiffi
HðeÞþIB
p

p

� �

, with �J ¼ ½JðsÞ
ee
þ ðNpop � 2ÞJðcÞ

ee
��x�u. The

explicit derivation of (4) is reported in Maximal working memory capacity. As shown in [46],

the value of Nmax
c

is essentially dictated by the recovery time of the synaptic resources τd and

has a weaker (logarithmic) dependence on the ratio between the facilitation and depression

time scales. Furthermore, for our model, the maximal capacity increases by increasing H(e), IB

and the self and cross excitatory synaptic couplings, while it decreases whenever the coupling

from inhibitory to excitatory population is strengthened.

By employing the theoretical estimation (4) we get Nmax
c
2 ½3:6; 4:8�, in pretty good agree-

ment with the measured maximal capacity. We can affirm this in view of the results reported

in [46] for a different mean field model, where the analytical predictions overestimate the max-

imal capacity by a factor two.
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Memory load characterization. A feature usually investigated in experiments during the

loading or juggling of more items is the power associated to different frequency bands. In par-

ticular, a recent experiment has examined the frequency spectra of LFPs measured from corti-

cal areas of monkeys while they maintained multiple visual stimuli in WM [77]. These results

have revealed that higher-frequency power (50–100 Hz) increased with the number of loaded

stimuli, while lower-frequency power (8–50 Hz) decreased. Furthermore, the analysis of a

detailed network model, biophysically inspired by the PFC structure, has shown that θ and γ
power increased with memory load, while the power in the α-β band decreased [36], in accor-

dance with experimental findings in monkeys [23]. However, for humans, an enhance in the

oscillatory power during WM retention has been reported for θ [18, 19], β and γ-bands [20,

21], while no relevant variation has been registered in the α-band [20].

Fig 10. Dependence of the memory capacity on the presentation rate. (A) Total number of retrieved items NI vs.

presentation frequency fpres for slow ([0.5: 9.0] Hz, orange) and fast presentation rates ([10: 80] Hz, blue). The two

green dotted vertical lines denote an optimal rate interval where NI is maximal. (B) Map showing the retrieved items at

a given serial position for presentation rates fpres in the interval [0.5: 80] Hz. (C) Probability of retrieval vs. serial

position for slow (orange) and fast (blue) presentation rates. In order to estimate these probabilities 150 equidistant

rates are considered in the interval [0.5: 9] Hz and 150 in [10, 80] Hz. The green dotted line refers to the probability

estimated within the rate interval enclosed between two green dotted vertical lines in (A). An item is considered as

retrieved if the corresponding population is still delivering PBs 20 s after the last stimulation. All other parameter

values are as in Fig 8.

https://doi.org/10.1371/journal.pcbi.1008533.g010
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We considered the loading of NL� 5 items and estimated the corresponding power spectra,

after the loading of all the considered items, for the following variables: i) the mean membrane

potential v1(t) of the excitatory population one; ii) the mean membrane potential v0 of the

inhibitory population; iii) the mean membrane potential averaged over all the excitatory popu-

lations. The power has been estimated in the θ, β and γ-bands by integrating the spectra in

such frequency intervals. The results for 1� NI� NL� 5 shown in Fig 11 reveal that the

Fig 11. Dependence of the power on the number of loaded items. Power in the θ-band (3-11 Hz) (A), in the β-band

(11-25 Hz) (B) and in the γ-band (25-100 Hz) (C) as a function of the number NL = NI� 5 of loaded items. The

integral of the power spectra in the specified frequency bands are displayed for the mean membrane potential v1(t) of

the excitatory population one (blue symbols), the mean membrane potential v0(t) of the inhibitory population (orange

symbols) and the mean membrane potentials averaged over all the excitatory populations (green symbols). The power

spectra have been evaluated over a 10 s time window, after the loading of NI items, when these items were juggling in

WM. Parameter values as in Fig 8.

https://doi.org/10.1371/journal.pcbi.1008533.g011

PLOS COMPUTATIONAL BIOLOGY Exact neural mass model for synaptic-based working memory

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008533 December 15, 2020 23 / 42

https://doi.org/10.1371/journal.pcbi.1008533.g011
https://doi.org/10.1371/journal.pcbi.1008533


power in the γ-band is essentially increasing with NI for all the considered signals, as reported

experimentally for several brain areas involved in WM [21, 69, 70]. Furthermore, the γ-power

obtained for v0 and the mean excitatory potential are essentially coincident (see panel (C)),

thus confirming the fundamental role of the inhibition in sustaining γ oscillations via a PING

mechanism. Moreover, the power in the β-band, reported in panel (B), increases almost mono-

tonically for v1, while it displays a non monotonic behaviour for the inhibitory population and

for the average excitatory membrane potential, while saturating to a constant value for NI� 3.

More striking differences emerge when considering the θ power (shown in panel (A)): in this

case the power spectra for v0 and the average excitatory membrane potential display almost no

variations with NI, while that for v1 increases by passing from one to two loaded items before

saturating for larger NI. The observed discrepancies can be explained by the fact that the fun-

damental frequency fc and its harmonics are present in the spectrum of v1, while they are

absent both in the spectrum of v0 and of the average excitatory membrane potential. We have

not observed any variation in the α-power analogously to what reported experimentally in

[20].

Finally, inspired by a series of experimental works reporting neurophysiological measures

of WM capacity in humans [5, 63], we have investigated if a similar indicator can be defined

also in our context. In particular, the authors in [5] measured, as a neural correlate of visual

memory capacity, the event-related potentials (ERPs) from normal young adults performing a

visual memory task. Each patient was presented a bilateral array of 2 × NL coloured squares

and he/she was asked to remember the NL items in only one of the two hemifields. Due to the

organization of the visual system, the relevant ERPs associated to this visual stimulation should

appear in the controlateral hemisphere. Therefore the difference between controlateral and

ipsilateral activity has been measured in order to remove any nonspecific bilateral ERP activity.

The authors observed that, by increasing the number of squares NL, also the ERP difference

increases, while it saturates by approaching the maximal capacity (measured during the same

test) and even decreases for NL > Nmax
c . Thus the ERP difference can be employed as a reliable

neurophysiological predictor of memory capacity.

In order to define a similar indicator in our case, we have calculated the membrane poten-

tial difference Δv between the mean membrane potential, averaged over the populations cod-

ing, for the retained items (whose activity is reported for example in Fig 8 (A)) and the one

averaged over the non-coding populations (e.g. see Fig 8 (B)). By measuring Δv just after the

deliverance of a PB by the first population, we observe a clear growth of this quantity with the

number NL of presented items, as shown in Fig 12 (A) for NL = 1, 2, 3, 4, 5. However, as soon

as NL > Nmax
c the membrane difference Δv almost saturates to the profile attained for NL ¼

Nmax
c ¼ 5 and even decreases for larger NL, as evident from Fig 12 (B) where we report the

results also for NL = 6 and 7 (dashed lines). Analogous results have been obtained by consider-

ing the mean membrane potential of the next to fire populations instead of the difference Δv.

Therefore, the results are not biased by the chosen indicator and Δv allows for a better presen-

tation clarity.

To conclude this sub-section, we can affirm that the mean membrane potential can be

employed, analogously to the ERP in the experiments [5, 63], as a proxy to measure the mem-

ory load and capacity. It is worth noticing that neither the mean membrane potential nor the

ERP are accessible for firing rate models.

Discussion

In this paper we have introduced a next generation neural mass model for WM based on

short-term depression and facilitation. The model has been developed to reproduce exactly the
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macroscopic dynamics of heterogeneous QIF spiking neural networks with mesoscopic short-

term plasticity (m-STP), in the limit of an infinite number of neurons with Lorentzian distrib-

uted excitabilities. Even though the choice of the excitability distribution allows for an analyti-

cal derivation of the model, it does not limit the generality of the results [50, 60]. As shown in

sub-section Network dynamics versus neural mass evolution, the neural mass model repro-

duces well not only the QIF network dynamics with m-STP plasticity but, to a large extent, it

reproduces also the dynamics of networks with plasticity implemented at a microscopic level

(μ-STP). Therefore, the macroscopic dynamics of spiking neural networks made of hundreds

of thousands of neurons with synapses evolving accordingly to realistic cellular mechanisms,

can be well captured in terms of a four dimensional mean-field model.

The novelty of this neural mass model, besides not being heuristic, but derived in an exact

manner from the microscopic underlying dynamics, is that it reproduces the evolution of the

population firing rate as well as of the mean membrane potential. This allows us to get insight

not only on the synchronized spiking activity, but also on the sub-threshold dynamics and to

extract information correlated to LFPs, EEGs and ERPs, that are usually measured during WM

tasks to characterize the activity of the brain at a mesoscopic/macroscopic scale. The knowl-

edge of the mean membrane potential evolution is fundamental in order to capture the

Fig 12. Dependence of the membrane potential difference on the number of loaded items. Difference Δv of

membrane potentials versus time when stimulating different numbers NL of populations. The presented time-series are

aligned to t�, which marks the deliverance of a PB from population one. The populations are stimulated sequentially

with parameter values as in Fig 8.

https://doi.org/10.1371/journal.pcbi.1008533.g012
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dynamics displayed by the underlying microscopic QIF network, already in the absence of

plasticity. Indeed, at variance with this next generation of neural mass models, a rate model

cannot reproduce the fast oscillations observed in purely inhibitory networks [53], nor mem-

ory clearance obtained via a resonance mechanism between an external β forcing and the

intrinsic network oscillations [29]. As we have shown in the sub-section Comparison with a

heuristic firing rate model, a heuristic firing rate model, specifically designed to reproduce the

QIF network dynamics with STP, does not display any oscillatory activity in the β-γ range,

contrary to what observable in the spiking network itself and in our neural mass model. It

should be remarked that this represents a main drawback when employing firing rate models

to mimic WM operations, because the emergence of β-γ rhythms is intimately related to

short-term memory activity, as shown in several experiments on humans and monkeys [20–

23, 31, 39].

The macroscopic model we developed is extremely flexible since, depending on the opera-

tional point, it can mimic WM maintenance in terms of persistent spiking activity or in terms

of selective and spontaneous reactivation, based on plastic footprints into the synapses. In par-

ticular, short-term depression and facilitation complement each other to obtain an efficient

WM model based on synaptic reactivation. Facilitation allows us to maintain a trace of the

loaded items stored in WM, while depression is responsible for the bursting activity that

refreshes the WM content.

Memory loading is characterized, in any operational condition, by collective oscillations

(PBs) with frequencies’ 22 − 28 Hz in the β-γ band. These oscillations emerge spontaneously

in the considered model thanks to a PING-like mechanism triggered by the transient oscilla-

tions of the selectively stimulated excitatory population towards a focus equilibrium and sus-

tained by the common inhibitory pool. The memory loading also induces stimulus-locked

transient oscillations involving the harmonics of a fundamental frequency (i.e.’ 2 − 3 Hz).

These results strongly resemble the spectral features observed in experiments on humans and

monkeys performing WM tasks. Of particular interest are the responses of the primary

somatosensory cortex in humans to vibrotactile stimuli [62] and the population activity of the

PFC measured during a behavioural task of object recognition, performed by monkeys [31,

39]. In the first experiment stimulus-locked EEG signals have been measured revealing a tran-

sient broad-band activity in the 4-15 Hz range, followed by a stationary activity at’ 26 Hz last-

ing for the duration of the stimulus [62]. These findings are quite similar to the spectral

features displayed by our model during one memory item loading, see Fig 3. In the experi-

ments on primates, the analysis of the LFP spectrograms revealed an evoked response around

2-4 Hz and tonic oscillations around 32 Hz [31, 39], thus resembling the power spectra that we

have obtained for multi-item memory loading reported in Figs 8 and 9.

Memory maintenance in the synaptic-based model is ensured by facilitation over a time

scale of a few seconds, even in absence of spiking activity. The memory can be refreshed, and

therefore maintained for a longer period, thanks to the reactivation of the synaptic resources

of the excitatory population storing the item. This can be obtained, on one side, via brief non

specific stimulations given to all the excitatory populations, analogously to the reactivation of

latent working memories performed with single-pulse transcranial magnetic stimulation real-

ised in humans [37]. In particular, to maintain the memory for long time intervals, the stimu-

lations should be delivered with a period smaller than the decay time of the facilitation. On the

other side the memory maintenance over long periods can be achieved thanks to the spontane-

ous emergence of periodic PBs delivered by the excitatory population coding for the loaded

item.

An interesting aspect that we have investigated, concerns the competition between two

items loaded in non-overlapping populations. When the WM load consists already of one item
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coded by an excitatory population, the stimulation of the other population can be regarded as

a distractor. If the items are stored as repetitive PBs, we can observe three outcomes: for brief

stimulations the distractor has no influence on WM, and the first item remains loaded; for suf-

ficiently long stimulations the second item is loaded in WM; for intermediate situations both

items are maintained in WM. In this latter case both populations deliver periodic trains of PBs

arranged in anti-phase. Such behaviour can be seen as a neural correlate to two items juggling

in WM [71]. For sufficiently long and strong stimulations one observe a chaotic scenario [73],

where the final outcome can be any of the three described above and it depends on small dif-

ferences in the perturbation deliverance. Our findings can help in elucidating the results

reported in [71], where it has been shown that, when an attended and an unattended item

are juggling for a long period, the unattended item can prevail leading to a loss of the stored

memory.

If the items are stored in WM as persistent states, the memory juggling is no more observ-

able. As in the previous case, for sufficiently long stimulations, the second item substitutes the

first one in WM. However, due to synaptic depression and facilitation, even a short stimulation

can lead to the loading of the second item in WM, whenever its duration falls in a narrow time

interval (’ O(τd/2)) and the amplitude of the stimulation is sufficiently large. This suggests

that there are optimal stimulation strategies to ensure a fast learning of a new item in WM.

By considering a neural architecture composed of multiple excitatory populations and a

common inhibitory pool, more items can be maintained at the same time in WM as periodic

trains of PBs. This is observable despite the possible interference among excitatory populations

that are allowed to directly interact, thanks to the couplings present among them, and not only

via the inhibitory pool, as in similar architectures considered in the literature [46]. All popula-

tions coding for stored items follow the same periodic dynamics, but they deliver PBs at evenly

shifted phases, similarly to the splay states observed for globally coupled excitatory neuronal

networks [74]. The inter-burst interval of two successive PBs approaches a value Tb’ 65 ms

when more than 2 items are loaded. This clearly induces the emergence of a peak in the power

spectra of the mean membrane potentials in the β band for fb’ 15 Hz. However, the most

prominent peak in the spectra is around 30 Hz, due to the resonance of the second harmonic

of fb with the oscillations of the inhibitory population in the β − γ range. These oscillations are

associated to damped oscillations of the excitatory population towards a focus equilibrium,

induced by the loading of one memory item and sustained by the inhibitory pool thanks to a

PING-like mechanism. The considered architecture allows for the maintenance of multi-items

in WM thanks to their spontaneous reactivation, without destructive or interference effects

often reported for models based on persistent spiking [38]. Furthermore, the memory of differ-

ent items is associated to preferential phases with respect to the collective limit cycle behaviour

of the whole system, characterized by a period Tc = NI Tb, where NI is the number of retained

items. Experimental evidences of phase-dependent neural coding of objects in the PFC of

monkeys have been reported in [39].

The memory load NI of our model depends on the presentation rate fpres of a sequence of

memory items, however it is always limited between 3� NI� 5 analogously to what reported

in many analysis concerning the WM capacity [78, 79]. In particular, for slow presentation

rates (fpres� 8 Hz) we observe that NI grows proportionally to fpres and that only the last pre-

sented items are retained in the memory. The maximal capacity Nmax
c ¼ 5 can be attained

mainly within an optimal range of presentation rates, namely [4.5: 21.4] Hz. These rates corre-

spond to the characteristic frequencies associated to the PB dynamics of the model, since the

inter-burst frequency is fb’ 12 − 16 Hz for NI> 2, while the oscillation frequency of a single

population is fc’ 3 − 5 Hz. In this optimal range there is no clear preference for the item

retained in the memory and its serial position in the loaded sequence. For faster frequencies
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fpres > 25 Hz, a destructive interference among the items leads to a decrease in NI: this mecha-

nism has been suggested in [79] to be at the origin of the reduced capacity. For sufficiently fast

rates fpres� 10 Hz, a primacy and recency effect [75, 76] is observable with a prevalence for the

first loaded items to be retained.

To obtain a better understanding of the capacity limits of our model, we have derived an

analytical expression for the maximal capacity Nmax
c by following the approach outlined in

[46]. The maximal capacity is essentially controlled by the ratio between the recovery time of

the available synaptic resources τd and the membrane time constant of the excitatory popula-

tions; conversely it reveals a weaker dependence on the ratio between facilitation and depres-

sion time scales. Nmax
c is also controlled by the excitatory and inhibitory drives. As a matter of

fact, for our parameters we obtained Nmax
c ’ 4 � 5, in pretty good agreement with the mea-

sured maximal capacity.

Furthermore, we observed that the power in the γ-band (25-100 Hz) increases with the

number of loaded items NI, in agreement with several experimental studies related to WM [21,

69, 70]. Interestingly, for the γ-rhythms, the inhibitory pool and the excitatory populations

contribute equally to its generation, confirming that its origin is related to a PING-like mecha-

nism. Instead the power in the β-band reveals a non monotonic behaviour with NI, character-

ized by a rapid increase passing from 1 to 2 items, a small drop from 2 to 3 items while

remaining essentially constant for NI� 3. The activity in the θ-band is associated to the single

excitatory population dynamics only, due to the fact that the inhibitory population is not

involved in the memory maintenance of single items. No variation with NI have been observed

in the α-band, analogously to what reported for experiments on humans during memory

retention in [20].

Finally, we have defined a measure of the memory capacity in terms of the mean membrane

potential measured just after a PB deliverance. This quantity increases with the number of

loaded items for NI< 5 and saturates for NI� 5. These results resemble the ones obtained

for the ERPs detected in young adults performing visual memory tasks [5, 63]. This analysis

suggests that in our neural mass model the value of the mean membrane potential can be

employed to measure memory load and capacity, in analogy with the neurophysiological indi-

cator defined in [5, 63].

However our neural mass model presents several simplifications from a biological point of

view, such as the pulsatile interactions or the absence of transmission delays, therefore more

realistic aspects should be included in future developments. As shown for this next generation

of neural mass models, in absence of plasticity, the inclusion of the time scales associated to

the rise and decay of the post-synaptic potentials could induce the emergence of new oscil-

latory rhythms [53, 55], while the delayed synaptic transmission could lead to more complex

macroscopic behaviours [80]. For what concerns the plasticity terms, we expect to further

improve the agreement between the neural mass model and the network dynamics with μ-STP

by including the correlations and the fluctuation of the microscopic synaptic variables in the

mean-field formulation, analogously to what done in [66].

A fundamental aspect of WM, not included in our model, is the volitional control, which is

a cognitive function that allows for the control of behaviour from the environment and to turn

it towards our internal goals [2]. A flexible frequency control of cortical oscillations has been

recently proposed as an unified mechanism for the rapid and controlled transitions of the WM

between different computational operations [13, 29, 68]. In particular, the authors consider as

a neural correlate of WM a bistable network with coexisting persistent and resting states that

an external periodic modulation can drive from an operating mode to another one depending

on the frequency of the forcing. However, in [29] it has been suggested that the forcing term,
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in order to be considered more realistic, should self-emerge by the network dynamics in form

of trains of periodic PBs and not be imposed from the exterior. In our model for synaptic-

based WM we have shown that some WM operations are associated with PBs delivered at dif-

ferent frequencies: namely, item loading and recall with transient oscillations in the δ band, as

in [29], joined to burst oscillations in β − γ band as in [68]; multi-item maintenance to har-

monics in the β − γ band. Therefore, we believe that our neural mass model with STP can rep-

resent a first building block for the development of an unified control mechanism for WM,

relying on the frequencies of deliverance of the self-emerging trains of PBs. However, a devel-

opment towards realistic neural architectures would require to design a multi-layer network

topology to reproduce the interactions among superficial and deep cortical layers [38].

Methods

Spiking neuronal network model

The membrane potential dynamics of the i-th QIF neuron in a network of size N can be writ-

ten as

tm
_Vi ¼ V2

i ðtÞ þ Zi þ IB þ ISðtÞ þ tm
1

N

XN

j¼1

~J ijðtÞSjðtÞ ; i ¼ 1; . . . ;N ð5Þ

where τm = 15 ms is the membrane time constant and ~J ijðtÞ the strength of the direct synapse

from neuron j to i that, in absence of plasticity, we assume to be constant and all identical, i.e.

~J ijðtÞ ¼ J. The sign of J determines if the neuron is excitatory (J> 0) or inhibitory (J< 0).

Moreover, ηi represents the neuronal excitability, IB a constant background DC current, IS(t)
an external stimulus and the last term on the right hand side the synaptic current due to the

recurrent connections with the pre-synaptic neurons. For instantaneous post-synaptic poten-

tials (corresponding to δ-spikes) the neural activity Sj(t) of neuron j reads as

SjðtÞ ¼
X

tjðkÞ<t

dðt � tjðkÞÞ; ð6Þ

where Sj(t) is the spike train produced by the j-th neuron and tj(k) denotes the k-th spike time

in such sequence. We have considered a fully coupled network without autapses, therefore the

post-synaptic current will be the same for each neuron apart corrections of order Oð1=NÞ.
In the absence of synaptic input, external stimuli and IB = 0, the QIF neuron exhibits two

possible dynamics, depending on the sign of ηi. For negative ηi, the neuron is excitable and for

any initial condition Við0Þ <
ffiffiffiffiffiffiffiffi
� Zi
p

, it reaches asymptotically the resting value �
ffiffiffiffiffiffiffiffi
� Zi
p

. On the

other hand, for initial values larger than the excitability threshold, Við0Þ >
ffiffiffiffiffiffiffiffi
� Zi
p

, the mem-

brane potential grows unbounded and a reset mechanism has to be introduced to describe

the spiking behaviour of a neuron. Whenever Vi(t) reaches a threshold value Vp, the neuron i
delivers a spike and its membrane voltage is reset to Vr, for the QIF neuron Vp = −Vr =1. For

positive ηi the neuron is supra-threshold and it delivers a regular train of spikes with frequency

n0 ¼
ffiffiffiffi
Zi
p

=p.

As already mentioned, the analytic derivation of the neural mass model can be performed

when the excitabilities {ηi} follows a Lorentzian distribution

gðZÞ ¼
1

p

D

ðZ � HÞ2 þ D2
: ð7Þ

centred at H and with HWHM Δ. In particular, the excitability values ηi have been generated
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deterministically for a network of N neurons by employing the following expression

Zi ¼ H þ D tan
p

2

2i � N � 1

N þ 1

� �

: ð8Þ

Numerical simulations of the QIF networks have been performed by employing an Euler

scheme with a time step Δt = 10−4 τm. Moreover, when performing the numerical experiments,

analogous to the approach in [50], the threshold and reset values have been approximated to

Vp = −Vr = 100 and a refractory period is introduced to deal with this approximation. In more

details, whenever the neuron i reaches Vi� 100, its voltage is reset to Vi = −100 and the voltage

remains unchanged at the reset value for a time interval
2tm
100

, accounting for the time needed to

reach Vi =1 from Vi = 100 and to pass from Vi = −1 to Vi = −100. The spike emission of

neuron i is registered at half of the refractory period.

Short-term synaptic plasticity

By following [35] in order to reproduce WM mechanisms in the PFC we assume that excit-

atory-to-excitatory synapses display depressing and facilitating transmission, described by a

phenomenological model of STP developed by Markram, Tsodyks and collaborators [40–42].

In this model, each pre-synaptic spike depletes the neurotransmitter supply and, at the same

time, the concentration of intracellular calcium. The accumulation of calcium ions is responsi-

ble for an increase of the release probability of neurotransmitters at the next spike emission.

Each synapse displays both depression on a time-scale τd, due to the neurotransmitter deple-

tion, and facilitation on a time-scale τf, linked to the increased calcium concentration and

release probability. Experimental measurements for the facilitating excitatory synapses in the

PFC indicates that τf’ 1 s and that τf� τd [81].

As done in a previous analysis [28], we also assume for the sake of simplicity, that all the

efferent synapses of a given neuron follow the same dynamical evolution, therefore they can be

characterized by the index of the pre-synaptic neuron. In particular, the depression mecha-

nism is mimicked by assuming that, at certain time t, each synapse has at disposal Xi(t) synap-

tic resources and that each pre-synaptic spike uses a fraction Ui(t) of these resources. In

absence of emitted spikes the synapses will recover the complete availability of their resources

on a time scale τd, i.e. Xi(t� τd)! 1. The facilitation mechanism instead leads to an increase

of the fraction Ui(t) of employed resources at each spike by a quantity U0(1 − Ui). In between

spike emissions Ui will recover to its baseline value U0 on a time scale τf. The dynamics of the

synaptic variables Xi(t) and Ui(t) is ruled by the following ordinary differential equations:

_Xi ¼
1 � XiðtÞ

td
� XiðtÞUiðtÞSiðtÞ ð9aÞ

_Ui ¼
U0 � UiðtÞ

tf
þ U0ð1 � UiðtÞÞSiðtÞ: ð9bÞ

In this framework Ui Xi represents the amount of resources employed to produce a post-

synaptic potential, therefore the synaptic coupling ~J ijðtÞ entering in Eq (5) in presence of STP

will be modified as follows:

~J ijðtÞ ¼ JUjðtÞXjðtÞ 8i : ð10Þ

The spiking network model with microscopic STP (μ-STP) (Eqs (5), (9) and (10)) consists

of 3N differential equations: one for the membrane voltage and two for the synaptic variables

of each neuron. In order to reduce the system size effects and to obtain accurate simulations
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reproducing the neural mass dynamics, extremely large network sizes are required, namely

N> 100, 000.

For these network simulations massive numerical resources are required, however the com-

plexity of the synaptic dynamics can be noticeably reduced, by treating the STP at a meso-

scopic level under the assumption that the spike trains emitted by each neuron are Poissonian

[41, 66]. In this framework, the mesoscopic description of the synapse can be written as

_x ¼
1 � xðtÞ
td

� uðtÞxðtÞAðtÞ ð11aÞ

_u ¼
U0 � uðtÞ

tf
þ U0ð1 � uðtÞÞAðtÞ ; ð11bÞ

where x = hXii and u = hUii represent the average of the microscopic variables {Xi} and {Ui}

over the whole population5 and A(t) = hSj(t)i is the mean neural activity.

The synaptic coupling entering in Eq (5) now becomes:

~J ijðtÞ ¼ JuðtÞxðtÞ 8i; j : ð12Þ

The dynamics of the QIF network with the mesoscopic STP (m-STP) is given by N + 2

ODEs, namely Eqs (5) and (11) with ~J ijðtÞ given by (12), therefore we can reach larger system

sizes than with the μ-STP network model.

It should be noticed that the synaptic variables Xi(t) and Ui(t) for the same synapse are cor-

related, since they are both driven by the same spike train Si(t) delivered by neuron i. These

correlations are neglected in the derivation of the m-STP model, therefore one can write

hUi(t)Xi(t)i = hUi(t)ihXi(t)i = u(t)x(t). This approximation is justified in [41] by the fact that

the coefficients of variation of the two variables Ui and Xi are particularly small for facilitating

synapses. Indeed it is possible to write a stochastic mesoscopic model for the STP that includes

the second order moments for Ui and Xi, i.e. their correlations and fluctuations [66].

In our simulations we fixed τd = 200 ms, τf = 1500 ms and U = 0.2 and we integrated the

network equations by employing a standard Euler scheme with time step 0.0015 ms.

Exact neural mass model with STP

For the heterogeneous QIF network with instantaneous synapses (Eqs (5) and (6)), an exact

neural mass model, in absence of STP, has been derived in [50]. The analytic derivation is pos-

sible for QIF spiking networks thanks to the Ott-Antonsen Ansatz [52] applicable to phase-

oscillators networks whenever the natural frequencies (here corresponding to the excitabilities

{ηi}) are distributed accordingly to a Lorentzian distribution with median H and HWHM Δ. In

particular, this neural mass model allows for an exact macroscopic description of the popula-

tion dynamics, in the thermodynamic limit N!1, in terms of only two collective variables,

namely the mean membrane voltage v(t) and the instantaneous population rate r(t), as follows

tm _rðtÞ ¼
D

tmp
þ 2r tð Þv tð Þ ð13aÞ

tm _vðtÞ ¼ v2ðtÞ þH þ IB þ ISðtÞ � ½ptmrðtÞ�2 þ tm~JðtÞrðtÞ ; ð13bÞ

where the synaptic strength is assumed to be identical for all neurons and for instantaneous

synapses in absence of plasticity ~JðtÞ ¼ J. However, by including a dynamical evolution for the

synapses and therefore additional collective variables, this neural mass model can be extended

to any generic post-synaptic potentials, see e.g. [53] for exponential synapses or [55] for con-

ductance based synapses with α-function profile.
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In our case the synaptic evolution at a mesoscopic level is given by the m-STP model

described above, therefore it will be sufficient to include the dynamical evolution of the m-STP

in the model (13) to obtain an exact neural mass model for the QIF spiking network with STP.

In more details, we consider the eqs (11) and (12) for the m-STP dynamics and we substitute

the population activity A(t) with the instantaneous firing rate r(t), that corresponds to its

coarse grained estimation in the limit N!1. Furthermore, the synaptic coupling entering in

Eq (13) will become ~JðtÞ ¼ JuðtÞxðtÞ and the complete neural mass model reads as

tm _rðtÞ ¼
D

tmp
þ 2rðtÞvðtÞ ð14aÞ

tm _vðtÞ ¼ v2ðtÞ þH þ IB þ ISðtÞ � ½ptmrðtÞ�2 þ JtmuðtÞxðtÞrðtÞ ð14bÞ

_xðtÞ ¼
1 � xðtÞ
td

� uðtÞxðtÞrðtÞ ð14cÞ

_uðtÞ ¼
U0 � uðtÞ

tf
þ U0ð1 � uðtÞÞrðtÞ : ð14dÞ

The macroscopic dynamics generated by the neural mass model (14) and by the QIF net-

work with μ-STP and m-STP are compared in the sub-section Network dynamics versus neu-

ral mass evolution of the section Results.. In particular, in order to compare the value obtained

from the simulation of the neural mass model (14) with those obtained by the integration of

the microscopic networks, we evaluated the following instantaneous population average from

the microscopic variables v(t) = hVi(t)i, x(t) = hxii and u(t) = huii. To estimate the instanta-

neous population firing activity r(t), appearing in (14), from the microscopic simulations is

more complicated. This estimation is based on the spike-count, namely one counts all the

spikes Ns(W) emitted in the network within a time window W. Then the firing rate is esti-

mated as r(t) = Ns(W)/W with W = 0.01τm. The neural mass model has been numerically inte-

grated by employing the adaptive Dormand-Prince method with a absolute and relative

tolerances of 10−12.

Multi-populations models

The discussed models can be easily extended to account for multiple interconnected neuronal

populations. In the following we restrict this extension to the QIF network with m-STP and

the corresponding neural mass model, since the simulations we performed for the QIF net-

work with μ-STP are limited to a single population.

We consider a network composed of one inhibitory and Npop excitatory interacting neural

populations, each composed by Nk neurons. Therefore the dynamics of the membrane poten-

tial Vi,k(t) of the i-th QIF neuron of the k-th population (k = 0, . . ., Npop) and of the mesoscopic

synaptic variables (uk(t), xk(t)) for the excitatory populations (k> 0) can be written as follows

tn
m

_Vi;k ¼ V2
i;kðtÞ þ Zi;k þ IB þ IðkÞS ðtÞ þ tn

m

XNpop

l¼0

~J klðtÞ
Nl

XNl

jðlÞ¼1

Sj;lðtÞ ð15aÞ

i ¼ 1; . . . ;Nk

_xk ¼
1 � xkðtÞ

td
� ukðtÞxkðtÞAkðtÞ ð15bÞ

_uk ¼
U0 � ukðtÞ

tf
þ U0ð1 � ukÞAkðtÞ; ð15cÞ
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where IðkÞS ðtÞ is the stimulation current applied to the population k and Ak(t) is the population

activity of the k-th population. The index j identifies the neuron belongs to population l com-

posed by Nl neurons. We assume that the synaptic couplings ~J kl depend on the population

indices k and l but not on the neuron indices; moreover we assume that the neurons are glob-

ally coupled both at the intra- and inter-population level. The synaptic couplings for excit-

atory-excitatory connections are plastic, therefore they can be written as

~J klðtÞ ¼ JklulðtÞxlðtÞ; ð16Þ

while the expression for the synaptic coupling will be simply set to ~J klðtÞ ¼ Jkl if one of the pop-

ulations k or l is inhibitory. The sign is determined by the pre-synaptic population l, if it is

excitatory (inhibitory) Jkl> 0 (Jkl< 0). In this paper we have always considered a single inhibi-

tory population indexed as k = 0 and Npop excitatory populations with positive indices, and

usually assumed tn
m
¼ 15 ms for excitatory and inhibitory populations, apart in sub-section

Multi-item memory loading where we set te
m
¼ 15 ms and ti

m
¼ 10 ms. For each population,

we always considered Nk = 200, 000 neurons.

The corresponding multi-population neural mass model can be straightforwardly written

as

tn
m _rk ¼

Dk

tn
mp
þ 2rkðtÞvkðtÞ k ¼ 0; 1; . . . ;Npop ð17aÞ

tn
m _vk ¼ v2

kðtÞ þ Hk þ IB þ IðkÞS ðtÞ � ðptn
mrkðtÞÞ

2
þ tn

m

XNpop

l¼0

~J klðtÞrlðtÞ ð17bÞ

_xl ¼
1 � xlðtÞ

td
� ulðtÞxlðtÞrlðtÞ ð17cÞ

_ul ¼
U0 � ulðtÞ

tf
þ U0ð1 � ulðtÞÞrlðtÞ l ¼ 1; . . . ;Npop ; ð17dÞ

where for excitatory-excitatory population interactions

~J klðtÞ ¼ JklulðtÞxlðtÞ ; ð18Þ

and whenever population k or l is inhibitory ~J klðtÞ ¼ Jkl.

Bifurcation analysis

In order to exemplify the dynamical mechanisms underlying the maintenance of different

items in presence of STP, we analyze the bifurcation diagram for the model (17) with three

populations. In particular, we study the emergence of the different dynamical states occurring

in a network made of two excitatory and one inhibitory population corresponding to the net-

work architecture introduced in sub-section Multi-item architecture.

Due to the symmetries in the synaptic couplings and in the structure of the dynamical eq

(17) the macroscopic dynamics observable for the two excitatory networks will be equivalent.

Therefore, we will display the bifurcation diagram in terms of the instantaneous firing rate

rk(t) and the mean membrane potential vk(t) of one of the two excitatory populations (k> 0)

as a function of the common background current IB by fixing all the other parameters of the

model (17) as in Fig 3. The phase diagram, shown in Fig 13, reveals that at low values of the

background current (IB � Ið1Þsn ’ 1:2532) there is a single stable fixed point with an asynchro-

nous low firing dynamics. This looses stability at Ið1Þbp ’ 1:25647 giving rise to two coexisting

stable fixed points with asynchronous dynamics: one at low firing rate due to spontaneous
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activity in the network and one at high firing rate corresponding to a persistent state. As

shown in the inset in Fig 13 (A), there is a small region IB 2 ½Ið1Þsn ; I
ð1Þ

bp � where we can have the

coexistence of these three stable asynchronous states.

At IB � Ið1Þhb ’ 1:34998 we observe the emergence of coexisting collective oscillations (peri-

odic PBs) at low and high firing rates via supercritical Hopf bifurcations. These oscillations

exist in a quite limited range of parameters, namely IB 2 ½I
ð1Þ

hb ; I
ð2Þ

hb �, and they disappear at

Ið2Þhb ’ 1:5363. Beyond this parameter value we again have a persistent state coexisting with a

low firing activity regime, these states finally annihilate with two unstable fixed point branches

at Ið2Þsn � 4:13715.

Fig 13. Bifurcation diagram for two excitatory populations. Bifurcation diagram displaying the instantaneous firing rates rk (A) and mean membrane potentials vk
(B) for the excitatory populations as a function of the background current IB. Solid (dashed) black lines refer to stable (unstable) asynchronous states, while green solid

lines denote the maxima and the minima of stable collective oscillations. Symbol refer to bifurcation points: branch points (blue squares), Hopf bifurcations (orange

circles) and saddle-node bifurcations (red circles). The inset in (A) displays an enlargement of the bifurcation diagram. The lower (upper) branch of equilibria in (A)

corresponds to the lower (upper) branch in (B). All the remaining parameters are as in Fig 3. Continuation performed with the software AUTO-07P [82].

https://doi.org/10.1371/journal.pcbi.1008533.g013
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The knowledge of the bifurcation diagram shown in Fig 13 allows us to interpret the

numerical experiments discussed in sub-section Memory maintenance with synaptic facilita-

tion and displayed in Fig 3.

Let us consider the first experiment, reported in column (A) of Fig 3 and showing the selec-

tive reactivation of the WM item via a nonspecific read-out signal. The item is firstly loaded

into population one via a specific step current of amplitude ΔI(1)(t) = 0.2 for a time interval

ΔT1 = 350 ms. The selective reactivation of the target is obtained by applying a non-specific

readout signal of amplitude ΔI(1)(t) = ΔI(2)(t) = 0.1 to all excitatory neurons in both popula-

tions for a shorter time interval, namely ΔT1 = ΔT2 = 250 ms. For this numerical experiment

we fixed IB ¼ 1:2 < Ið1Þsn , thus the only possible stable regime is a low firing asynchronous

activity. The item is loaded into population one by increasing, for a limited time window, the

background current only for this population to the level IB þ DIð1Þ > Ið1Þhb , thus leading to the

emission of a series of PBs, whose final effect is to strongly facilitate the efferent synapses of

population one. The subsequent application of a non-specific read-out signal amounts to an

effective increase of their common background current to a value beyond Ið1Þbp , where the per-

sistent state coexists with the low firing activity. Indeed during the read-out stimulation, popu-

lation one displays a burst of high activity, due to the facilitated state of its synapses, while

population two is essentially unaffected by the read-out signal. As soon as the stimulus is

removed, the system moves back to the spontaneous activity regime.

The second experiment, shown in the column (B) of Fig 3, concerns spontaneous reactiva-

tion of the WM item via collective oscillations (periodic PBs). In this case the background

current is set to IB = 1.532, in order to have the coexistence of two stable limit cycles corre-

sponding to periodic PBs with low and high firing rate. The whole system is initialized in the

asynchronous regime with spontaneous activity (which is unstable for this value of IB); upon

the presentation of the stimulus to population one, this jumps to the upper limit cycle after

loading the item into the memory. Once the stimulation is removed, due to the periodic synap-

tic refreshment, population one reactivates spontaneously by emitting a periodic sequence of

PBs that is terminated by reducing IB to a value smaller than Ið1Þsn .

The last experiment shown in column (C) of Fig 3 refers to the spontaneous reactivation of

the memory associated to a persistent state activity. In this case we set IB = 2, thus the system is

in an asynchronous regime beyond Ið2Þhb , where there is coexistence of persistent and low firing

activity beyond Ið2Þhb . As in the previous experiment, the system is initialized in the asynchro-

nous unstable regime. Upon a brief stimulation, population one is led in the high activity per-

sistent regime. Reducing the background current to IB = 1.2 stops the persistent activity.

Heuristic firing rate model

Firing rate models have been developed to describe heuristically the dynamics of a neuronal

population in terms of the associated firing rate r; one of the most known example is repre-

sented by the Wilson-Cowan model [45]. These models are usually written as [83]

tm _r ¼ � r þ FðIÞ; ð19Þ

where I represents the total input current received by each neuron in the population and F(I)
is the steady-state firing rate solution, or activation function. This function is usually assumed

to be a sigmoidal function and it is determined on the basis of the dynamical features of the

neurons in the considered population. As stated in [53], these firing rate models, despite being

extremely useful to model brain dynamics, do not take into account synchronization phenom-

ena induced by the sub-threshold voltage dynamics. Therefore, these firing rate models fail in
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reproducing fast oscillations observed in inhibitory networks, without the addition in their

dynamics of an ad-hoc time delay. These collective oscillations are instead captured by the

neural mass model introduced in [50] and considered in this paper.

By following the analysis in [53], we can obtain a firing rate model corresponding to the

exact neural mass ODEs (13). More specifically this heuristic firing rate can be derived for

a QIF network of spiking neurons, by considering the corresponding steady-state solution

(v�, r�) given by

0 ¼
D

tmp
þ 2r�v� ð20aÞ

0 ¼ ðv�Þ2 � ðptmr�Þ2 þ I ð20bÞ

where I ¼ H þ IB þ IS þ tm
~Jr�. This leads to a self-consistent equation for the steady-state fir-

ing rate, given by r� = F(I), where

FðIÞ ¼
1
ffiffiffi
2
p

ptm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þ D
p

q

: ð21Þ

The eqs (19) and (21) represent a firing rate model corresponding to the QIF spiking net-

work with m-STP. This firing rate model has been considered in sub-section Comparison with

a heuristic firing rate model in order to perform numerical experiments on WM maintenance

(see Fig 4).

Maximal working memory capacity

By following [46] we can give an estimate of the maximal memory capacity for our neural

mass model (1) with m-STP (2). The maximal capacity can be estimated as the ratio of two

time intervals

Nmax
c ’

Tmax
c

Tb
ð22Þ

where Tmax
c

is the maximal period of the network limit cycle and Tb the inter-burst interval

between two successive PBs. In [46], Tmax
c

has been estimated as the time needed to the synap-

tic efficacy uk(t)xk(t) of a generic population k to recover to the maximum value after a PB

emission. Since all the excitatory populations are identically connected among them and

with the inhibitory population, this time does not depend on the considered population. The

approximate expression reported in [46] is the following

Tmax
c ’ td ln

tf=td
1 � U0

ð23Þ

As expected the recovery time is essentially ruled by the depression time scale τd.

It can be shown that Tb has three components, i.e. the time width of the previous excitatory

PB, the delay of the inhibitory burst triggered by the excitatory PB, plus its time width, and the

time needed for the next active excitatory population to recover from inhibition and to elicit a

PB. In our model framework, we can neglect the first two time intervals and limit ourselves to

estimate the latter time.

Let us denote the next firing population as the m-th one; we can assume that during Tb the

connection strength does not vary much and that the firing rates are essentially constants.

Therefore we can rewrite the time evolution of the mean membrane potential appearing in (1)
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as follows:

tem _vk ¼ v2
k þ

h
HðeÞ � ðptem�r ðeÞÞ2 þ IB þ tem

�
� jJeij�r ðiÞ þ �J�r ðeÞ

�i
¼ v2

k þ C ð24Þ

where �J ¼ ½JðsÞ
ee
þ ðNpop � 2ÞJðcÞ

ee
��x�u takes in account the synaptic efficacy of all excitatory syn-

apses in an effective manner, �r ðiÞ and �r ðeÞ are the inhibitory and excitatory population rates and

C is the constant quantity within square brackets on the right-hand side. The expression of C
can be further simplified by noticing that the quadratic term is negligible and by assuming that

the excitatory and inhibitory firing rates are similar. Moreover, by assuming that the excitatory

neurons are almost uncoupled during Tb, one gets:

C ¼ HðeÞ þ IB þ tem � jJeij þ �Jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðeÞ þ IB

p

p

" #

ð25Þ

where �r ðiÞ ¼ �r ðeÞ and �r ðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
HðeÞþIB
p

p
as for an isolated QIF neuron driven by the mean excitabil-

ity and by the background current.

Therefore the time needed to the mean membrane potential to go from an initial negative

value vm(0) = V0, determined by the discharge of the inhibitory neurons, to a threshold value

Vth, where the PB starts to be delivered, is given by

Tb ¼
temffiffiffiffi
C
p arctan

Vthffiffiffiffi
C
p � arctan

V0ffiffiffiffi
C
p

� �

’
tempffiffiffiffi

C
p ð26Þ

where on the right hand side of the equation we have finally assumed that Vth� 1 and

V0� − 1.

Thus the following expression for the maximal capacity is obtained

Nmax
c ’

td
tem

ln
tf=td

1 � U0

� � ffiffiffiffi
C
p

p
: ð27Þ

For the parameters employed in sub-section Multi-item memory loading we obtained the

following theoretical values Tmax
c ’ 447 ms, Tb’ 93 − 126 ms depending on the value of

0:5 � �x�u � 1:0, thus 3:6 � Nmax
c � 4:8 not far from the measured value that was Nmax

c ¼ 5.

Spectrogram estimation

In order to generate the spectrograms shown in Figs 3, 4, 5, 8, 9 and S1 Fig, the signal package,

which is part of the SciPy library [84], is used. The subroutine stft (short time Fourier transform,

STFT) generates Fourier transforms F ½sðtÞ�ðt; f Þ of a signal s(t) within a running time window

of length ΔTwin at time t. The STFT is performed using overlapping windows (95% overlap)

throughout this work. For Figs 3, 4 and 5 the window length is set to ΔTwin = 0.2 s, leading to a

sufficiently fine resolution in time and frequency. For Figs 8, 9 and S1 Fig it is set to ΔTwin = 1 s,

resulting in a better frequency resolution and decrease of time-resolution. The colours in the

spectrograms code the normalized power spectral density jF ½vkðtÞ�ðt; f Þj
2
=ðmaxjF ½vkðtÞ�ðt; f Þj

2
Þ

obtained from voltage signals vk of different populations. For better visibility a log10 scale is used

and values< 10−2 set to 10−2.

Since the average membrane potential is not accessible for the firing rate model (19) and

(21), in this case we made use of simulated local field potentials LFPk in order to estimate the

spectrograms. By following [85], we have estimated the local field potentials for the three pop-

ulations appearing in the multi-item architecture displayed in Fig 2 as the sum of the absolute
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values of the synaptic inputs stimulating each populations:

LFP0 ¼ � ½jJiejðr1 þ r2Þ þ jJiijr0� ð28aÞ

LFP1 ¼ � ½jJðsÞee jx1u1r1 þ jJðcÞee jx2u2r2 þ jJeijr0� ð28bÞ

LFP2 ¼ � ½jJðsÞee jx2u2r2 þ jJðcÞee jx1u1r1 þ jJeijr0� ð28cÞ

where we neglect the constant current components for the calculation of the LFPs, as they do

not contribute to the frequency spectra. Furthermore, to make possible a comparison with

experimental measurements where high (low) activity states correspond to a minimum (maxi-

mum) value of the LFPs, we reversed the sign of the synaptic inputs in (28).

Supporting information

S1 Fig. Maximal capacity. Response of the system when NL = 5 excitatory populations are sub-

sequentely stimulated at a presentation rate of 0.8 Hz. Population bursts of excitatory popula-

tions (A): horizontal lines in absence of dots indicate quiescence phases at low firing rates rk
for populations k = 1, . . .7. Dots mark PBs of the corresponding population. The coloured bars

on the time axis mark the starting and ending time of stimulating pulses, targeting each popu-

lation. Spectrograms of the mean membrane potential v1(t) (B), v0(t) (C) and of the mean

membrane potentials averaged over all the excitatory populations (D); the corresponding fre-

quencies have been denoted as f1, f0 and fExc. Parameter values as in Fig 8.

(TIF)
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