E. and A. , Community detection and stochastic block models, Foundations and Trends in Communications and Information Theory, vol.14, issue.1-2, pp.1-170, 2018.

U. Luxburg, A tutorial on spectral clustering, Statistics and Computing, vol.17, pp.395-416, 2007.

K. Avrachenkov, V. Dobrynin, D. Nemirovsky, S. Pham, and E. Smirnova, Pagerank based clustering of hypertext document collections, Proceedings of the 31st International ACM SIGIR Conference on Research and Development in Information Retrieval, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00565355

K. Avrachenkov, M. Chamie, and G. Neglia, Graph clustering based on mixing time of random walks, IEEE International Conference on Communications, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01087693

M. Chen, J. Liu, and X. Tang, Clustering via random walk hitting time on directed graphs, AAAI, vol.8, pp.616-621, 2008.

M. Newman, A measure of betweenness centrality based on random walks, Social Networks, vol.27, issue.1, pp.39-54, 2005.

P. Pons and M. Latapy, Computing communities in large networks using random walks, ISCIS, 2005.

M. E. Newman, Equivalence between modularity optimization and maximum likelihood methods for community detection, Physical Review E, vol.94, issue.5, p.52315, 2016.

V. V. Mazalov, Comparing game-theoretic and maximum likelihood approaches for network partitioning, Transactions on Computational Collective Intelligence XXXI, pp.37-46, 2018.

M. E. Newman, Modularity and community structure in networks, Proceedings of the National Academy of Sciences, vol.103, issue.23, pp.8577-8582, 2006.

M. Blatt, S. Wiseman, and E. Domany, Clustering data through an analogy to the Potts model, Advances in neural information processing systems, pp.416-422, 1996.

J. Reichardt and S. Bornholdt, Statistical mechanics of community detection, Physical review E, vol.74, issue.1, p.16110, 2006.

K. E. Avrachenkov, A. Y. Kondratev, V. V. Mazalov, and D. G. Rubanov, Network partitioning algorithms as cooperative games, Computational social networks, vol.5, issue.1, pp.1-28, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01935419

E. Abbe and C. Sandon, Community detection in general stochastic block models: Fundamental limits and efficient algorithms for recovery, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp.670-688, 2015.

E. Abbe, A. S. Bandeira, and G. Hall, Exact recovery in the stochastic block model, IEEE: Transactions on Information Theory, vol.62, issue.1, 2016.

L. Su, W. Wang, and Y. Zhang, Strong consistency of spectral clustering for stochastic block models, IEEE Transactions on Information Theory, vol.66, issue.1, pp.324-338, 2020.

J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel, Performance and accuracy of lapack's symmetric tridiagonal eigensolvers, SIAM Journal on Scientific Computing, vol.30, issue.3, pp.1508-1526, 2008.