
The Ariadne String against COVID -19 pandemic
propagation: outdoor path selection with limited

virus exposure
Philippe Jacquet

Inria, Saclay Ile de France
France

philippe.jacquet@inria.fr
Liubov Tupikina

Nokia Bell labs, France, Center for Research and Interdisciplinarity (CRI),
Université de Paris – INSERM (U1284), 75004 Paris, France

liubov.tupikina@nokia-bell-labs.com

Abstract—The present work is an extension of [1] where local
outdoor excursion was analysed and optimized in order to limit
the exposure to virus during city lock-downs. The present work
is applicable for analysis of situations after lock-down where
outdoor excursions have a aim (commuting to work or shopping)
and may not be strictly local. In particular we investigate the
biking path optimization. We use drifted random walks for this
optimization which under the condition of uniform distribution
of initial starting points and destination locations gives a perfect
or quasi perfect load balancing of streets. We compare this with
the case when biking lanes are just following the main commuting
lanes by bus or subway, thus minimizing the exposure to virus
by a factor between 3 and 9 on various models. Interestingly the
path selection is immediately beneficial to the first user even if
the other users stay on preferential paths.

I. INTRODUCTION

The COVID-19 pandemic has forced more than half of
mankind into lock-down situation [5], [9], [8]. During lock-
down in some countries outdoor excursion were authorized
under strict restrictions; in France, no more than 1 hour less
than 1km away from home. These restrictions had an aim
to reduce the exposure rate to virus through outdoor contact
with other persons. This problem is crucial in urban places,
since in country places the distinction are easier to achieve.
In [1] we have described an application, called Ariadne String
against COVID, which reduces the contact rate thanks to a
better load balancing streets while avoiding crowded areas.
The fundamental tool in Ariadne COVID is the use of random
walk which naturally loads a balance edges in a graph. The
application is shown to give a benefit to the first user, although
to have an impact on the pandemic, it must be used by a
majority of users. The average outdoor exposure rate reduction
is around 3, but it is difficult to verify this claim since it is
based on pre-lock-down partial data on some cities.

In the present work we present Ariadne-2 algorithm as a
follow-up application whose aim is to limit outdoor exposure
to virus after lock-downs. The lock-down’s aim is to "flatten
the curve" in order to limit the congestion in hospitals. It is

equivalent to the graphite bars used to slow down and reverse
the reactions in the kernel of a nuclear plant. If you remove
the graphite bars, the reaction will restart. Therefore the social
distancing and other ways to limit exposure will need to be
continued after lock-down before either a vaccine or a herd-
immunity is developed.

But contrary to lock-down outdoor excursions which were
set-up for healthy consideration and therefore were aimless
(walking, jogging), the outdoor excursions after lock-down
will have an aim, most likely in order to commute between
home and work place. The public transportation is considered
to be unsafe since people will be packed in small areas, and
it should be restricted in order to achieve a sufficient social
distances. The city of Paris envisions to help people to rely
on biking and other surface transportation by increasing the
number of streets with biking lanes. However the biking lanes
are narrow and sometimes very busy because people commute
around the same hours. Our work is to introduce a policy
which helps the user to find a biking route from home to work
which limit the exposure rate by achieving a load balancing
between lanes. The exposure rate can be reduced by a factor
ranging from 3 to 9 depending on the model.

Technically a simple random walk model does not work as
well, since it will take an eternity for a homogeneous random
walk to connect the home address with the work place, if the
latter location is a random but fixed location in the city. The
shortest path will not be good, since it is likely to take the main
streets and create a gathering on those streets. Our approach
is based on drifted random walks so that the penalty with the
shortest path will be limited, while the aggregation of path
from all users will give an optimal load balancing over the
streets and therefore minimize the exposure rate.

Here we suggest the improved algorithms of drifted random
walks and validate them on two models of a city map: the grid
models and the Voronoi tessellation model. The parameters of
these models are inspired of the parameter of the city of Paris.
We have also applied the algorithm to the real streets data



using openstreetmap API [13]. Interestingly we have worked
on cities where the map contains many obstacles such are
rivers and swamp areas which were not in our previous models.
We have chosen the Kaliningrad-Königsberg area famous for
its complex network of bridges since Euler.

Interestingly the algorithms are less CPU consuming than
classic shortest path algorithm and therefore can be implemen-
ted over light servers

II. DESCRIPTION OF THE ARIADNE-2 ALGORITHM

The main algorithm is inspired from the opportunistic
routing [2] and the geo-routing protocol [3], which uses the
information about coordinates of nodes destinations. It works
as follows. The user sends its GPS coordinate z0 = (x0, y0)
of its home address (her/his initial position). She/he also sends
the coordinate of her/his final destination zf = (xf , yf ). The
algorithm operates on an abstract graph, which may represent
a dataset consisting of street intersection (node) linked by a
segment of a street (edge). The intersection I is given by its
GPS coordinates (x(I), y(I)). Two intersections I and J are
connected if there exist a segment of street which connects
two intersections. Let V the set of intersections and E the set
of street segments, The pair (V,E) forms a graph. We also
have the set S of streets, A street is a set of contiguous street
segments. All neighbors of an intersection I are the list of
intersections to which I is connected. We use a number ε > 0
fixed for the protocol.

An initial position of a user is on a segment (IU , ID) ∈ E.
The path will take the intersection among IU and ID which
lies ahead of a destination, i.e if 〈zf − z0|IU − ID〉 ≥ 0 then
IU is selected: z1 = IU , otherwise z1 = ID.

At step number k, let zk be the intersection, where the path
is currently ending. Let d be the degree of the intersection
zk. If d = 1, then the path backtracks. If d > 1 then with
probability ε the path proceeds as a non-backtracking random
walk, i.e. the path takes any other neighbor edge distinct of
(zk−1, zk) with equal probability. Otherwise, with probability
1−ε, the path takes one of the two best sectored edges, defined
as follows. Assuming the angle of the edge (zk, zk−1) is θ0,
and we enumerate θ1, θ2, . . . θd−1 the angle in increasing order
of the other edges of intersection zk. Let θ be an angle of the
vector (zk, zf ) toward the destination.

Let j be such that j 2πd < θ ≤ (j + 1) 2πd . Note here that
j+1 must be considered by modulo of d. Let variables αd(θ)
and βd(θ) such that αd(θ) + βd(θ) = 1 and αd(θ)e

2ijπ/d +
βd(θ)e

2i(j+1)π/d be proportional to eiθ. Numerically we have{
αd(θ) = sin(2(j+1)π/d−θ)

sin(θ−2jπ/d)+sin(2(j+1)π/d−θ)
βd(θ) = sin(θ−2jπ/d)

sin(θ−2jπ/d)+sin(2(j+1)π/d−θ) .
(1)

The selection of the next step zk+1 is done as follows: with
probability αd(θ) it selects the edge corresponding to angle
θj , and with probability βd(θ) the edge corresponding to the
angle θj+1.

We notice that there is no reason that the selected edge
actually heads toward the destination (in fact it will never do),

but on average it will do, under mild conditions on the actual
street angles distribution in the city.

Notice that when θ0 is the actual angle selected by the path
algorithm selection, then the path backtracks. In this case the
loop removal should be applied to the actual path, this will
even more reduce the actual weight of the path.

The algorithm is much simpler than the actual Dijkstra
shortest path algorithm. Indeed the shortest path algorithm
leads to at least an average quadratic complexity in terms
of the number of vertices, while the randomized algorithm
is at most linear, in fact proportional to the diameter of the
graph. This will greatly help for the computational power
required to have a server capable of serving several millions of
requests. However we shall not expect the algorithm to provide
the shortest path, however we expect that the randomized
algorithm will provide a reasonable penalty for having no
optimal path.

A. Types of algorithms

All in all, here we work with four different types of
algorithms:

1) the shortest path algorithm;
2) the preferential path algorithm;
3) the isotropic walk algorithm;
4) the geo-routing algorithm.

The three last algorithms perform the same on a grid network,
this is why we did not distinguish them in the previous section.
The isotropic walk algorithm is the main algorithm we focus
in this paper. Note that the shortest path algorithm is the
most expensive of all three since its quadratic in the number
of nodes and therefore maybe expensive in term of server
complexity.

B. Isotropic walk algorithm

Definition 1 (Isotropic walk condition). A walk is isotropic at
a given intersection I , if when reaching an intersection I , the
difference of an angle θ toward a destination with an angle θ0
to an arriving edge, satisfies a fixed distribution PI(θ − θ0).

We can show that under the isotropic walk condition,
defined below, the algorithm leads to an uniform distribution.

Notice that the walk arriving at a destination has stochastic
component assuming the randomness of the initial and destin-
ation coordinates. Notice that the isotropic condition does not
imply that θ−θ0 must always be close to π (most direct path)
and when θ− θ0 is small the path will most likely backtrack.

Theorem II.1. Under the isotropic walk condition, and assum-
ing the same constant speed v of all travellers, the aggregation
of paths leads to uniform densities of travellers on streets.

Proof. We use the classic proof of stationary random walks
in undirected graphs. Let us assume that at time t every street
in a city has the same exit rate ρ(t) on each of its end points.
We will prove that all streets have the same entrance rate.
And consequently the same exit rate on the other end. Thus
the uniform distribution is the stationary distribution of the
entrance rates.



In the following we assume that there is no loss between
entrance and exit rates, assuming for example that initial points
and destination points of a path balance in all streets. Or
equivalently that an arrival point coincides with a departure
point like in a random way point mobility model.

Let consider a traveller arriving at an intersection I , which
has d arriving streets. According to the uniformization hypo-
thesis, the traveller has an equal probability to arrive on any of
the d intersecting edges. With probability ε it selects any of the
d−1 other streets. With probability 1−ε it select one of the best
sectored edge. Enumerating the edges in counter clockwise
way, initialising with the entrance edge, the isotropic walk
conditions leads to the following expression of the probability
pd(j) that the edge j is selected is

pd(j) =

∫ 2(j+1)π/d

2jπ/d

P (θ)αd(θ)+

∫ 2jπ/d

2(j−1)π/d
P (θ)βd(θ). (2)

Therefore the probability that an edge is selected, independ-
ently of the entrance edge is

d− 1

d
ε+ (1− ε)

j=d∑
j=0

pd(j). (3)

Thus the exit rates are uniform, and have value ρ(t) and
consequently the stationary rate distribution is uniform with
some value ρ. Since the speed is considered to be the same
on each street, the density of travellers on each street is ρ/v
per unit length.

As an intermediate step, there is the randomized geo-routing
algorithm, which is very close to the isotropic walk with the
difference that instead of assuming equal angular sectors j 2πd
for the exit streets at each intersection, we take the actual
angle of streets. The consequence of that is twofold: (i) the
average exit path is now well aligned with the angle toward
the destination, (ii) we lose the isotropic property, since the
densities on the exit street will now vary with the variation of
angles between the streets.
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Figure 1: Illustration of steps of the randomized geo-routing
algorithm. The traveller enters the intersection via the large
blue arrow.
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Figure 2: Illustration of the functioning of the randomized
isotropic walk algorithm. The traveller enters the intersection
via the large blue arrow.

III. RESULTS OF SIMULATIONS OF THE ALGORITHM

A. Simulation on a grid

We have chosen an abstraction of Paris map via a 100x100
map. Each grid point is an intersection in Paris. Each segment
represents a street segment of one unit length. From North
to South the streets represent 100 length units, and the total
cumulative street length length is 20,000 length units. This
compares well with the actual diameter of Paris (8km) and its
cumulative street length of 1500 km (thus 2900 km of street
sides).

The mayor of Paris has decided to create bike lanes parallel
to the existing 14 subway lines, in order to foster the use of
bikes instead of public transportation after city lock-down. To
simulate those bike lanes we have highlighted 14 paths (seven
paths West-East, seven paths North-South) on the grid map.

We have chosen N0 = 8, 000 source-destination pairs to run
the two algorithms: the first one is the randomized algorithm,
the second algorithm is the preferential path algorithm. In
order to simulate the attraction effect of the highlighted path,
we have artificially distorted the graph by decreasing the
segment path weight by 20% and run a shortest path Dijkstra
algorithm. This is a moderate ratio but it is sufficient to create
a significant attraction effect, otherwise the difference would
be not visible due to the large diversity of shortest paths in a
grid structure. We simulate the isotropic randomized algorithm
with ε = 0.

Figures 3 and 4 show the histogram of the segment density.
For each segment, we collect the traffic for both ways, and
for all figures we add two traffic per segment to display
the histogram. We notice that the preferential path algorithm
shows that the preferential streets are drastically more busy
than the other streets. The randomized algorithm shows a
more balanced distribution of the traffic. The uniform isotropic
condition fails on the borders of the map and holds in the large
central part of the map.

Figure 5 shows the map of the traffic of street segments with
the preferential path algorithm. In green we show the streets
with load larger than 1 but smaller than 15, in blue - traffic
smaller than 25, in red, smaller than 50, in black, smaller than
200. The preferential paths are clearly visible and marked as



Figure 3: Histogram of segment traffic load in Grid Paris, in
red the preferential path algorithm, in blue the randomized
algorithm.

Figure 4: Histogram of segment densities in Grid Paris, in the
logarithmic scale.

very busy (black and red) as expected. Figure 6 shows the map
of empty streets for the randomized algorithm, but the picture
is now different, since the segment load is very balanced.

Now our aim is to derive the average exposure time of the
travellers in Königsberg We took it to another scale and ran the
algorithm on the whole network of recent city of Königsberg.

As in [1] we denote by S the set of street segments, with the
difference, that the segments are directed and we differentiate a
segment with its reverse segment. We denote `(s) the segment
length, thus the cumulative length is L =

∑
s∈S `(s). We

denote λ(s) the traffic load after N0 initial-destination random
pairs. The average path length is LG = 1

N0

∑
s∈S λ(s)`(s).

The average travel time is LG/v.
If simulated time is T , on a segment s an entrance frequency

rate is λ(s)
T and the density on a segment is λ(s)

vT , assumed to be
Poisson. If a number of travellers is N , then the density on a
segment is λ(s)

vT
N
N0

where N0 is a number of travellers needed
to simulate an estimate λ(s). Given the Poisson density, a
probability that a random point at a random time on the
segment does not have a traveller at distance within R0 is
exp

(
−λ(s) 2R0

vT
N
N0

)
. We denoted R0 as a safe distance against

Figure 5: Map of segment densities in Grid Paris for the
preferential path algorithm.

Figure 6: Map of segment densities in Grid Paris for the
randomized algorithm.

the virus, for biking R0 = 10m. We write the expression of an
average cumulative exposure time E(N) for a random walk
(traveller):

E(N) =
∑
s∈S

λ(s)`(s)

vN0

(
1− exp

(
−λ(s)2R0

vT

N

N0

))
. (4)

If we want to know the exposure time E12(N) for a single
traveller of the randomized algorithm, when all other travellers
use the preferential paths, we get the expression

E12(N) =
∑
s∈S

λ2(s)`(s)

vN0

(
1− exp

(
−λ1(s)

2R0

vT

N

N0

))
(5)

where λ1(s) is the density of segment s for the preferential
algorithm, and λ2(s) is the density for the randomized al-
gorithm.

The Figures 7 and 8 show the average cumulative exposure
time versus the travelling population in different situations:
when all travellers are on preferential path, when all travellers
are on the isotropic randomized algorithm, and the average
cumulative exposure time when a single traveller is on the
randomized algorithm, and the other are on preferential paths.



We display for a peak traffic period duration of 2 hours, and for
a peak duration of 4 hours. For one day these quantities should
be multiplied by two, since the travellers commute twice a day.
For the traveller speed we have opted for v = 12km per hour,
which is the average speed of bike commuting in Paris.

Figure 7: Simulated average cumulative exposure time in Grid
Paris during a peak time of 2 hours versus total number of
travellers: red: all traveller on preferential paths, blue: all
travellers on randomized algorithm, dashed: one traveller on
randomized algorithm. On x axis we show the number of
commuters.

Figure 8: Simulated average cumulative time in Grid Paris
during a peak time of 4 hours versus total number of travellers:
red: all traveller on preferential path, blue: all travellers on
randomized algorithm, dashed: one traveller on randomized
algorithm. On x axis we show the number of commuters.

B. Simulation on a Voronoi triangulation

We have created a map of 4,000 random points on a
10kmx10km square and connected them through the Delaunay
triangulation. In this simulation the streets are edges of a
triangulation and nodes are intersections. With 4, 000 nodes we
get a total street length of the order of 200 times the diameter
of the map, thus showing a similar street density as Paris street
map. As in the previous simulation we have connected 14

pairs of points, 7 North-South, seven West-East to simulate
the subway network. The bike lane, which was supposed to
follow the subway lines, is made of the path obtained via
shortest path algorithm between the points of each pair.

In the preferential path algorithm we still use the shortest
path algorithm but now we reduce the weight of the edges in
the preferred path by 90%. This is kind of a drastic reduction
but it simulates well the usage of subway where the commuter
takes the path to the closest subway station and then changes
to the subway station closest to his/her destination location.

We have run N0 = 5, 000 pairs of initial point and
destination. Figures 9 and 10 show the histogram of the
segment density loads consequence of the application of the
algorithms. In red the preferential algorithm, in brown the
isotropic walk algorithm, in blue the geo-routing algorithm, in
green the shortest path algorithm. As expected the isotropic
walk algorithm shows the best balance (better look at the
logarithmic scale).

Figure 9: Histogram of segment traffic load in Delaunay Paris.
In red we show the preferential path algorithm, in blue the
randomized algorithm, in gree we show the streets with load.

Figure 10: Histogram of segment densities in Delaunay Paris,
in logarithmic scale. In red we show the preferential path
algorithm, in blue the randomized algorithm.

Figure 11 shows the map of the traffic of street segments
with the preferential path algorithm. In green we show the



streets with load larger than 1 but smaller than 15, in blue,
traffic smaller than 25, in red, smaller than 50, in black, smaller
than 200. The preferential paths are clearly visible and marked
as very busy (black and red) as expected. Figure 12 shows
the map of empty streets (lined in grey) forming a dense
network for the shortest path algorithm, but the picture are
now different, since the segment load are better balanced and
the empty street much less dense. Figure 13 shows the same
data for the isotropic walk path algorithm, since the segment
load are very well balanced and the empty street very seldom.
As expected the empty streets are on the border and the density
balance more in the central part. Figure 14 shows the same
data for the geo-routing path algorithm, since the segment load
are a bit less balanced.

Figure 11: Map of segment densities in Delaunay triangulation
of Paris for the preferential path algorithm.

Figure 12: Map of segment densities in Delaunay Paris for the
shortest path algorithm.

Figure 20 shows the cumulative exposure time experienced
by the travellers in the different routing algorithms during a
peak of 2 hours versus the commuting population size. The
shortest path algorithm provides the smallest exposure because
the average path length is shorter despite the path density is
larger. Indeed the exposure rate discrepancy diminishes when
the commuting population diminishes. But the shortest path

Figure 13: Map of segment densities in Delaunay Paris for the
isotropic walk path algorithm.

Figure 14: Map of segment densities in Delaunay Paris for the
geo-routing path algorithm.

algorithm is too expensive in terms of complexity to answer
to millions of request. The geo-routing and isotropic walk
algorithms show similar performance. Although the isotropic
algorithm benefits from its more balanced street loads at lower
traffic. Figure 15 shows the respective average path length for
each of the algorithms.

Figure 15: Average path length for four algorithms, in km,
from top to bottom: preferential algorithm, shortest path
algorithm, isotropic walk algorithm, geo-routing algorithm.

Since the preferential algorithm shows quite low perform-
ance, we investigate the possibility to multiply the parallel
lanes to the preferential path in order to reduce the exposure



time via a reduced density. The Figure 17 shows the average
exposure time versus the multiplicative factor of the parallel
lanes. It turns out that the load on preferential lanes must be
multiplied by at least factor of ten in order to get closer to the
performance of the isotropic algorithm.

Figure 16: Simulated average cumulative exposure time in
Delaunay Paris during a peak time of 2 hours versus total
number of travellers: red: all traveller on preferential paths,
green: all travellers on shortest path, brown the isotropic walk
algorithm, blue the geo-routing algorithm.

Figure 17: Simulated average cumulative exposure time in
preferential path algorithm. From top to bottom: one lane,
two parallel lanes, three parallel lanes, five parallel lanes, 10
parallel lanes.

C. Single pair simulation

In this section we evaluate the performance of the al-
gorithms when we consider a single pair of an initial point
and a destination point. We have simulated 1,000 travellers
commuting between the two fixed points. The preferential
path and shortest path algorithm are blocked on a single path
because there is a unique solution to the Dijkstra algorithm.
But for the geo-routing algorithm and the isotropic walk
algorithms a stochastic component provides a diversity in
the path choice. This way the two later algorithms offer a

lower exposure thanks to the path diversity. Figures 18, 19
demonstrate the traffic of the segment for the four algorithms:
yellow is for a traffic between 1 and 15 passage, green between
15 and 25, blue between 25 and 50, red between 50 and
200, black above 200. We notice that the path network of
the geo-routing algorithm is more vascular and therefore uses
less segments. Figure 20 shows the cumulative exposure time
of the four algorithms in this situation.

Figure 18: Map of segment densities in Delaunay Paris for the
geo-routing path algorithm on a single pair.

Figure 19: Map of segment densities in Delaunay Paris for the
isotropic walk path algorithm on a single pair.

D. Single destination point or single initial point simulation

In this section we evaluate the performance of the al-
gorithms when we consider a single destination or a single
initial point. We have simulated 4,000 travellers commuting
from or towards this point. The preferential path and shortest
path algorithms indicate the same paths because there is a
unique solution to the Dijkstra algorithm and the solution is
symmetric in both ways. But for the geo-routing algorithm and
the isotropic walk algorithms have a random component and
are asymmetric with respect to the order in the pair made by
the initial point and the destination point. Figures 23, 24 show
the traffic on street segments for the two last algorithms when



Figure 20: Simulated average cumulative exposure time in
Delaunay Paris during a peak time of 2 hours versus total
number of travellers on a single pair initial point and
destination: red: all traveller on preferential paths, green: all
travellers on shortest path, brown the isotropic walk algorithm,
blue the geo-routing algorithm.

converging on the same destination point. Figure 21 shows the
cumulative exposure time of four algorithms in this particular
situation.

Figure 21: Simulated average cumulative exposure time in
Delaunay Paris during a peak time of 2 hours versus total
number of travellers on a single initial point. Red: all traveller
on preferential paths, green: all travellers on shortest path,
brown the isotropic walk algorithm, blue the geo-routing
algorithm.

E. The advanced algorithm over a real network of a city

We have made simulations on real city maps. The interesting
part is when the road maps shows local complication, such as
obstacles, river, lakes, etc. In this case the routing algorithm
may loop for ever in some areas. We have chosen the city of
Königsberg.

In order to cope with looping problems of the algorithm
we used the concept of the so-called accessibility graph, also
used in [6]. Let G = G(V,E) be a graph with vertex set V
and edge set E. The second degree accessibility graph of the

Figure 22: Simulated average cumulative exposure time in
Delaunay Paris during a peak time of 2 hours versus total
number of travellers on a fixed pair of initial point and
destination: brown the isotropic walk algorithm, blue the geo-
routing algorithm.

Figure 23: Map of segment densities in Delaunay Paris for the
geo-routing path algorithm converging on a single destination
point.

graph G ∗ G or G∗2 is the graph whose vertex set is V and
the edge set is E2 such that for (x, y) ∈ V 2, (xy) ∈ E2 if
there exists z ∈ V such that (xz) and (zy) belong to E. In
other words G∗2 is the "two hop" graph of G.

We have computed G∗2, G∗4 and G∗8. If the algorithm on
a path determination loops and eventually fails on G, we run
the algorithm on G∗2. Then, in general, if it fails on G∗2

k

we
run the algorithm on the accessibility graph of the next degree
G∗2

k+1

until the accessibility graph becomes fully connected
graph. When the path is determined one unfold the path until
we get a path on an original graph G.

Figure 26 shows the street density with the geo-routing
algorithm using the accessibility graph option. Figure 27
demonstrates the street density when the source is fixed in the
center of the city. Figure 28, when the source and destination
are both fixed. The performance of the algorithms is estimated
by comparing with the original graph G, where in 95% cases
the algorithm fail due to the complexification of the map, but



Figure 24: Map of segment densities in Delaunay Paris for
the isotropic walk path algorithm converging on a single
destination point.

on the accessibility graph G∗2 39% only of cases fail, on G∗4,
6%, and on G∗8 no fail.

IV. CONCLUSION

The epidemic outbreak of COVID-19 has led to excep-
tional lock-down measures in most countries. Critical situation
happened after lock-downs and travel restrictions [8] in cities
of many countries around the globe. In many cases the
exposure to virus occurs during outdoor excursions in the
city when commuting to work or shopping. A special care is
given when the excursions are made by bike in order to avoid
both, road congestion and public transportation virus exposure.
In some cities such as Paris special preferential biking lanes
has been opened to follow more or less the trajectories of
public transportation. Unfortunately the algorithms of transport
regularisation based on preferential path idea may lead to
increase of the virus exposure. In this work we presented path
selection algorithms generalised from the initial idea presented
in [1] to reduce virus exposure. As the result of numerical
simulations of the algorithms we see that the path reduce
exposure time to the virus by a factor ranging from 3 to 9. The
algorithms are fully distributed and are simple to run. In the
manuscript we performed the algorithm on two different types
of models: grid-like models of cities (Paris grid) and non-grid
networks of real cities like Königsberg.

We believe that mathematical applications of algorithms,
such as Ariadne may help to improve surveillance strategies
for preventing epidemics on a local scale of a city. Furthermore
when specifically adapting such algorithms to the epidemiolo-
gical context of models and data [4], [7], [11] can lead to
development of algorithms with real world applications. As an
outlook of this work we aim to also implement the algorithm
also using the open data [10] of real number of cases in the
city and include this information to the network of the city.
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