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Abstract. We study the problem of reconstructing the template-aligned
mesh for human body estimation from unstructured point cloud data.
Recently proposed approaches for shape matching that rely on Deep Neu-
ral Networks (DNNs) achieve state-of-the-art results with generic point-
wise architectures; but in doing so, they exploit much weaker human
body shape and surface priors with respect to methods that explicitly
model the body surface with 3D templates. We investigate the impact
of adding back such stronger shape priors by proposing a novel dedi-
cated human template matching process, which relies on a point-based,
deep autoencoder architecture. We encode surface smoothness and shape
coherence with a specialized Gaussian Process layer. Furthermore, we en-
force global consistency and improve the generalization capabilities of the
model by introducing an adversarial training phase. The choice of these
elements is grounded on an extensive analysis of DNNs failure modes
in widely used datasets like SURREAL and FAUST. We validate and
evaluate the impact of our novel components on these datasets, showing
a quantitative improvement over state-of-the-art DNN-based methods,
and qualitatively better results.

1 Introduction

Template-based human shape matching is a problem of broad interest in com-
puter vision, for a variety of applications relevant to Augmented and Virtual
Reality, surveillance and 3D media content production. It is relevant to various
tasks such as dense shape alignment or tracking, shape estimation and comple-
tion from sparse or corrupt shape data.

This problem has been addressed with several classic approaches that either
directly find dense correspondence using intrinsic surface embeddings [1–3] or
use human body templates as geometric proxy to guide the matching [4–8].
Both approaches usually involve some form of non-convex optimization that
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Fig. 1. Overview of our Adversarial GP Network.

is susceptible to ambiguities and local minima, and hand-crafted features to
estimate the correspondence.

Aiming for noise and initialization resilience and improvement in feature de-
scription has motivated an avenue of research in learning-based correspondence
approaches to the human shape matching problem. These methods have the
property to automate feature extraction and matching by mining large datasets,
and can estimate correspondences by building automatic feature classifiers with
e.g. random forests [9], or simultaneously learn feature extraction and correspon-
dence using DNNs [10–14].

Many of these learning approaches rely on some form of human a priori knowl-
edge. Most methods propose matching to an explicit shape deformation model,
for which a reduced parameterization is predicted [15–17] or whose mapping to
the data is learned [18, 19] from observations.

Among the most successful approaches of inspiration to this work are those
matching human shapes using an implicit deformation model which is entirely
learned with no manually set components, as applied to humans [20] or generic
objects [21]. By encoding matching to an underlying template as the expres-
sion of a learned global feature in a latent space automatically discovered by an
auto-encoder, the model can be entirely automated and trained end-to-end for
generic matching of two shapes, as opposed to the previously described methods.
As they use point-based DNN architectures [22], these approaches can be ap-
plied to point cloud inputs without any surface consistency. All these properties
afford greater robustness and generalization abilities, and allow this family of
methods to outperform the latter on standard benchmarks. However in this pro-
cess a weaker human shape and consistent surface prior is encoded than previous
approaches, which leads to noisy, and sometimes non-realistic predicted human
shapes, as confirmed by an analysis of the failure cases of these approaches.
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Some of the failures are mitigated using a post-processing step which consists in
optimizing the shape matching features inferred by the DNN in the latent space,
which improves the final result.

In this work, we explore within this family of approaches how local and global
shape priors, commonly not encoded with point-wise architecture, can be reintro-
duced while maintaining the benefits of such an architecture (e.g. PointNet [22]).
We base our approach on a point-based auto-encoder similar to [20], but with
several key differences. To alleviate inference noise, we introduce a Gaussian
Process decoder layer which inherently encodes surface smoothness and surface
point coherence on the shape with lower point dimensionality on the surface,
only to the price of a small pretraining phase. Second, more global consistency
is built in the model by adding fully connected layers at the end of the decoder,
which is made possible by the surface dimensionality reduction previously dis-
cussed. Third, to avoid inferring drastically non human shapes, we introduce
an adversarial training phase inspired by [23] which enforces consistency of hu-
man shape encodings in our latent space and helps to avoid overfitting. With
these improved network characteristics and training procedures, we show that
our approach provides results that are on par or better than state-of-the-art
on the FAUST intra and inter challenges and illustrate the quality gain of our
approach through an exhaustive ablation study illustrating the benefits of these
three contributions.

2 Related Work

There exists a rich literature on registration and reconstruction of 3D data
(see [24, 25] for a survey). Here, we focus our analysis on methods for registering
human body shapes, following the classic distinction between template-free and
template-based methods. We then briefly discuss how Gaussian Processes have
been combined with DNNs in previous work, and the use of adversarial training
in the context of 3D vision.

Template-free methods Correspondences between non-rigid objects can be es-
tablished by defining an intrinsic surface representation, which is invariant to
bending. In the embedding space defined by this representation, the registration
problem boils down to a non-convex optimization one. Examples of intrinsic
representations are Generalized Multi-Dimensional Scaling (GMDS) [1], heat
kernel maps [2], Möbius transformations [3]. Recent work tries to learn such rep-
resentations, and therefore object-to-object correspondences, from data. While
early approaches rely on random forests [9], subsequent ones employ DNNs [10,
11]. For example, Deep Functional Maps [12, 13] combine a deep architecture
with point-wise descriptors [14] to obtain dense correspondences between pairs
of shapes. These methods aim at matching arbitrary shapes. However, when
focusing on particular instances like the human body, one can introduce more
powerful class-specific shape priors.
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Template-based methods When registering noisy and incomplete 3D human body
data, one commonly relies on a predefined 3D body template acting as a strong
shape prior. At registration time, the template surface is deformed in order to
match the data. Many approaches rely on a statistical body model [4, 5] and
define an objective function which is minimized via non-linear least squares [6–
8]. However, these objective functions use hand-crafted error terms and are not
as powerful as data-driven approaches. Recently, the wider availability of huge
datasets of 3D body shapes [7, 26] fostered the development of DNN-based meth-
ods. Mesh Variational Autoencoders [15] learn a latent space for 3D human body
representation, but their input is limited to fixed-topology shapes. LBS-AE [16]
proposes a self-supervised approach for fitting 3D models to point cloud. The
method relies on DNNs to learn a set of Linear Blending Skinning [27] param-
eters. FARM [18] establishes correspondences between shapes by automatically
extracting a set of landmarks and then using functional maps. Deep Hierarchi-
cal Networks [17] learn a 3D human body embedding which can then be fitted
to data, leveraging a set of manually selected landmarks. Basis Point Sets [19]
propose an efficient point cloud encoding, which can then be combined with
DNNs [28] for shape registration and completion tasks.

GP and DNNs Gaussian Processes (GP) are popular in statistical learning for
their generalization capabilities. In 3D vision, Lüthi et al. [29] propose GPMMs,
a morphable model based on GP, with applications to face modeling and med-
ical image analysis. Recently, some studies [30, 31] try to interpret how DNNs
can simulate the learning process of GP. For example, Deep GP [32] focuses on
probabilistic modeling of GP with DNNs, training the network via marginal like-
lihood. In this work, we leverage the interpolation and smoothness capabilities
of GP in the context of 3D surface reconstruction.

Adversarial training After the introduction of Generative Adversarial Networks
(GANs) [33], adversarial training has been widely used in computer vision. In
3D vision, HMR [34] applies adversarial learning to estimate 3D human body
shape and pose from 2D images. CAPE [35] uses it to learn a model of people in
clothing. Fernández Abrevaya et al. [36] and Shamai et al. [37] use adversarial
training to model faces in 3D. Hu et al. [23] compare adversarial and L2-norm
regularization for the task of image registration. To the best of our knowledge,
our work is the first to propose adversarial training as a regularization term in
the context of 3D registration.

In general, our work builds on 3D-CODED [20], which uses a PointNet-
like [22] architecture to extract permutation-invariant point features. However
it applies the point-wise decoders which are independent of each other. Thus we
propose to strengthen the relationship of nearby points by using our GP layer and
MLP layers. AtlasNet2 [38] aims at improving upon 3D-CODED reconstructions
by using a learnable template. However AtlasNet2 results exhibit artifacts similar
to the ones of 3D-CODED in some challenging cases. In order to make the
network predictions more robust, we propose to use adversarial training.
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3 Method

Our approach takes as input an unordered set of n 3D points P ∈ Rn×3 and maps
this set into a deformed instance S ∈ Rres×3 of a reference mesh with a fixed
resolution res. The number n of input points can vary. This to allow for partial or
incomplete shape description as typical with laser scan or depth data. In order to
learn such a mapping we use a point-wise encoder-decoder architecture trained
on standard human body datasets. This architecture presents two innovations
to better enforce shape consistency: first a regularization layer that builds on
Gaussian Process (GP) and second a global adversarial loss. The sections below
detail the different components of our framework.

3.1 Network Architecture

As shown in Figure 1, our architecture encodes points P into a latent shape
representation Zp ∈ R1024 which is then decoded into a deformation vector field
Y defined over a mesh template to produce the shape S. Our objective is to bal-
ance global and local information with shape-wise and point-wise considerations.
To this end, a PointNet [22] like encoder is used as a backbone to extract the
1024-dimension latent shape feature Zp. On the decoder side, we first expect this
global shape feature Zp to predict the deformation of a subset of representative
points on the reference mesh in a point-wise manner. More global considerations
are then applied on this subset of points with both Gaussian Process interpo-
lation and fully connected layers. Furthermore, to better constrain the latent
representation during training, the output vertices of the predicted deformed
reference mesh S are fed into the encoder to verify whether they yield a latent
feature Zs close to the latent feature Zp of the ground truth shape vertices.

Encoder We extract the global feature Zp with a simplified version of Point-
Net [22]. The input points P are first processed by 3 hidden layers of size 64,
128 and 1024, respectively, followed by a max-pooling operator applied to the
resulting point-wise features. Then, two linear layers of size 1024 lead to the
latent space ZP . All layers use batch normalization and ReLU (rectified linear
unit) activation.

Decoder The decoder takes as input the shape feature Zp extracted by the
encoder together with l 3D locations xi of vertices distributed on the reference
mesh. Point-wise decoders with shared weights are first used on the combina-
tions (xi,Zp). These decoders are composed of 3 hidden layers going from size
1027 to 513 and 256. The resulting features are projected into l individual vertex
deformations yi using 2 times hyperbolic tangent activation functions. Follow-
ing point-wise decoders, two computation flows are applied in parallel on the
resulting predicted vertex deformations yi. One goes to GP layers that enforce
local spatial consistency between vertices and the other goes to a fully-connected
MLP layer that enforces a global constraint over vertices. We take the output of
the GP flow as the final deformed instance.
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3.2 Local and Global Spatial Consistency

Gaussian Process Interpolation As mentioned before the decoder part in-
cludes a vertex interpolation technique based on Gaussian Process [39]. To this
aim, we assume here that deformations yi of the reference mesh at vertex lo-
cations xi are, up to a bias ε ∼ N (0, σ), non linear functions yi = f(xi) + ε,
which distributions are jointly Gaussian, with mean and covariance defined by
the kernel k:

k(xi, xj) = γ exp(−‖xi − xj‖2

r
). (1)

Under these assumptions, the joint distribution of l partial vertex observations Y
and an unobserved vertex y∗ over the deformed reference mesh can be expressed
as: [

Y
y∗

]
∼ N

(
0,

[
K(X,X) + σ2I , KT

∗ (x∗,X)
K∗(x∗,X), k(x∗, x∗),

])
(2)

where K(, ) denotes the covariances over the associated vertices xi on the refer-
ence mesh:

K(X,X) =

k(x1, x1) . . . k(x1, xl)
...

. . .
...

k(xl, x1) . . . k(xl, xl)

 , K∗(x∗,X) =
[
k(x∗, x1) . . . k(x∗, xl)

]
.

(3)
The posterior probability P (y∗|Y) can be inferred as a Gaussian distribution
N (m(y∗), var(y∗)) with:

m(y∗) = K∗(K + σ2I)−1Y (4)

var(y∗) = k∗ −K∗(K + σ2I)−1KT
∗ (5)

where, to simplify our notation,K∗ = K(x∗,X),K = K(X,X) and k∗ = k(x∗, x∗).
Taking the mean of this distribution as the predicted value we finally get:

y∗ = K∗(K + σ2I)−1Y. (6)

In practice, to accelerate the GP computation and improve the reconstruc-
tion precision, we apply the above statistical reasoning individually over body
parts instead of the full body. We follow for that purpose [40] and segment the
body topology into 19 small patches, including two patches on the elbow (see
Fig. 1). In addition, we do not consider absolute vertex locations as yi but rel-
ative displacements with respect to the reference mesh instead. Note that we
have finally 3 parameters: γ, r and σ for each body part. Thus we can use cross
validation, more particularly in our case, kernel selection, to tune the GP pa-
rameters before the time-consuming gradient descent optimization during the
neural network training.

In addition, the selected subset of l observation vertices impacts the final
reconstruction of the full mesh. In order to select the most informative vertices
for that purpose, we pre-tune 19 kernels and select the observation vertices using
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10 random meshes from the FAUST training dataset. We start at 10% resolution
of the template, i.e. 689 vertices, and progressively add vertices to minimize the
reconstruction error, finding an optimal value of 861 vertices.

Our network predicts therefore the deformations of this subset of l = 861
vertices, which are then completed by our GP layer. The GP layer consists of
19 body part components that exploit Equation (6) with pre-computed kernel
matrices. As explained before, the vertex of template is deformed by a point-wise
decoder. While this is similar in spirit to [20] and [38], our approach differs in 2
aspects: (i) Instead of considering random points over the mesh surface during
training, our approach focuses on a fixed subset of points – this allows us to
better exploit the local spatial consistency of the reference mesh deformations;
(ii) Instead of directly predicting the deformed template vertices, our point-
wise decoder predicts the deformations (residuals) with respect to the template.
The rationale here is that the residual space is generally easier to learn than the
original coordinate space. In Figure 1, we show the segmented reference mesh and
the 861 selected vertices deformed by the prediction of the point-wise decoder.
Since the prediction is in the same order as the reference mesh, we can directly
map the body part segmentation on the prediction of point-wise decoder.

Fully Connected Layer The previous GP layer enforces local spatial con-
straints between mesh vertices by assuming joint Gaussian distributions that can
be pre-learned from a few meshes. In order to complete this with more global
considerations over the vertices of a shape, we also employ a fully-connected
multi-layer perceptron as another interpolation flow. This MLP takes as input
the l = 861 deformed vertices as predicted by the point-wise decoder. It is com-
posed of a hidden layer of dimension 2048, followed by 2 times hyperbolic tangent
activation functions, and one linear layer to interpolate to the resolution of the
reference mesh, in practice 6890 vertices with the SURREAL synthetic data.

3.3 Training Loss

In order to train our network we define a loss function Lr that accounts for the
3 outputs yielded by the decoder. The point-wise decoder computes the defor-
mation field yi over the subset of l mesh vertices on the reference mesh, while
the GP and MLP layers output the deformed instances in the same resolution
as the reference mesh. Hence:

Lr(Ŷpw,Yl, Ŝgp, Ŝmlp,S) = L(Ŷpw,Yl) + L(Ŝgp,S) + L(Ŝmlp,S) (7)

where L(·, ·) denotes the standard mean-square error, Ŷpw, Ŝgp, Ŝmlp are
the point-wise decoder, GP and MLP layer predictions respectively, Yl is the
ground truth deformation field over the reference mesh reduced to the l vertices
predicted by the point-wise decoder and S is the ground truth deformed instance.
In practice, we remark that the mesh obtained with the MLP layer is often blurry.
However, the associated global constraint in the reconstruction loss appears to
be beneficial in our experiments.
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Adversarial Loss In addition to the loss presented in the previous section,
we investigate in this work the contribution of introducing an adversarial strat-
egy [33] in the proposed framework. While the previous loss function enforces
local and more global spatial consistency, it does not encode knowledge on what
a regular shape should be. Hence artifacts can occur when considering data out-
side the training set, as in Figure 4 with test data. In order to better detect
abnormal outputs, we therefore propose an additional adversarial loss.

Recall that, given an arbitrary input point cloud P, the encoder generates
a latent feature Zp. From this latent feature, the decoder generates a deformed

version, Ŝ, of the reference mesh. In principle, feeding the encoder with this set
Ŝ should yield a latent feature Zŝ(p) statistically similar to Zp. We therefore
express the adversarial loss as:

La(P, Ŝ) = Ep[log(D(Zp)] + Eŝ(p)[log(1−D(Zŝ)] (8)

where D(·) is the discriminator trained to detect abnormal latent features. It
projects the 1024-dimension point feature into 512 and then 256 dimensions with
two hidden layers, and outputs a probability. The two hidden layers are activated
by an ELU (Exponential Linear Unit) function followed by batch normalization;
the output is activated by a sigmoid non linearity. The final loss for our network
training is a combination of Lr and La:

Lt = λ1Lr + λ2La. (9)

The training algorithm proceeds by iteratively updating the encoder-decoder
and the discriminator as depicted below. The protocol followed in practice is
detailed in Section 4.

Algorithm 1: Training Algorithm

Input: Ground truth deformed instances S of the reference mesh
Initialization;
for Training iterations do

1. Sample a mini-batch of point cloud P ∈ S;

2. Compute the reconstruction Ŝ(P);
3. Update D(·) by taking a learning step on loss
La(P ∼ real, Ŝ ∼ fake) (8);

4. Update then encoder and decoder by taking a learning step on
loss Lt(Ŝ ∼ real) (9);

end

4 Experimental Results

In this section, we first describe the datasets and the corresponding evaluation
protocols. We then compare our approach against the state-of-the-art methods
and provide a detailed analysis of our framework.
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4.1 Datasets

We evaluate our framework for reconstructing human body meshes from point
cloud data on the standard SURREAL [26] and FAUST [6] datasets.

The SURREAL dataset is a large-scale synthetic dataset that consists of
textured human body shapes in different 3D poses. We follow the protocol in-
troduced in [20] to generate our training data that consists of 230, 000 meshes.

The FAUST dataset provides 100 training and 200 testing human body scans
of approximately 170000 vertices. They may include noise and holes, typically
missing parts on the feet. The FAUST benchmark defines two challenges: the
one on intra-, the other on inter-subject correspondences. We use the FAUST
dataset only for testing purposes and do not use the provided scans for training.

4.2 Evaluation Protocol

We use the symmetric Chamfer distance between the predicted and ground-
truth human shape to evaluate our framework on the SURREAL validation
dataset. For our experiments on the FAUST dataset, we use the official test
server to measure our accuracy. Throughout our experiments, we use the same
training/test splits as 3D-CODED [20]. We perform a line-search to find the
initial orientation and the initial translation that gives the smallest Chamfer
distance during testing FAUST.

4.3 Implementation Details

We implement our Adversarial GP network in PyTorch and train for 25 epochs
from scratch. In practice, we set λ1 = 10 and λ2 = 0.05. We use the Adam
optimizer with a learning rate of 0.001 for the Discriminator and 0.0005 for
Encoder and Decoder. We set the batch size to 32. We follow 3D-CODED [20]
to add random translation between −3 cm and 3 cm to increase the robustness
during training.

4.4 Comparison with Baselines

We report reconstruction and registration accuracy on the SURREAL [26] and
FAUST [6] datasets and compare our results to the state-of-the-art results of [20]
and [38] in Table 1.

We further use the following baselines and versions of our approach in the
evaluation:

– MLP : A multi-layer perceptron with 2 layers as described in Section 3.2
operating on the output deformations of the point-wise decoder.

– GP : Gaussian Process layer as described in Section 3.2 operating on the
output deformations of the point-wise decoder.

– Adversarial GP : Adversarial network coupled with the Gaussian process
and MLP layers that operates on the output deformations of the point-wise
decoder (see Section 3.3).
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Method SURREAL-Chamfer FAUST-inter

3D-CODED[20] 1.33 2.88
AtlasNet2-Deformation[38] 3D 1.17 2.76
AtlasNet2-Points 3D 1.11 3.05
AtlasNet2-Deformation 10D 1.01 2.77
AtlasNet2-Points 10D 1.01 2.85

Ours(MLP) 0.54 2.94
Ours(GP) 0.35 2.73
Ours(Adversarial GP) 0.50 2.76

Table 1. Results on the SURREAL validation set for human body reconstruction and
on the FAUST-inter correspondence challenge. As in [38, 20], we report the symmet-
ric Chamfer distance (×10−3) for SURREAL validation. For FAUST, we report the
Euclidean correspondence error in (cm). In FAUST, we apply the same refinement
technique as in 3D-CODED to our MLP, GP and Adversarial GP.

We further compare our results to [38, 20] qualitatively to demonstrate the
effectiveness of our method in Figure 3 and Figure 4.

Reconstruction. We report our surface reconstruction results in comparison
to [20, 38] on the SURREAL and FAUST datasets in Table 1. While provid-
ing accurate reconstructions, [20] relies on point-to-point distance minimization,
therefore lacking global context. To remedy this and encode global context, we
apply an MLP on point-wise predictions. This would help encode global con-
text, but in return, would ignore local dependencies. Our GP layer, on the other
hand, aims at finding a local context on each body part. As can be seen in
Table 1, the GP layer yields the most accurate reconstruction results on the
SURREAL validation set and in the FAUST Inter-Subject challenge. In Figure
3, we also show qualitative results on SURREAL validation of the variants of
our approach (MLP, GP, Adversarial GP) in comparison to 3D-CODED [20]
and AtlasNet2 [38]. Our method yields better reconstruction accuracy than [20]
and [38] and provides realistic surface reconstructions

Registration. Our output mesh is reconstructed from an input point cloud and
is aligned with a template shape. Therefore, our method could further compute
registration to the human body by finding the closest point on the reconstruction.
We evaluate our method on the FAUST [6] challenge, that includes 100-pairs
of shapes to be matched. In FAUST, the input is real scan data in different
orientations and translations and scans typically include noise and holes. In
Table 2, we report the results of all published studies to date on the FAUST
challenge. We do not include the results of DHNN as it requires manual selection
of additional landmark points which is used to guide the optimization.
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Method Intra (cm) Inter (cm)

3D-CODED[20] 1.985 2.878
Stitched puppets[8] 1.568 3.126
LBS-AE[16] 2.161 4.08
FARM[18] 2.810 4.123
BPS[19] 2.327 4.529
FMNet[13] 2.436 4.826
Convex-Opt[41] 4.860 8.304

Our GP 2.349 2.734
Our Adversarial GP 1.904 2.759

Table 2. Results for the FAUST intra- and inter-subject challenges for human body
registration.

Importance of Adversarial Training. Although our GP network provides
accurate reconstruction and registration results, we have observed in practice
that it sometimes results in artifacts, as can be seen in a few cases in Figure 4.
Our adversarial GP, on the other hand, is able to correct these artifacts and
results in physically plausible human shape reconstructions, as demonstrated in
Figure 4. This is in part due to the fact that adversarial training prevents over-
fitting to the SURREAL training data and achieves good generalization across
datasets. We have observed that using the MLP network along with the GP layer
further regularizes the training of our Adversarial GP framework. Therefore, in
practice, we also employ an MLP during training of our Adversarial GP.

Method SURREAL-Chamfer FAUST-intra FAUST-inter

Adv+GP (w.o. MLP) 0.52 2.585 2.913
MLP+GP (w.o. Adv) 0.37 2.042 2.858
MLP+GP+L2 weight decay 5.40 6.068 7.58
MLP+GP+Dropout 0.38 2.236 2.984

Adv+MLP+GP (Adv GP) 0.50 1.904 2.759

Table 3. Numeric comparisons. We report the symmetric Chamfer distance (×10−3) on
the SURREAL validation dataset and Euclidean correspondence error (cm) in FAUST
-intra/-inter challenges for the variants of our model. We further compare adversarial
training to L2 weight decay (regularization term λ = 5× 10−4) and dropout. See more
qualitative results in the supplementary material.

In Table 3, we further analyze the influence of adversarial loss on the recon-
struction and registration. Using an adversarial loss yields more accurate results
on the FAUST dataset. While resulting in lower accuracy on the SURREAL
dataset, adversarial training helps to prevent overfitting by ensuring that the
distributions of the input data and reconstruction are similar. In Figure 4, we
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(a) input scan (b) MLP (c) MLP+Laplace (d) GP (e) Adv GP

Fig. 2. Smoothness of GP. From left to right, (a) input scan, reconstruction in standard
resolution of (b) MLP, (c) MLP smoothened by the Laplacian operator, (d) GP, and
(e) Adversarial GP.

demonstrate that adversarial training in practice results in physically more plau-
sible and realistic shapes. To demonstrate the effectiveness of adversarial training
as a regularization mechanism, we further compare it to standard regularization
techniques of L2-weight decay and dropout in Table 3.

Influence of Gaussian Kernel Regularization. In Figure 2, we present
qualitative reconstruction results obtained with different decoders to further
support our quantitative analysis in Table 1. While the MLP decoder results
in a blurry shape, Laplacian denoising results in a shrinkage in the volume,
especially in the limbs. GP and Adversarial GP, on the other hand, provide
high-fidelity reconstructions.

Method 3D-CODED AtlasNet2 GP Adversarial GP

without refinement 6.29 4.72 4.71 4.964
with refinement 3.048 - 2.734 2.873
with refinement+ high-res template 2.878 2.76 2.815 2.759

Table 4. Comparison to 3D-CODED [20] and AtlasNet2 [38] with and without re-
finement. We report Euclidean correspondence errors on the FAUST-inter challenge
in (cm). The refinement is based on optimizing the global feature to minimize the
symmetric Chamfer distance. We follow [20] to register the scan to a high-resolution
template.

Refinement. During evaluation, we follow the same refinement strategy of 3D-
CODED [20], that minimizes the Chamfer distance between reconstructions and
inputs. Consequently, a nearest neighbor search is performed to find correspon-
dences and match shapes. To highlight the benefit of refinement, we show in
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(a) [20]
3.86/15.15

(b) [38]
3.03/7.99

(c) MLP
2.73/7.11

(d) GP
1.93/5.15

(e) Adv GP

2.36/7.76

Fig. 3. Qualitative evaluation for human shape reconstruction. From left to right, re-
construction in standard resolution of (a) 3D-CODED [20], (b) AtlasNet2 [38], (c)
Our MLP, (d) our GP and (e) our Adversarial GP. And we report the heatmaps and
mean/max Euclidean reconstruction error in (cm) for this instance.

Table 4 our results in comparison to [20] and [38] with and without refinement.
Refinement results in better accuracy for our method, as expected, and our ap-
proach provides better results in comparison to [20] and [38] in all cases. When
we use a high resolution template for the nearest neighbor step, we gain an ad-
ditional accuracy improvement for Adversarial GP, but not for GP. The result
could not be always improved by using a high resolution template due to the fact
that the FAUST-inter challenge computes the Euclidean distance between the
prediction and sparse landmarks. Since the Euclidean distance is more tolerant
of the artifacts in Figure 4 than geodesic distance, Adversarial GP can not make
great improvement in FAUST challenge.

5 Conclusion

We have presented an encoder-decoder neural network architecture to recon-
struct human body meshes from point cloud data, by learning dense human
body correspondences. Our architecture enforces surface consistency with a spe-
cialized Gaussian process layer. Our adversarial training framework allows for
generalization across datasets and reconstructs high-fidelity human meshes. Fu-
ture work will apply the proposed framework to problems like motion sequence
alignment and tracking.
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(a) scan (b) [20] (c) [38] (d) MLP (e) GP (f) Adv GP

Fig. 4. Challenging cases in FAUST. From left to right, (a) input scan, reconstruction
in high resolution of (b) 3D-CODED [20], (c) AtlasNet2 [38], (d) Our MLP, (e) our
GP and (f) our Adversarial GP. We highlight the failure cases with red box.
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