Y. Abboud, A. Boyer, and A. Brun, Predict the emer-1907 gence: Application to competencies in job offers, Tools with, 1908.

, IEEE 27th International Con-1909 ference on, pp.612-619, 2015.

Y. Abboud, A. Boyer, and A. Brun, CCPM: A Scal-1911 able and Noise-Resistant Closed Contiguous Sequential Patterns, 2017.

C. C. Aggarwal, Y. Li, J. Wang, W. , and J. , Frequent 1916 pattern mining with uncertain data, Proceedings of the 15th, 2009.

, ACM SIGKDD international conference on Knowledge discovery 1918 and data mining, pp.29-38

C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. Zaki, , 2007.

, Xproj: a framework for projected structural clustering of xml doc-1921 uments, Proceedings of the 13th ACM SIGKDD international 1922 conference on Knowledge discovery and data mining, pp.46-1923

R. Agrawal, T. Imieli?ski, and A. Swami, Mining as-1925 sociation rules between sets of items in large databases, Acm 1926 sigmod record, vol.22, pp.207-216, 1993.

R. Agrawal and R. Srikant, Mining sequential patterns, 1995.

, Proceedings of the Eleventh Interna-1929 tional Conference on, pp.3-14, 1995.

J. Ayres, J. Flannick, J. Gehrke, Y. , and T. , Sequential 1931 pattern mining using a bitmap representation, Proceedings of 1932 the Eighth ACM SIGKDD International Conference on Knowledge 1933 Discovery and Data Mining, KDD '02, pp.429-435, 1934.

N. Béchet, P. Cellier, T. Charnois, and B. Crémilleux, , 2015.

, Sequence mining under multiple constraints, Proceedings of 1937 the 30th Annual ACM Symposium on Applied Computing, pp.1938-908

J. Chen, Contiguous item sequential pattern mining using 1940 updown tree, Intelligent Data Analysis, vol.12, issue.1, pp.25-49, 2008.

J. Chen and T. Cook, Mining contiguous sequential 1942 patterns from web logs, Proceedings of the 16th International 1943 Conference on World Wide Web, WWW '07, pp.1177-1178, 1944.

Y. Djenouri, A. Belhadi, and P. Fournier-viger, Ex-1946 tracting useful knowledge from event logs: A frequent itemset 1947 mining approach. Knowledge-Based Systems, 2017.

J. Fischer, V. Heun, and S. Kramer, Optimal string min-1949 ing under frequency constraints, PKDD, vol.4213, pp.1950-139, 2006.

P. Fournier-viger, A. Gomariz, M. Campos, T. , and R. , Fast vertical mining of sequential patterns using co-1953 occurrence information, Pacific-Asia Conference on Knowledge 1954 Discovery and Data Mining, pp.40-52, 2014.

P. Fournier-viger, A. Gomariz, M. ?ebek, and M. Hlosta, Vgen: fast vertical mining of sequential generator pat-1957 terns, International Conference on Data Warehousing, 1956.

, Knowledge Discovery, pp.476-488

P. Fournier-viger, R. Nkambou, and E. M. Nguifo, , 2008.

, A knowledge discovery framework for learning task models from 1961 user interactions in intelligent tutoring systems, Mexican In-1962 ternational Conference on Artificial Intelligence, pp.765-778

. Springer,

P. Fournier-viger, C. Wu, A. Gomariz, and V. S. Tseng, Vmsp: Efficient vertical mining of maximal sequential 1966 patterns, Canadian Conference on Artificial Intelligence, pp.1967-83, 1965.

F. Fumarola, P. F. Lanotte, M. Ceci, and D. Malerba, , 2016.

, Clofast: closed sequential pattern mining using sparse and vertical 1970 id-lists, Knowledge and Information Systems, vol.48, issue.2, pp.429-463

J. Fürnkranz, A study using n-gram features for text cat-1972 egorization. Austrian Research Institute for Artifical Intelligence, vol.3, pp.1-10, 1973.

C. Gao, J. Wang, Y. He, and L. Zhou, Efficient min-1975 ing of frequent sequence generators, Proceedings of the 17th 1976 international conference on World Wide Web, pp.1051-1052, 2008.

S. García, J. Luengo, and F. Herrera, Data preprocess-1979 ing in data mining, 2015.

R. A. García-hernández and J. F. Martínez-trinidad, , 1981.

J. A. Carrasco-ochoa, A new algorithm for fast discov-1982 ery of maximal sequential patterns in a document collection, 1983.

. Cicling, , pp.514-523

M. N. Garofalakis, R. Rastogi, and K. Shim, SPIRIT: 1985 Sequential pattern mining with regular expression constraints, Proceedings of the 25th International Conference on Very Large, 1986.

, Data Bases, VLDB '99, pp.223-234

A. Gomariz, M. Campos, R. Marin, and B. Goethals, , 2013.

, Clasp: an efficient algorithm for mining frequent closed sequences

, Pacific-Asia Conference on Knowledge Discovery and Data, 1992.

. Mining, , pp.50-61

R. Grossi, C. S. Iliopoulos, C. Liu, N. Pisanti, and S. P. Pissis, , 1994.

A. Retha, G. Rosone, F. Vayani, and L. Versari, On-line 1995 pattern matching on similar texts, LIPIcs-Leibniz International 1996 Proceedings in Informatics, vol.78, 1997.

M. Hahsler and R. Karpienko, Visualizing associa-1999 tion rules in hierarchical groups, Journal of Business Economics, vol.87, issue.3, pp.317-335, 2000.

J. Han, J. Pei, B. Mortazavi-asl, Q. Chen, and U. Dayal, , 2002.

M. Hsu, Freespan: frequent pattern-projected sequen-2003 tial pattern mining, Proceedings of the sixth ACM SIGKDD in-2004 ternational conference on Knowledge discovery and data mining, pp.355-359, 2000.

J. Han, J. Pei, B. Mortazavi-asl, H. Pinto, Q. Chen et al., , 2007.

U. Hsu and M. , Prefixspan: Mining sequential patterns ef-2008 ficiently by prefix-projected pattern growth, Proceedings of the 2009 17th international Conference on Data Engineering, pp.215-2010, 2001.

Y. Hirate and H. Yamana, Generalized sequential pat-2012 tern mining with item intervals, JCP, vol.1, issue.3, pp.51-60, 2006.

J. Ho, L. Lukov, and S. Chawla, Sequential pattern 2014 mining with constraints on large protein databases, Proceed-2015 ings of the 12th International Conference on Management of Data 2016 (COMAD), pp.89-100, 2005.

T. H. Kang, J. S. Yoo, and H. Y. Kim, Mining fre-2018 quent contiguous sequence patterns in biological sequences, IEEE 7th International Symposium on BioInformatics and 2020, 2007.

. Bioengineering, , pp.723-728

M. Karim, M. Rashid, B. Jeong, and H. Choi, , 2012.

, An efficient approach to mining maximal contiguous frequent pat-2023 terns from large dna sequence databases, Genomics & informatics, vol.10, issue.1, pp.51-57, 2024.

A. Kemmar, S. Loudni, Y. Lebbah, and P. Boizumault, , p.2026

T. Charnois, Prefix-projection global constraint for sequen-2027 tial pattern mining, International Conference on Principles and 2028 Practice of Constraint Programming, p.2029, 2015.

B. Le, H. Duong, T. Truong, and P. Fournier-viger, , 2017.

. Fclosm, fgensm: two efficient algorithms for mining frequent 2031 closed and generator sequences using the local pruning strategy

, Knowledge and Information Systems, pp.1-37

C. Li and J. Wang, Efficiently mining closed subse-2034 quences with gap constraints, pp.313-322, 2008.

H. Li, N. Zhang, J. Zhu, Y. Wang, and H. Cao, Proba-2036 bilistic frequent itemset mining over uncertain data streams, 2018.

V. C. Liao, C. Chen, and M. , DFSP: a depth-first 2039 spelling algorithm for sequential pattern mining of biological se-2040 quences, Knowledge and information systems, vol.38, issue.3, p.623, 2014.

H. Liu, L. Wang, Z. Liu, P. Zhao, and X. Wu, Efficient 2042 pattern matching with periodical wildcards in uncertain sequences, vol.22, pp.829-842, 2018.

J. Liu, S. Paulsen, W. Wang, A. Nobel, and J. Prins, , 2005.

, Mining approximate frequent itemsets from noisy data, p.2046

. Mining, Fifth IEEE International Conference on, pp.4-2047

C. Luo and S. M. Chung, Efficient mining of maximal 2049 sequential patterns using multiple samples, Proceedings of the 2050 2005 SIAM International Conference on Data Mining, pp.415-2051, 2005.

H. Mannila, H. Toivonen, and A. Verkamo, Dis-2053 covery of frequent episodes in event sequences. Data Mining and, Knowledge Discovery, vol.1, issue.3, pp.259-289, 1997.

T. Matsui, T. Uno, J. Umemori, and T. Koide, A New 2056 Approach to String Pattern Mining with Approximate Match, pp.2057-110, 2013.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Dis-2059 covering frequent closed itemsets for association rules, Pro-2060 ceedings of the 7th International Conference on Database Theory, p.2061, 1999.

, ICDT '99, pp.398-416

J. Pei, J. Han, and R. Mao, CLOSET: An efficient 2063 algorithm for mining frequent closed itemsets, ACM SIGMOD 2064 workshop on research issues in data mining and knowledge dis-2065 covery, vol.4, pp.21-30, 2000.

J. Pei, J. Han, W. , and W. , Constraint-based sequen-2067 tial pattern mining: the pattern-growth methods, Journal of Intel-2068 ligent Information Systems, vol.28, issue.2, pp.133-160, 2007.

A. Y. Rodríguez-gonzález, F. Lezama, and C. A. Iglesias-alvarez, , p.2070

J. F. Martínez-trinidad, J. A. Carrasco-ochoa, and E. M. De-cote, Closed frequent similar pattern mining: Reducing the 2072 number of frequent similar patterns without information loss, p.2071, 2017.

R. Srikant and R. Agrawal, Mining sequential pat-2075 terns: Generalizations and performance improvements, Advances 2076 in Database TechnologyEDBT'96, pp.1-17, 1996.

J. Wang and J. Han, BIDE: Efficient mining of frequent 2078 closed sequences, Proceedings of the 20th International Con-2079 ference on Data Engineering, ICDE '04, p.2080, 2004.

U. Dc,

J. Wang, J. Han, P. , and J. , CLOSET+: Searching 2082 for the best strategies for mining frequent closed itemsets, Pro-2083 ceedings of the Ninth ACM SIGKDD International Conference on 2084, 2003.

, Knowledge Discovery and Data Mining, KDD '03, vol.245, pp.236-2085

X. Wu, X. Zhu, Y. He, and A. N. Arslan, Pmbc: Pat-2087 tern mining from biological sequences with wildcard constraints, 2013.

, Computers in biology and medicine, vol.43, issue.5, pp.481-492

F. Xie, X. Wu, and X. Zhu, Efficient sequential pattern 2090 mining with wildcards for keyphrase extraction, p.2091, 2017.

, Systems, vol.115, pp.27-39

X. Yan, J. Han, A. , and R. , Clospan: Mining: 2093 Closed sequential patterns in large datasets, Proceedings of the 2094 2003 SIAM international conference on data mining, pp.166-2095, 2003.

J. Yang, W. Wang, P. S. Yu, and J. Han, Mining long 2097 sequential patterns in a noisy environment, Proceedings of the 2098 2002 ACM SIGMOD international conference on Management of 2099 data, pp.406-417, 2002.

S. Yi, T. Zhao, Y. Zhang, S. Ma, C. et al., An 2101 effective algorithm for mining sequential generators, Procedia En-2102 gineering, vol.15, pp.3653-3657, 2011.

U. Yun and K. H. Ryu, Approximate weighted frequent 2104 pattern mining with/without noisy environments. Knowledge-2105 Based Systems, vol.24, pp.73-82, 2011.

M. J. Zaki, Sequence mining in categorical domains: In-2107 corporating constraints, Proceedings of the Ninth International 2108 Conference on Information and Knowledge Management, CIKM 2109 '00, pp.422-429, 2000.

M. J. Zaki, SPADE: An efficient algorithm for mining 2111 frequent sequences, Machine learning, vol.42, issue.1, pp.31-60, 2001.

M. J. Zaki and C. Hsiao, CHARM: An efficient algo-2113 rithm for closed itemset mining, Proceedings of the 2002 SIAM 2114 international conference on data mining, pp.457-473, 2002.

J. Zhang, Y. Wang, Y. , and D. , CCSpan: Mining 2116 closed contiguous sequential patterns. Knowledge-Based Systems, vol.89, pp.1-13, 2015.

M. Zhang, B. Kao, D. W. Cheung, and K. Y. Yip, , 2007.

, Mining periodic patterns with gap requirement from sequences

, ACM Transactions on Knowledge Discovery from Data (TKDD), vol.1, issue.2, p.7, 2121.