Isotopic tiling theory for hyperbolic surfaces - Archive ouverte HAL Access content directly
Journal Articles Geometriae Dedicata Year : 2020

Isotopic tiling theory for hyperbolic surfaces

(1) , (2)
1
2

Abstract

In this paper, we develop the mathematical tools needed to explore isotopy classes of tilings on hyperbolic surfaces of finite genus, possibly nonori-entable, with boundary, and punctured. More specifically, we generalize results on Delaney-Dress combinatorial tiling theory using an extension of mapping class groups to orbifolds, in turn using this to study tilings of covering spaces of orbifolds. Moreover, we study finite subgroups of these mapping class groups. Our results can be used to extend the Delaney-Dress combinatorial encoding of a tiling to yield a finite symbol encoding the complexity of an isotopy class of tilings. The results of this paper provide the basis for a complete and un-ambiguous enumeration of isotopically distinct tilings of hyperbolic surfaces.
Vignette du fichier
gyroid.1.22222_54.61_1.png (666.86 Ko) Télécharger le fichier Fichier principal
Vignette du fichier
isotopic_tiling_theory.pdf (4.16 Mo) Télécharger le fichier
Format : Figure, Image
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02981001 , version 1 (27-10-2020)

Identifiers

Cite

Benedikt Kolbe, Myfanwy Evans. Isotopic tiling theory for hyperbolic surfaces. Geometriae Dedicata, 2020, ⟨10.1007/s10711-020-00554-2⟩. ⟨hal-02981001⟩
54 View
100 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More