
HAL Id: hal-02981135
https://inria.hal.science/hal-02981135

Submitted on 27 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reachable sets for a 3D accidentally symmetric molecule
Ugo Boscain, Eugenio Pozzoli, Mario Sigalotti

To cite this version:
Ugo Boscain, Eugenio Pozzoli, Mario Sigalotti. Reachable sets for a 3D accidentally symmetric
molecule. 21st IFAC World Congress, Jul 2020, Berlin / Virtual, Germany. �hal-02981135�

https://inria.hal.science/hal-02981135
https://hal.archives-ouvertes.fr


Reachable sets for a 3D accidentally
symmetric molecule ?

U. Boscain ∗ E. Pozzoli ∗∗ M. Sigalotti ∗∗
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Abstract: In this paper we study the controllability properties of the quantum rotational
dynamics of a 3D symmetric molecule, with electric dipole moment not collinear to the symmetry
axis of the molecule (that is, an accidentally symmetric-top). We control the dynamics with
three orthogonally polarized electric fields. When the dipole has a nonzero component along the
symmetry axis, it is known that the dynamics is approximately controllable. We focus here our
attention to the case where the dipole moment and the symmetry axis are orthogonal (that is,
an orthogonal accidentally symmetric-top), providing a description of the reachable sets.

Keywords: Bilinear control, controllability, distributed-parameter systems, partial differential
equations, quantum angular momentum, reachable states, Schrödinger equation.

1. INTRODUCTION

Rotational dynamics of molecules plays a relevant role
in quantum physics and chemistry, both from a theo-
retical and an experimental viewpoint (Biedenharn and
Louck (1981); Varshalovich et al. (1988); Cook and Gordy
(1984)).

The controllability properties of the rotational molecular
dynamics is also important in several engineering appli-
cations, starting from well-established protocols such as
enantio- and state- selectivity in chiral molecules (Aver-
bukh et al. (2018); Giesen et al. (2019)), and going forward
to new applications in quantum information (Yu et al.
(2019)). For a general overview about molecular dynamics
and controllability, see, for instance, Koch et al. (2019).

In this paper, we focus our attention on some controlla-
bility properties of the Schrödinger equation for a rotat-
ing symmetric-top molecule, driven by three orthogonally
polarized electric fields. The control of the Schrödinger
equation has attracted substantial interest in the last 15
years. For the finite-dimensional case, see, D’Alessandro
(2008); Altafini and Ticozzi (2012) and references therein.
For the control of the Schrödinger equation as a PDE see,
for instance, Mirrahimi and Rouchon (2004); Beauchard
and Coron (2006); Chambrion et al. (2009); Nersesyan
(2010); Boscain et al. (2012, 2014, 2015, 2019); Caponigro
and Sigalotti (2018)). In particular, the control of the
quantum angular momentum has been studied in Boscain
et al. (2012) for a planar molecule, in Boscain et al. (2014)
for a linear 3D molecule.
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programme under the Marie Sklodowska-Curie grant agreement no.
765267 (QuSCo). Also it was supported by the ANR projects SRGI
ANR-15-CE40-0018 and Quaco ANR-17-CE40-0007-01.

In Boscain et al. (2019), the controllability of a symmetric-
top, driven by three orthogonally polarized electric fields,
is characterized in terms of the dipole moment position
fixed inside the molecule: if the dipole is either (i) collinear
or (ii) orthogonal to the symmetry axis, controllability
is proved to fail, since two different symmetries arise in
the Schrödinger equation; if (iii) the dipole is neither
collinear nor orthogonal to the symmetry axis, then ap-
proximate controllability is proved to hold using the block-
wise Galerkin control condition, introduced in Boscain
et al. (2019), and recalled here in Section 2, Definition 4.

Here, we describe and explain how to compute the reach-
able sets in case (ii), i.e., when the dipole is orthogonal
to the symmetry axis of the molecule, that is, we find
the invariant subspaces of the ambient Hilbert space and
we apply the Galerkin control condition to prove that the
Schrödinger equation is approximate controllable on those
invariant subspaces.

Notice that, while the non-controllability of case (i) is
somehow expected since the corresponding classical sys-
tem is not controllable, the non-controllability of case (ii)
is more surprising since the corresponding classical system
is controllable. This is due to the fact that in case (i) there
is a classical symmetry which is also a quantum one, while
in case (ii) the quantum symmetry does not correspond to
any classical one (Boscain et al. (2019)).

1.1 Structure of the paper

The paper is organized as follows: in Section 2 we recall
the controllability and tracking results about the abstract
multi-imput Schrödinger equation (Boscain et al. (2019)),
in particular the block-wise Galerkin control condition
(Definition 4) and the tracking Theorem 1; in Section 3
we formulate the problem of controlling the rotational



Fig. 1. Inertia ellipsoid of a symmetric-top with dipole
δ orthogonal to the symmetry axis, controlled
through three polarized electric fields in the directions
e1, e2, e3 of a fixed orthogonal frame.

dynamics of a symmetric-top molecule; in Section 4 we
describe the reachable sets of our problem (Theorem 3).

2. CONTROLLABILITY OF THE MULTI-INPUT
SCHRÖDINGER EQUATION

Let l ∈ N, a > 0, and U := [−a, a]l. Let H be an infinite-
dimensional Hilbert space with scalar product 〈·, ·〉 (linear
in the first entry and conjugate linear in the second),
H,B1, . . . , Bl be (possibly unbounded) self-adjoint oper-
ators on H, with domains D(H), D(B1), . . . , D(Bl). We
consider the controlled Schrödinger equation

i
dψ(t)

dt
= (H +

l∑
j=1

uj(t)Bj)ψ(t), ψ(t) ∈ H, (1)

where u(t) ∈ U .

Definition 1. • We say that H has the property (A1) if
H has discrete spectrum with infinitely many distinct
eigenvalues (possibly degenerate).
Denote by B a Hilbert basis (φk)k∈N of H made
of eigenvectors of H associated with the family of
eigenvalues (λk)k∈N and let L be the set of finite linear
combination of eigenstates, that is,

L = ∪k∈Nspan{φ1, . . . , φk}.
• We say that (H,B1, . . . , Bl,B) has the property (A2)

if φk ∈ D(Bj) for every k ∈ N, j = 1, . . . , l.
• We say that (H,B1, . . . , Bl,B) has the property (A3)

if

H +

l∑
j=1

ujBj : L → H

is essentially self-adjoint for every u ∈ U .
• We say that (H,B1, . . . , Bl,B) has the property (A)

if H has the property (A1) and (H,B1, . . . , Bl,B) the
properties (A2) and (A3).

If (H,B1, . . . , Bl,B) has the property (A) then, for every

(u1, . . . , ul) ∈ U , H +
∑l
j=1 ujBj generates a subgroup

e
−it(H+

∑l

j=1
ujBj) of the group of unitary operators U(H).

It is therefore possible to define the propagator Γu(T ) at
time T of system (1) associated with a l-uple of piecewise
constant controls u(·) = (u1(·), . . . , ul(·)) by composi-

tion of flows of the type e
−it(H+

∑l

j=1
ujBj). If, moreover,

B1, . . . , Bl are bounded operators then the definition can
be extended by continuity to every L∞ control law (see
Ball et al. (1982)).

Denote by S := {ψ ∈ H | ||ψ|| = 1} the unit sphere of H.
Let (H,B1, . . . , Bl,B) have the property (A).

Definition 2. • Given ψ0, ψ1 ∈ S, we say that ψ1 is
reachable from ψ0 if there exist a time T > 0 and
a piecewise constant control function u : [0, T ] → U
such that ψ1 = Γu(T )(ψ0). We define

Reach(ψ0) = {ψ1 ∈ S | ψ1 is reachable from ψ0}.
• We say that (1) is approximately controllable if for

every ψ0 ∈ S the set Reach(ψ0) is dense in S.

We introduce the notion of module-tracker (m-tracker, for
brevity) that is, a system for which any given curve can
be tracked up to (relative) phases. The identification up
to phases of elements of H in the basis B = (φk)k∈N can
be accomplished by the projection

M : ψ 7→
∑
k∈N
|〈φk, ψ〉|φk.

Definition 3. Let (H,B1, . . . , Bl,B) have the property
(A). We say that system (1) is an m-tracker if, for every

r ∈ N, ψ1, . . . , ψr in H, Γ̂ : [0, T ] → U(H) continuous

with Γ̂(0) equal to the identity operator, and ε > 0,
there exists an invertible increasing continuous function
τ : [0, T ] → [0, Tτ ] and a piecewise constant control
u : [0, Tτ ]→ U such that

‖M(Γ̂(t)ψk)−M(Γ(τ(t))uψk)‖ < ε, k = 1, . . . , r

for every t ∈ [0, Tτ ].

Remark 1. We recall that if system (1) is an m-tracker,
then it is also approximately controllable, as noticed in
(Boscain et al., 2014, Remark 2.9).

Let us assume now that there exists a self-adjoint (possibly
unbounded) operator J , with domain D(J), such that

• L ⊂ D(J),
• J has discrete spectrum and infinitely many distinct

eigenvalues (possibly degenerate),
• J(L) ⊂ D(H) and J commutes with H on L.

Then, there exists an Hilbert basis, which we still denote
by B, made by eigenvectors of H and J at the same time,
that is, if φjk ∈ B, then Hφjk = λjkφ

j
k and Jφjk = µjφjk.

Denote by mj the multiplicity of the eigenvalue µj , then

we can label the basis B as (φjk | j ∈ N, k = 1, . . . ,mj).

Consider Hj := span{φjk | k = 1, . . . ,mj}, j ∈ N, which
are the eigenspaces of the operator J , and let us denote by

Σj,j+1 = {|λl
′

k′ − λlk| | l, l′ ∈ {j, j + 1},k′ = 0, . . . ,ml′ ,

k = 0, . . . ,ml}
the spectral gaps in the subspace Hj ⊕ Hj+1. Moreover,
for every j ∈ N, define the orthogonal projections

Πj,j+1 : H 3 ψ 7→
∑

l=j,j+1, k=1,...,ml

〈φlk, ψ〉φlk ∈ H,

Π0,j+1 : H 3 ψ 7→
∑

l=0,...,j+1, k=1,...,ml

〈φlk, ψ〉φlk ∈ H,

and we define B
(j,j+1)
i := Πj,j+1BiΠj,j+1, and B

(j+1)
i :=

Π0,j+1BiΠ0,j+1, for every i = 1, . . . , l.



Next we consider the spectral gap excitation, given by the
operator

Eσ(M) =

(M(l,k),(l′,k′)δσ,|λl′
k′
−λl

k
|)(l,k),(l′,k′)=(j,1),...,(j+1,mj+1)

defined for σ ≥ 0, every j ∈ N and every (mj + mj+1) ×
(mj +mj+1) matrix M , where δl,k is the Kronecker delta.
We are implicitly using the lexicographic correspondence
between the sets {(l, k) | l = j, j + 1, k = 1, . . . ,ml} and
{1, . . . ,mj +mj+1} to label the matrix M .

Denote by u(j, j + 1) the Lie algebra associated with the
Lie group of the unitary operators on the space Hj⊕Hj+1,
that is, u(j, j + 1) := u(mj +mj+1), and define

Ξ0
j,j+1 = {(σ, i) ∈ Σj,j+1 × {1, . . . , l} | ∃M ∈ u(j, j + 1) s.t.

Eσ(iB
(h)
i ) =

 0 0 0
0 M 0
0 0 0

 for every h > j },

(2)

and

Ξ1
j,j+1 = {(σ, i) ∈ Σj,j+1 × {1, . . . , l} | ∃M ∈ u(j, j + 1) s.t.

Eσ(iB
(h)
i ) =

 ? 0 ?
0 M 0
? 0 ?

 for every h > j },

(3)

where M is in the block j, j + 1. In the set Ξ1
j,j+1 some

spectral gaps resonances are allowed, while the set Ξ0
j,j+1

is made by totally non-resonant gaps.

Finally, for every ξ ∈ S1 ⊂ C, consider the matrix operator
Wξ such that

(Wξ(M))(l,k),(l′,k′) =


ξM(l,k),(l′,k′), λlk < λl

′

k′ ,

0, λlk = λl
′

k′ ,

ξ̄M(l,k),(l′,k′), λlk > λl
′

k′ .

(4)

Let

νsj,j+1 :={Wξ(Eσ(iB
(j,j+1)
i )) | (σ, i) ∈ Ξsj,j+1, σ 6= 0,

ξ ∈ S1}, s = 0, 1.
(5)

Notice that ν0j,j+1 ⊂ ν1j,j+1 ⊂ su(j, j + 1).

Finally, denote by Lie(νsj,j+1) the Lie algebra generated by
the matrices in νsj,j+1, s = 0, 1, and we define

Ij,j+1 :={A, [[C1, C2], . . . , Cn] . . . ] | A ∈ Lie(ν0j,j+1),

Cj ∈ Lie(νsj,j+1), s = 0, 1, and ∃ i ∈ {1, . . . , n} s.t.

Ci ∈ Lie(ν0j,j+1), n ∈ N}.
Definition 4. Let (H,B1, . . . , Bl,B) have the property
(A). We say that (1) fulfills the block-wise Galerkin control
condition if for every j ∈ N one has

Lie(Ij,j+1) = su(j, j + 1).

Then we have the following (proved in Boscain et al.
(2019))

Theorem 1. Assume that (A) holds true. If the block-wise
Galerkin control condition holds then (1) is an m-tracker.
In particular, it is approximately controllable.

3. SYMMETRIC TOP MOLECULE

We recall in this section some general facts about Wigner
functions and the theory of angular momentum in quan-
tum mechanics (see, for instance, Biedenharn and Louck
(1981); Varshalovich et al. (1988); Cook and Gordy
(1984)).

The rotational dynamics for a molecule with moments of
inertia I1, I2, I3 is described by the Hamiltonian

H :=
1

2

(P 2
1

I1
+
P 2
2

I2
+
P 2
3

I3

)
, (6)

where the Pi are the components of the angular momen-
tum expressed in a moving frame which diagonalizes the
inertia tensor of the molecule. In (6), the Pi are seen as
differential operators acting on the Hilbert space H :=
L2(SO(3)), self-adjoint with respect to the Haar measure
of SO(3). Note that there exists a self-adjoint operator
which commutes with H for every I1, I2, I3 > 0, namely,
the angular momentum operator J := P 2

1 + P 2
2 + P 2

3 .

In what follows, we shall restrict our attention to the
symmetric-top, that is, the case I1 = I2. Under such
an assumption, a closed expression for the spectrum and
the eingenfunctions of H is known: we use Euler’s angles
(α, β, γ) ∈ [0, 2π) × [0, π] × [0, 2π) to describe the config-
uration space of the molecule, and with respect to this
parametrization the eigenstates of the rotational Hamil-
tonian H and of the angular momentum J , seen as self-
adjoint operators acting on H, are given by the so-called
Wigner functions ((Varshalovich et al., 1988, Chapter 4),
(Biedenharn and Louck, 1981, Sections 3.8,3.9))

Dj
k,m(α, β, γ) := ei(mα+kγ)djk,m(β),

j ∈ N, k,m = −j, . . . , j
(7)

where

djk,m(β) :=

nj,k,m sin
(β

2

)|k−m|
cos
(β

2

)|k+m|
F
(

sin
(β

2

)2)
.

The function β 7→ F
(

sin
(β

2

)2)
is a hypergeometric series

and nj,k,m is a normalizing factor. As a summary, we have
the following orthonormal decomposition of the Hilbert
space

H = span{Dj
k,m | j ∈ N, k,m = −j, . . . , j},

where span denotes the closure of span in L2(SO(3)).

The spectrum of H is discrete and given by

HDj
k,m =

(j(j + 1)

2I2
+
( 1

2I3
− 1

2I2

)
k2
)
Dj
k,m

=: EjkD
j
k,m.

(8)

Thus, the rotational energy level Ejk of a symmetric-top
molecule is (2j+ 1)-degenerate with respect to m and also
2-degenerate with respect to k, when k 6= 0.

The spectrum of J is discrete and given by

JDj
k,m = j(j + 1)Dj

k,m,

and the multiplicity of the eigenvalue j(j+ 1) is (2j+ 1)2.

To control the rotation of the molecule, we consider
three electric fields orthogonally polarized in the directions



e1, e2, e3 of the fixed frame. The interaction Hamiltonian
between the dipole δ inside the molecule and the external
electric field in the direction ei, i = 1, 2, 3, is given by the
Stark effect (Cook and Gordy, 1984, Chapter 10)

Bi(α, β, γ) = −〈R(α, β, γ)δ, ei〉,
seen as a multiplicative self-adjoint operator acting on
L2(SO(3)). Thus, the controlled rotational Schrödinger
equation reads

i
∂

∂t
ψ(α, β, γ; t) = Hψ(α, β, γ; t)+

3∑
l=1

ul(t)Bl(α, β, γ)ψ(α, β, γ; t),

ψ(t) ∈ L2(SO(3)), u(t) ∈ [−a, a]3.

(9)

4. ORTHOGONAL ACCIDENTALLY SYMMETRIC
TOP MOLECULE

In this section we study the controllability properties
for the rotational dynamics of a symmetric-top molecule,
driven by three orthogonally polarized electric fields, with
electric dipole δ orthogonal to the symmetry axis of the
molecule.

We denote by a1, a2, a3 the moving frame, where a3 is the
symmetry axis of the molecule. In the frame a1, a2, a3, the
dipole δ can be written

δ = (δ1, δ2, 0)t, δ1 6= 0 or δ2 6= 0. (10)

System (9) together with the assumption (10) is called the
orthogonal accidentally symmetric-top.
By rotational symmetry around the symmetry axis, we can
assume that δ2 = 0.

In Boscain et al. (2019) the non-controllability of the
orthogonal accidentally symmetric-top is proved, by look-
ing at a particular symmetry which arises in (9) when δ
satisfies (10). Here, we shall describe the reachable sets of
the orthogonal accidentally symmetric-top, that is, the in-
variant subspaces where (9) turns out to be approximately
controllable when δ satisfies (10).

The symmetry which prevents the system to be control-
lable is more evident once one has adopted the sym-
metrized Wigner functions, also called the Wang functions,
as eigenstates for the rotational Hamiltonian H, which areSjk,m,γ :=

1√
2

(Dj
k,m + (−1)γDj

−k,m), k = 1, . . . , j

Sj0,m,0 = Dj
0,m, k = 0

j ∈ N,m = −j, . . . , j and γ = 0, 1.

Then we have the following result (Boscain et al. (2019)):

Theorem 2. The parity of j+γ+k is conserved in the con-
trolled motion of the orthogonal accidentally symmetric-
top.

Since one can decompose the ambient Hilbert space H =
L2(SO(3)) as H = He ⊕Ho, where

He := span{Sjk,m,γ | j + γ + k even}
and

Ho := span{Sjk,m,γ | j + γ + k odd},
Theorem 2 says that He and Ho are two invariant sub-
spaces for every propagator of (9), when I1 = I2 and

δ3 = 0. We are going to show that the restriction of (9) to
He or Ho gives an approximately controllable system.

As a technical assumption, we need the moments of inertia
I1, I2, I3 of the molecule to satisfy the following symmetric
non-resonant hypothesis, introduced in Boscain et al.
(2019)

I1 = I2, I3/(I2 − I3) ∈ R \Q. (11)

Theorem 3. Let I1, I2, I3 satisfy (11) and δ satisfies (10).

• If j + γ + k is even, then

Reach(Sjk,m,γ) = He ∩ S.
• If j + γ + k is odd, then

Reach(Sjk,m,γ) = Ho ∩ S.

4.1 Proof of Theorem 3

We give a sketch of the proof when Sjk,m,γ is such that
j + γ + k is even, the computations in the case j + γ + k
odd being analogous.

From Theorem 2 we already know that He is invariant;
we shall then prove that (9) is an m-tracker in the Hilbert
space He. To do that, we are going to show that the block-
wise Galerkin control condition (Definition 4) is fulfilled
by (9) restricted to He and then conclude by applying
Theorem 1.

Note that the following selection rules hold in the transi-
tions between eigenstates of H

〈Dj
k,m, iBlD

j′

k′,m′〉 = 0, (12)

when |j′ − j| > 1, or |k′ − k| > 1 or |m′ − m| > 1, for
every l = 1, 2, 3, as one can check, for instance, in (Cook
and Gordy, 1984, Table 2.1). Let us project (9) onto the
subspace of He given by

Mj := Hj ⊕Hj+1,

where Hl := span{Sjk,m,γ | j + γ + k even, j = l},
l ∈ N, are the eigenspaces of the angular momentum
J seen as an operator on He. The dimension of Mj is
(2j + 1)(j + 1) + (2(j + 1) + 1)(j + 1), if j is even, and
(2j+ 1)j+ (2(j+ 1) + 1)(j+ 2), if j is odd. Let us assume
that j is even, being the computation in the case j odd
analogous. We identify su(Mj) with su(j, j + 1), that is,
su((2j + 1)(j + 1) + (2(j + 1) + 1)(j + 1)).

Referring to the notations introduced in Section 2, we shall
consider the following spectral gaps in Mj

λj±k := |Ej+1
k±1 − E

j
k|

=
∣∣∣j + 1

I2
+
( 1

2I3
− 1

2I2

)
(±2k + 1)

∣∣∣ ∈ Σj,j+1,

η±k := |Ej+1
k±1 − E

j+1
k |

=
∣∣∣( 1

2I3
− 1

2I2

)
(±2k + 1)

∣∣∣ ∈ Σj,j+1, k = 0, . . . , j.

(13)

We remark that assumption (11) guarantees that (λj±k, l) ∈
Ξ0
j,j+1 and (η±k, l) ∈ Ξ1

j,j+1, for every l = 1, 2, 3 and
k = 0, . . . , j.



Fig. 2. Graph of the transitions associated with the
frequency λj±k (solid arrows) and the frequency
η±k (dashed arrows) between eigenstates |j, k〉 =

|j, k,m〉 := Dj
k,m (m is fixed).

We drive the electric fields at the frequencies defined in
(13) to excite the corresponding transitions between the
rotational states of H. To be more precise, assumption
(11) guarantees that the frequencies (13) are not resonant
between each other, and thus we can write that the three
polarizations driven at frequency λjk, k = 0, . . . , j, are
represented by

Eλj
±k

(iB1)

=
∑

m=−j,,j
−2cj,±k,mδ1F(j,k,m,γ),(j+1,k±1,m+1,γ)

− 2cj,±k,−mδ1F(j,k,m,γ),(j+1,k±1,m−1,γ),

Eλj
±k

(iB2)

=
∑

m=−j,,j
−2cj,±k,mδ1E(j,k,m,γ),(j+1,k±1,m+1,γ)

+ 2cj,±k,−mδ1E(j,k,m,γ),(j+1,k±1,m−1,γ),

Eλj
±k

(iB3)

=
∑

m=−j,,j
−2dj,±k,mδ1E(j,k,m,γ),(j+1,k±1,m,γ),

(14)

where γ = 0 if k is even, and γ = 1 if k is odd. The three
fields in (14) are seen as skew-adjoint operators acting on
the Hilbert spaceMj , and, with a slight abuse of notation,

we write Bl instead of B
(j,j+1)
l := ΠMj

BlΠMj
, where

ΠMj
is the orthogonal projection onto Mj .

In (14), the matrices Es,t, Fs,t ∈ su(Mj) are defined by
Es,t = es,t − es,t, Fs,t = ies,t + ies,t, where es,t denotes
the (2j + 1)(j + 1) + (2(j + 1) + 1)(j + 1)-square matrix
whose entries are all zero, except the one at row s and
column t, which is equal to 1. Moreover, we are implicitly
using the lexicographic correspondance between the sets
{(l, k,m, γ) | l = j, j + 1, k = 0, . . . , l,m = −l, . . . , l, γ =
0, 1} and {1, 2, . . . , (2j + 1)(j + 1) + (2(j + 1) + 1)(j + 1)},
to label the matrices in (14).

Finally, the coupling constants in (14) are given by the
pairings (see, for instance, (Cook and Gordy, 1984, Table
2.1)) 

〈Dj
k,m, iB1D

j+1
k+1,m±1〉 = −icj,k,±mδ1

〈Dj
k,m, iB1D

j+1
k−1,m±1〉 = −icj,−k,±mδ1

〈Dj
k,m, iB2D

j+1
k+1,m±1〉 = ±cj,k,±mδ1

〈Dj
k,m, iB2D

j+1
k−1,m±1〉 = ±cj,−k,±mδ1

〈Dj
k,m, iB3D

j+1
k±1,m〉 = −dj,±k,mδ1,

(15)

where

cj,k,m :=

[(j + k + 1)(j + k + 2)]1/2[(j +m+ 1)(j +m+ 2)]1/2

4(j + 1)[(2j + 1)(2j + 3)]1/2
,

and

dj,k,m :=
[(j + k + 1)(j + k + 2)]1/2[(j + 1)2 −m2]1/2

2(j + 1)[(2j + 1)(2j + 3)]1/2
.

In the same way, one can represent the interaction oper-
ators Eη±k

(iBl), l = 1, 2, 3, k = 0, . . . , j relative to the
spectral gaps η±k. We have

Eη±k
(iB1)

=
∑

l=j,j+1,m=−l,,l−1

∓2hl,±k,mδ1F(l,k,m,γ),(l,k±1,m+1,γ′)∑
l=j,j+1,m=−l+1,,l

±2hl,±k,−mδ1F(l,k,m,γ),(l,k±1,m−1,γ′),

Eη±k
(iB2)

=
∑

l=j,j+1,m=−l,,l−1

±2hl,±k,mδ1E(l,k,m,γ),(l,k±1,m+1,γ′)∑
l=j,j+1,m=−l+1,,l

±2hl,±k,−mδ1E(l,k,m,γ),(l,k±1,m−1,γ′),

Eη±k
(iB3)

=
∑

l=j,j+1,m=−l,,l

±2ql,±k,mδ1E(l,k,m,γ),(l,k±1,m,γ′),

(16)

where γ = 0, γ′ = 1 if k is even, and γ = 1, γ′ = 0 if k
is odd. The coupling constants in (16) are given by the
pairings (see, for instance, (Cook and Gordy, 1984, Table
2.1)) 

〈Dj
k,m, iB1D

j
k+1,m±1〉 = ∓ihj,k,±mδ1

〈Dj
k,m, iB1D

j
k−1,m±1〉 = ±ihj,−k,±mδ1

〈Dj
k,m, iB2D

j
k+1,m±1〉 = hj,k,±mδ1

〈Dj
k,m, iB2D

j
k−1,m±1〉 = −hj,−k,±mδ1

〈Dj
k,m, iB3D

j
k±1,m〉 = ±qj,±k,mδ1,

(17)

where

hj,k,m :=
[j(j + 1)− k(k + 1)]1/2[j(j + 1)−m(m+ 1)]1/2

4j(j + 1)
,

and

qj,k,m :=
[j(j + 1)− k(k + 1)]1/2m

2j(j + 1)
.

We now introduce the family

F0
j :={Eλj

±k
(iBl),Wi(Eλj

±k
(iBl)), | l = 1, 2, 3,

k = 0, . . . , j} ⊂ ν0j,j+1

of the interaction operators excited at non-resonant fre-
quencies, and we denote by Lie(F0

j ) the Lie algebra gen-

erated by the matrices in F0
j ; finally, let us introduce the

new family

Fj :={A,
[
Wξ(Eη±k

(iBl)), B
]
| A,B ∈ Lie(F0

j ), l = 1, 2, 3,

ξ = 1, i, k = 0, . . . , j} ⊂ Ij,j+1,

the sets of operators ν0j,j+1 and Ij,j+1 being defined in
Section 2.

Then, direct Lie bracket computations can be applied to
prove that Lie(Fj) = su(Mj), for every j ∈ N (see Boscain
et al. (2019) for similar calculations).



5. CONCLUSIONS

We have recalled in a general framework a sufficient con-
dition for the approximate controllability of the bilinear
Schrödinger equation, which remarkably fits the problem
of controlling the rotational molecular dynamics, due to
the discrete quantization of the model and the existence
of the angular momentum invariant j-subspaces. Then,
we have applied the abstract result on a concrete model,
namely, to compute the reachable states of an orthogonal
accidentally symmetric molecule.

More in detail, we have found that the configuration
Hilbert space of the molecule splits into two subspaces,
and in each subspace we have shown how three orthogo-
nally polarized electric fields are sufficient to control the
dynamics.

This result is important because it evidences an explicit
obstruction in controlling the motion of the molecule,
which was not expected since it does not have classical
counterpart in the rigid body dynamics. Nevertheless it
tells that, starting with an initial data prepared in one
of the two invariant subspaces, the molecule’s rotational
state can be controlled inside the given subspace.

Hence, we could expect several applications of this model
both in numerical simulations and in real experiments of
quantum chemistry and physics which involve rotational
states of these particular class of molecules.

Furthermore, as a challenging research problem, the next
step would be the computation of the reachable sets for an
asymmetric molecule.
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