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Abstract—Dot products (also called sums of products) are ubiq-
uitous in matrix computations, for instance in signal processing.
We are especially interested in digital filters, where they are the
core operation. We therefore focus on fixed-point arithmetic, used
in embedded systems for time and energy efficiency. Common
dot product algorithms ensure faithful rounding. For the sake
of accuracy and reproducibility, we want to ensure correct
rounding. This article describes an algorithm that computes a
correctly-rounded sum of products from inputs whose format is
known in advance. This algorithm relies on odd rounding (that is
easily implemented in hardware) and comes with a careful proof
and some cost analysis.

Index Terms—Dot Product, Sum-of-Products, Correct Round-
ing, Odd Rounding, Fixed-Point Arithmetic

I. INTRODUCTION

Many algorithms used in embedded systems rely on dot
product algorithms, for example in linear algebra based sys-
tems. Notably, many applications in automotive, communi-
cation, aerospace domains use signal processing and control
algorithms named filters and controllers that have dot product
evaluation as core.

Because of cost, power efficiency, or performance con-
straints, these low-level algorithms are often implemented
using fixed-point arithmetic (eg. based on the integer arith-
metic unit) rather than floating-point arithmetic. Moreover,
in hardware implementation (ASIC or FPGA), the multiple
word-length paradigm [1] (ie. the use of dedicated word-length
for each computation) is key to minimize the area and/or the
power consumption while preserving a good performance, and
bounding the error due to the finite precision by an acceptable
level.

In this article, we only focus on the dot product (also called
sum-of-products) in fixed-point arithmetic. We also assume
that the fixed-point formats involved (the Most Significant Bit
and Least Significant Bit positions, as defined in Section II) are
fixed and given by the user. We propose an efficient algorithm
that ensures correct rounding and we prove its correctness.
It is based on odd rounding, an unusual rounding, defined in
Section II-A, which is easy to implement (the proof will be
useful for the proof of our fixed-point dot product, and then
of a complete filter or controller implementation).

A correctly rounded dot product is known to be difficult
to achieve, as we cannot dismiss the least significant bits. A
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solution is to rely on a Kulisch accumulator [2], but this may
be costly when the exponent range is large. Indeed, it uses the
complete bit-range for all the accumulation in order to perform
only exact operations before the last rounding. Our algorithm
is more efficient and still ensures correct rounding.

Other practical solutions for the dot product exist, but only
provide last-bit accuracy dot product (also denoted faithful
rounding: it is not a correct rounding, only a round up or round
down of the exact result). The main idea is to use a slightly
extended precision for the internal computation of the sum,
using some extra guard bits. The number of them depends on
the log2 of the number of terms to add [3].

Section II gives a brief overview of fixed-point arith-
metic and odd rounding, and introduces related notations.
The correctly-rounded dot product is detailed in Section III:
a simple version is first presented, then an optimized one
illustrated by two examples. The proof of the correct rounding
is given in Section IV. Some elements of comparison of the
proposed algorithm to classical ones are given in Section V.
Section VI features a conclusion.

II. ODD ROUNDING AND FIXED-POINT ARITHMETIC

As for the pre-requisite, we first describe odd rounding and
how to implement it, and then fixed-point arithmetic, and the
used notations.

A. Odd rounding

Correct rounding is notably difficult to achieve for some
functions due to the Table Maker Dilemma [4]. In particular,
common algorithms for sums or dot products usually only
ensure faithful rounding [4], [5]. As explained above, we want
to ensure correct rounding, that requires more care to ensure.

A solution is to rely on a specific rounding mode, called
rounding to odd, and using it for intermediary roundings. This
odd rounding is also called von Neumann rounding because it
has been first designed in the 40’s by Von Neumann for the
design of the arithmetic unit of the EDVAC computer [6, sec-
tion 9.4] [7]. It was lately used by Goldberg when converting
binary FP numbers to decimal representations [8] and formally
studied later, notably to emulate the FMA operator [9].

The informal definition of odd rounding is the following
one. When a real number is not in the set of representable
numbers F, it is rounded to the adjacent number in the format
with an odd integer significand. More precisely, let be the
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Fig. 1: Fixed-point number in format (m, `).

rounding up and the rounding down to F. Then rounding
to odd is defined by:

(x) =


x if x ∈ F,

(x) if the mantissa of (x) is odd,
(x) otherwise.

Note that the result of x rounded to odd can be even only
when x is already a representable number.

This rounding belongs neither to the IEEE-754 required
roundings for floating-point arithmetic, nor to the IEEE-1666
roundings for fixed-point arithmetic in SystemC [10]. Never-
theless, implementations are available. An effective software
implementation is given in [9]. As explained, a hardware one
is much simpler: round to zero (with the IEEE-754 flags), and
perform a logical or between the inexact flag (or the sticky
bit) of this first rounding step and the last bit of the mantissa
to get the result (or equivalently it forces the last bit of the
mantissa to 1 when the deleted bits are not all zero). From an
IEEE-compliant architecture, the additional cost is therefore
slight.

Numerous properties are given in [9]. They are mostly
dedicated to floating-point arithmetic, while we are interested
in fixed-point arithmetic as explained above. Fortunately, many
theorems are generic enough to be used both in floating-
and fixed-point arithmetics. In particular, we will use here
Theorem 1, that ensures correct rounding to nearest, provided
a previous odd rounding with sufficient precision:

Theorem 1 (round N odd, from [9]). Assume an even radix β
and two different formats: a working format and an extended
format. Assume that the extended format has at least two more
digits at all points. If ext denotes the rounding to odd in
the extended format, and if denotes a rounding to nearest
with any tie-breaking rule in the working format, we have

∀x ∈ R, ( ext(x)) = (x).

We refer to Corollary 2 for an explicit version of this
theorem applied to fixed-point arithmetic (see Section IV).

B. Fixed-Point Arithmetic

We consider here numbers and computations based on two’s
complement fixed-point arithmetic. Let x be a w-bit long
fixed-point number, with bits {xi}m≤i≤`:

x = −2mxm +

m−1∑
i=`

2ixi (1)

where m and ` are the positions of the most significant bit
(MSB) and the least significant bit (LSB) of x, respectively.

So the word-length w and the Most and Least Significant Bit
positions, m and ` are linked with

w = m− `+ 1. (2)

The couple (m, `) denotes the fixed-point format of x. Fig-
ure 1 exhibits a fixed-point number and its binary representa-
tion.

Internally, the fixed-point numbers are represented with an
integer X (denoted mantissa) formed by the w-bit {xj} and
an implicit scaling factor 2`, ie,

X = −2w−1xm +

w−2∑
i=0

2ixi+` ∈ Z (3)

or equivalently x = X2`. All the operations are then integer
operations on the mantissa X .
We denote F` the set of fixed-point integers with ` as LSB
(or equivalently F` = Z2`), and we do not consider overflow
here.

We will also need the following notations:
`
(x), `(x),

`(x), `(x) are the rounding down, rounding up, rounding
to odd and rounding to nearest (given a tie-breaking rule) of x
at the bit `, respectively. Moreover, we denote x +

`
y and x +

`

y the addition of x and y rounded at bit `, using rounding down
and rounding odd respectively. We assume correct rounding
for addition, so we have x +

`
y =

`
(x+ y) and x +

` y =

`(x+ y).

III. ALGORITHM

Let us now describe our algorithm. A first point is that we
decide to compute exactly all multiplications. The fixed-point
numbers obtained each have an LSB equal to the sum of the
LSBs of both corresponding operands. What is left to do is
to compute a correct sum of fixed-point numbers with LSBs
given in advance. Therefore, we just consider that we have
n non-null inputs noted x0, . . . , xn−1 with respective LSBs
`0, . . . , `n−1 known in advance. We are also given a desired
LSB `f for the output. The algorithm computes an output
noted result which is a correct rounding of the sum of the
inputs:

result = `f (x0 + · · ·+ xn−1).

This summation relies on odd rounding presented in Sec-
tion II-A. Then, the intuition is that, to obtain a correct
rounding to nearest at LSB `f , we need an odd rounding
at LSB `f − 2. Indeed, Theorem 1 will then guarantee a
correct rounding of the sum. Of course, we do not use a
Kulisch accumulator for computing this odd rounding as it
would defeat our efficiency wish. Instead, we add the values
sequentially, using odd rounding with a well-chosen LSB at
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Fig. 2: General algorithm for any input LSBs.

each step to ensure that we keep the following invariant: the
current computed value is the odd rounding of the sum of all
the previously-seen values.

The key ingredient is the choice of the LSB at each step
of the algorithm. Too large, and we cannot ensure correct
rounding; too small, and the algorithm will be less efficient.
For instance, if we used the smallest LSB of all inputs for all
computations, we would get a correct result à la Kulisch.

A first version of the algorithm is described in Section III-A.
Section III-B presents an optimized version, where inputs are
sorted by LSB (the LSBs are known in advance so there is
no runtime cost) to allow for overall larger computing LSBs.
Examples are given in Section III-C. Note that all the proofs
will be presented in Section IV; only the intuition is given
here.

A. General algorithm

The general algorithm described by Algorithm 1 computes
a correct rounding of the sum for any input LSBs. First of all,
the LSBs ki used in intermediary computations are chosen
recursively. Then, we sum the inputs xi from left to right
using odd rounded additions to Fki

as illustrated by Fig. 2.
The ti could all be replaced with a single variable t that is
updated at each step of the loop. However, using indices to
identify the value at each iteration will be useful for the proof
in Section IV-B.

Algorithm 1: General algorithm for any input LSBs.
Inputs: x0, . . . , xn−1, `0, . . . , `n−1

// xi has LSB `i
Output: result = `f (x0 + · · ·+ xn−1)

1 kn−1 ← `f − 2
2 for i← n− 1 downto 1 do
3 ki−1 ← min(ki, `i)− 1

4 t0 ← k0
(x0)

5 for i← 0 to n− 2 do
6 ti+1 ← ti +

ki+1
xi+1

7 result← `f (tn−1)

The larger the LSBs used in computations, the more efficient
the algorithm. Note that for i ≤ n − 1, we define ki−1 as
the larger LSB that verifies both ki−1 < ki and ki−1 < `i.
Indeed, these inequalities are required to keep on with odd
rounding. For that, we will rely on Corollary 6 in the proof in
Section IV. It is easy to notice that all these computation LSBs

are maximized when the input LSBs `i are sorted in increasing
order. The optimized algorithm presented in the next section
builds on this remark and similar considerations to maximize
the LSB at each step.

B. Optimized algorithm

The optimized algorithm is derived from the general al-
gorithm above through a few successive optimizations. As
explained previously, the first one consists in sorting the inputs
by LSB, as this maximizes the computing LSBs ki. As the
input LSBs are known in advance, sorting by LSB has no
runtime cost. Therefore, we can assume that `0 ≤ `1 ≤ · · · ≤
`n−1.

Yet to maximize efficiency, the hypothesis we need is
`0 < · · · < `n−1. Therefore, we do a pre-processing where
inputs with the same LSB are grouped together as described
by Algorithm 2. This may decrease the number of inputs n
and modify the values of the xi and `i. But it preserves the
exact sum x0 + · · · + xn−1, as well as the fact that each xi
has LSB `i. And afterwards, we do have `0 < · · · < `n−1.

Algorithm 2: Pre-processing to make input LSBs
distinct.

1 while there is an i such that `i = `i+1 do
2 xi ← xi +

`i
xi+1

3 for j ← i+ 1 to n− 2 do
4 xj ← xj+1

5 `j ← `j+1

6 n← n− 1

The optimized algorithm for strictly increasing input LSBs
is described in Algorithm 3 and illustrated by Fig. 3. Inputs are
separated into two groups: on the left hand side x0, . . . , xm−1

whose LSBs are at most `f − 2, and on the right hand
side xm, . . . , xn−1 whose LSBs are greater than `f − 2. The
left hand side is handled similarly to the previous general
algorithm. The main difference is that thanks to the LSBs
being strictly increasing, we do not need to define computation
LSBs recursively. Instead, each former ki is simply equal to
`i+1 − 1 (except for km−1 = `f − 2). On the right hand side,
inputs with large LSBs are added together from right to left.
At each step, we use the smaller LSB of both operands so
that the operation is exact. Finally, the results for both groups
of inputs are added together at `f − 2 (the operation is once
again guaranteed to be exact) then rounded to nearest at `f .
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Fig. 3: Optimized algorithm.

Note that every time we use a rounded down addition +
`
,

we know that the operation is actually exact. This means we
could have used any rounding mode. We choose rounding
down for its efficiency: it is a simple truncation in two’s
complement fixed-point arithmetic.

It may be the case that all inputs are either in the set with
large LSBs or the one with small LSBs, making the other set
empty. Then, m is respectively 0 or n. The same algorithm
holds, provided we consider all ti for i outside of the bounds
{0, . . . , n − 1} to be null. When m = 0, this means that we
can ignore Lines 2 to 5 (both included), and we use tm−1 = 0
at Line 9. When m = n, we should ignore Lines 6 to 8,
and we use tm = 0 at Line 9. Note that this convention
also affects the case m = 1. Indeed, Line 5 becomes
t0 = 0 +

`f−2 x0 = `f−2(x0) which overrides Line 2.

Algorithm 3: Optimized algorithm.
Inputs: x0, . . . , xn−1, `0, . . . , `n−1

// xi has LSB `i and `0 < · · · < `n−1

Output: result = `f (x0 + · · ·+ xn−1)
1 let m such that `m−1 ≤ `f − 2 < `m
2 t0 ← `1−1(x0)
3 for i← 0 to m− 3 do
4 ti+1 ← ti +

`i+2−1 xi+1

5 tm−1 ← tm−2 +
`f−2 xm−1

6 tn−1 ← xn−1

7 for i← n− 1 downto m+ 1 do
8 ti−1 ← ti +

`i−1
xi−1 // addition is exact

9 result← `f (tm−1 +
`f−2

tm) // add. is exact

C. Example

Let us now illustrate the optimized algorithm on two exam-
ples with explicit LSBs. The first one is a toy example that
showcases every part of the algorithm. The second one was
generated from an actual digital filter as explained below.

As a first example, we are given inputs with respective
LSBs 0, 4, 4, 5, 8, 9, 9, 12, and 20. The desired output
LSB is `f = 10. After pre-processing, x0 is the input with

LSB `0 = 0, x1 is the exact sum of the two inputs with LSB
`1 = 4 (computed with an addition truncated to F4), and so on:
`2 = 5, `3 = 8, `4 = 9, `5 = 12, and `6 = 20. Then m = 4
since `3 ≤ `f − 2 < `4. We can now apply the algorithm as
illustrated by Fig. 4.

x0
0

3

lsb:
inputs: x1

4

+
4

x2
5

+
7

x3
8

+
8

x4
9

+
9

x5
12

+
12

x6
20

+
8 10

result

Fig. 4: Optimized algorithm: toy example.

x0
x1
x2
x3
x4
x5
x6

result

Fig. 5: Bit view: toy example.

Another point of view is given in Fig. 5. All bits of the
inputs are shown. The red line shows the intermediary LSBs
used for computations (that is to say the LSBs of the ti) to
give an idea on how many bits are kept and dismissed at each
step. More precisely, each line i shows both xi and a vertical
red line at the LSB of ti (remember ti ← ti−1 +

`i+1−1 xi).
In particular, Fig. 5 pictures the dropped bits and we clearly
see that the smallest LSBs are quickly dropped.

Let us now consider an example from signal processing.
We consider a 7-th order low-pass Butterworth filter with
normalized cutoff frequency equal to 0.41. Its evaluation using
a Direct Form algorithm1 [11], [12] requires the use of a dot

1Other possibilities for the implementation of this filter exist, implying the
use of multiple-but-shorter dot products. The comparison of these different
algorithms and their implementation is outside of the scope of this article.
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Fig. 6: Optimized algorithm: example from signal processing.

x0
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x4
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x6
x7

result

Fig. 7: Bit view: example from signal processing.

product that sums 10 terms2 with respective LSBs -34, -30,
-27, -25, -23, -22, -22, -22, -21, and -11. Moreover, the output
should have LSB `f = −7.

Once again, inputs are grouped by LSB then labeled
x0, . . . , x7, where x5 is the exact sum of the three inputs
with LSB −22. But this time, all input LSBs are smaller than
`f −2. Technically, this means that m = n = 8 and the group
of inputs with large LSBs is empty so their sum is zero. In
practice, we can remove all the truncated additions from Fig. 3.
We obtain Fig. 6.

As before, the bit view is given in Fig. 7 with the red line
showing the intermediary LSBs used for computations. Again,
the dropped bits are clear, even if we need to consider them
all to ensure correct rounding.

IV. PROOF

Now let us prove the correctness of these algorithms. This
Section is organized as follows: Section IV-A provides general
lemmas about odd rounding. Section IV-B tackles the general
algorithm and Section IV-C the optimized one.

A. Useful properties about odd rounding

Odd rounding was defined in Section II-A. We have put
here all the lemmas about odd rounding that we need to prove
the correctness of the algorithm.

Corollary 2. For all x ∈ R and k, ` ∈ Z, if k ≤ ` − 2 then
`( k(x)) = `(x).

This is only an instance of Theorem 1, where the format is
fixed-point arithmetic.

Lemma 3. For all x ∈ R and k, ` ∈ Z, if k ≤ ` then

`( k(x)) = `(x).

2The coefficients of this filter can be obtained with the butter func-
tion of the Scipy library (or equivalently with Matlab) with the command
butter(7,0.41).

Proof. When k = `, this is trivial: as k(x) has LSB k = `,
then `( k(x)) = k(x) = `(x).

When x ∈ Fk, we have k(x) = x, therefore
`( k(x)) = `(x).
Let us now assume k < ` and x /∈ Fk. To prove that
`( k(x)) is the odd rounding of x to F`, it is sufficient

to prove that it is a faithful rounding of x to F` and it is odd
in F`. As a double rounding is always a faithful rounding, the
former holds. Moreover, x /∈ Fk implies that k(x) is odd
in Fk so k(x) /∈ F` then `( k(x)) is odd in F`. This
means that `( k(x)) is indeed an odd faithful rounding of
x to F`, therefore equal to `(x).

Lemma 4. For all x ∈ R and y ∈ F`+1, `(x) + y =

`(x+ y).

Proof. The idea is quite simple: as y ∈ F`+1, it is even with
LSB `. Therefore adding it to an odd rounding makes an odd
rounding of the sum. Getting a clean proof is slightly more
complicated as many subcases have to be tackled.

If x ∈ F`, then `(x) = x. We also have that x+ y ∈ F`,
so `(x + y) = x + y. Therefore, `(x) + y = x + y =

`(x+ y).
Let us now assume that x 6∈ F`, meaning that `(x) is odd

in F`. Then `(x)+y is also odd in F`. There is left to prove,
by uniqueness of odd rounding, that `(x) + y is a faithful
rounding of x+ y. It is sufficient to prove that

`
(x+ y) ≤

`(x) + y ≤ `(x+ y).
When `(x) =

`
(x), we easily have `(x) + y =

`
(x) + y ≤ x + y ≤ `(x + y). The other inequality

is slightly more complicated to get: we want to prove that

`
(x+ y) ≤

`
(x) + y, that is

`
(x+ y)− y ≤

`
(x). By

the properties of the rounding down of x, it is enough to prove
that

`
(x + y) − y ≤ x and

`
(x + y) − y ∈ F`, and both

easily hold. The case where `(x) = `(x) is similar.

Corollary 5. For all x, y ∈ R and k, ` ∈ Z, if y ∈ F` and
k < ` then `( k(x) + y) = `(x+ y).

Proof. As y ∈ F` with ` > k, then y ∈ Fk+1. Therefore:

`( k(x) + y) = `( k(x+ y) (Lemma 4)
= `(x+ y) (Lemma 3)

Corollary 6. For all x, y ∈ R and k, `, `y ∈ Z, if y ∈ F`y

and k < ` and k < `y then `( k(x) + y) = `(x+ y).

Proof.
• If ` ≤ `y then y ∈ F` and we conclude using Corollary 5.
• If ` > `y then:

`( k(x) + y) = `( `y
( k(x) + y)) (Lemma 3)

= `( `y
(x+ y)) (Corollary 5)

= `(x+ y) (Lemma 3)



B. Proof of the general algorithm

We want to prove that the general algorithm presented in
Section III-A computes a correct rounding of the sum of the
inputs. Variables ki and ti and output result are defined by
Algorithm 1 as illustrated by Fig. 2.

Lemma 7. For all 0 ≤ i ≤ n−1, ti = ki
(x0+x1+· · ·+xi).

Proof. We proceed by induction over i.
• For i = 0 we get t0 = k0

(x0) by construction.
• For 0 ≤ i ≤ n− 2 we have:

ti+1 = ki+1
(ti + xi+1)

= ki+1
( ki

(x0 + · · ·+ xi) + xi+1) (I.H.)

= ki+1
(x0 + · · ·+ xi + xi+1)

using Corollary 6: indeed xi+1 ∈ F`i+1
and by con-

struction ki = min(ki+1, `i+1) − 1 so ki < ki+1 and
ki < `i+1.

Theorem 8. The output of the general algorithm verifies:

result = `f (x0 + · · ·+ xn−1).

Proof. Using Lemma 7 for i = n − 1 then Corollary 2 with
kn−1 = `f − 2:

result = `f (tn−1) = `f ( kn−1
(x0 + · · ·+ xn−1))

= `f (x0 + · · ·+ xn−1)

C. Proof of the optimized algorithm

Let us now prove the correctness of the optimized algorithm
presented in Section III-B. First of all, we must show that the
pre-processing described by Algorithm 2 has the right prop-
erties. Its inputs are once again x0, . . . , xn−1 with respective
LSBs `0, . . . , `n−1. But here, we require the LSBs to have
been sorted: `0 ≤ · · · ≤ `n−1. Pre-processing can modify the
xj and `j and even the number of inputs n. However, the fact
that xj ∈ F`j is obviously preserved through each step of the
loop. Each step also preserves the sum x0+· · ·+xn−1. Indeed,
all the xj are preserved (though indices get shifted down for
j > i + 1) except for xi and xi+1, which are replaced by a
new xi with value xi +

`i
xi+1. This is where the LSBs being

sorted is important: as `i ≤ `i+1, both xi and xi+1 are in F`i ,
so the addition is exact. Finally, exiting the loop means that
`0 < · · · < `n−1 at the end.

From now on, we just assume that we have inputs
x0, . . . , xn−1 with respective LSBs `0 < · · · < `n−1. We want
to prove that the result of Algorithm 3 (illustrated by Fig. 3)
is a correct rounding to `f of the sum of the inputs. Recall
that m is chosen such that `m−1 ≤ `f − 2 < `m. With the
convention that `−1 = −∞ and `n = +∞, this means that m
is well defined and verifies 0 ≤ m ≤ n.

Lemma 9. For all 0 ≤ i ≤ m−2, ti = `i+1−1(x0+· · ·+xi).

Proof. As in the proof of Lemma 7, by induction over i:

• For i = 0 we get t0 = `1−1(x0) by construction.
• For 0 ≤ i ≤ m− 3 we have:

ti+1 = `i+2−1(ti + xi+1)

= `i+2−1( `i+1−1(x0 + · · ·+ xi) + xi+1) (I.H.)

= `i+2−1(x0 + · · ·+ xi + xi+1)

using Corollary 6 (indeed `i+1 − 1 < `i+2 − 1
since the LSBs are strictly increasing; and of course
`i+1 − 1 < `i+1 with xi+1 ∈ F`i+1

).

Lemma 10. If m ≥ 1 then tm−1 = `f−2(x0+ · · ·+xm−1).

Proof. If m ≥ 2, we use Lemma 9 for i = m− 2 then Corol-
lary 6 with xm−1 ∈ F`m−1

and `m−1 − 1 < `m−1 ≤ `f − 2:

tm−1 = `f−2(tm−2 + xm−1)

= `f−2( `m−1−1(x0 + · · ·+ xm−2) + xm−1)

= `f−2(x0 + · · ·+ xm−2 + xm−1)

If m = 1, recall that Line 5 of Algorithm 3 overrides Line 2
so that t0 = `f−2(x0).

Lemma 11. If m ≤ n−1 then tm = xm+ · · ·+xn−1 ∈ F`m .

Proof. By induction over i decreasing from n− 1 to m, it is
easy to prove that ti ∈ F`i , the additions ti +

`i−1
xi−1 are all

exact and ti = xi + xi+1 + · · ·+ xn−1.

Theorem 12. The output of the algorithm verifies:

result = `f (x0 + · · ·+ xn−1).

Proof. Let us assume for now that 1 ≤ m ≤ n − 1, so that
we can use both Lemma 10 and Lemma 11 (the special cases
m = 0 and m = n are handled further below). A corollary
of Lemma 10 is that tm−1 ∈ F`f−2. Lemma 11 states that
tm ∈ F`m . By construction of m we have `f − 2 < `m so
tm ∈ F`f−2 and the addition tm−1 +

`f−2
tm is exact. This

also means that `f − 1 ≤ `m so tm−1 ∈ F`f−1, which allows
us to use Lemma 4 thereafter.

result = `f (tm−1 +
`f−2

tm) = `f (tm−1 + tm)

= `f ( `f−2(x0 + · · ·+ xm−1) + tm) (Lemma 10)

= `f ( `f−2(x0 + · · ·+ xm−1 + tm)) (Lemma 4)

= `f ( `f−2(x0 + · · ·+ xm−1 + xm + · · ·+ xn−1))

(Lemma 11)
= `f (x0 + · · ·+ xn−1) (Corollary 2)

Let us now handle the special cases m = 0 and m = n. As
mentioned in Section III-B, any ti for i outside of the range
0, . . . , n− 1 is considered to be null.

When m = 0, Lemma 11 still gives us tm ∈ F`m so
tm ∈ F`f−2 then:

result = `f (0 +
`f−2

tm) = `f (tm)

= `f (xm + · · ·+ xn−1) (Lemma 11)

= `f (x0 + · · ·+ xn−1)



When m = n, we still have tm−1 ∈ F`f−2 and:

result = `f (tm−1 +
`f−2

0) = `f (tm−1)

= `f ( `f−2(x0 + · · ·+ xm−1)) (Lemma 10)

= `f (x0 + · · ·+ xm−1) (Corollary 2)

= `f (x0 + · · ·+ xn−1)

V. COMPARISON WITH OTHER ALGORITHMS

Let us now give some intuition about the cost of this algo-
rithm, compared to the literature. Note this is a very approxi-
mated cost, guessing the number of and/or gates involved. A
first approximation is that we do not consider multiplications:
we only consider additions. One reason is that both Kulisch
and our algorithm compute exactly all multiplications. This
notably disfavors the faithful algorithm that is allowed to round
the multiplication and therefore drop bits.

A second approximation is that we are not taking overflow
into account: all algorithms use a MSB sufficient to ensure
that no overflow will occur. If the xi have a MSB worth mi,
we may use as computation MSB: mf = maxi mi+(n−1).
This could be improved if we have prior knowledge, but it
will be sufficient for this rough analysis.

The chosen cost model is as follows: for the exact sum of
two values x1 and x2 with LSBs `1 and `2 with `1 ≤ `2, the
cost is 2 (mf−`1+2). When a subsequent rounding to LSB `
is done, the additional cost is 0 for rounding down (assuming
two’s complement arithmetic); it is `− `1 for rounding to odd
(as it only needs an or of the trailing bits, see Section II-A);
and it is mf − `1 for rounding to nearest as there may be a
carry.

The Kulisch accumulator [2] is a sum of all xi computed
with LSB `0, followed by a rounding to nearest. (In this
section, we assume the input LSBs to be increasing, though
they do not have to be stricly increasing.) The cost is then:

CK = (n− 1) ∗ 2 (mf − `0 + 2) + (mf − `0).

The faithful algorithm [3] is also a sum of all xi with the
same LSB. Instead of `0, the computation LSB is `c = `f −
dlog(n)e − 1, followed by a rounding to nearest. The cost is
then:

CF = (n− 1) ∗ 2 (mf − `c + 2) + (mf − `c).

Our Algorithm 3 based on odd rounding has a more complex
cost. First, sorting the numbers by their LSB has cost 0 as the
LSBs are known in advance. Then, let us consider the addition
ti−1 +

`i+1−1 xi for 1 ≤ i ≤ n− 1 (with `n = `f − 1 by
convention). The LSB of ti−1 is `i − 1 and the LSB of xi is
`i. Then then cost of this addition is 2(mf − (`i − 1) + 2) +

(`i+1 − 1 − (`i − 1)) = 2(mf − `i + 3) + (`i+1 − `i). The
cost is then:

CO =

(
n−1∑
i=1

(2(mf − `i + 3) + (`i+1 − `i))

)
+ (mf − (`f − 2))

=

(
n−1∑
i=1

2(mf − `i + 3)

)
+ `n − `0 +mf − (`f − 2)

=

(
n−1∑
i=1

2(mf − `i + 3)

)
+mf − `0 + 1.

Note that we have considered the worst case where we only
have rounding to odd: the cases of equal LSBs and of large
LSBs that involve correct rounding (that will be computed
with rounding down) have a smaller cost.

An abstract view of the previous formulas is given by Fig. 8
and Fig. 9: they exhibit the bits involved in each of the three
algorithms. The cost of the Kulisch accumulator is roughly the
area of the bigger rectangle with width mf−`0. The cost
of the faithful algorithm is the area of the smaller rectangle

with width mf − `c. The cost of our algorithm is the
area of the roughly trapezoidal region delimited on the
right hand side by the LSBs `i+1 − 1 used in intermediary
computations.

VI. CONCLUSION

We have presented an efficient algorithm for computing
correctly-rounding dot products in the context of two’s com-
plement fixed-point arithmetic. Note that it easily applies to
sums too: it is basically a summation algorithm that takes
correct results of multiplications.

As explained, it is clearly more efficient than Kulisch
accumulator (even if this effiency depends upon the input

x0
x1
x2
x3
x4
x5
x6

`0`c`fmf

Fig. 8: Toy example: bit view and comparison of the in-
volved bits in the Kulisch accumulator , the faithful
algorithm , and our algorithm .

x0
x1
x2
x3
x4
x5
x6
x7

`0`c`fmf

Fig. 9: Signal Processing example: bit view and comparison of
the involved bits in the Kulisch accumulator , the faithful
algorithm , and our algorithm .



LSBs). Moreover, it is more accurate than the classical faithful
rounding algorithms. Indeed, correct rounding means more
accuracy (the error bound is twice as small). This could be
useful in further computations. More importantly, the result is
now unique, allowing reproducibility of the computation.

An immediate application of this algorithm is the sum
of products used inside numerical filters. Relying on this
algorithm inside numerical filters iterations will improve the
accuracy of the computations. It could be used for the word-
length allocation problem where the word-lengths are mini-
mized while guarantying a final accuracy [13].

Another perspective would be the formal proof of this
algorithm. Most of the basic ingredients are already available
in the Flocq library [14] (odd rounding, fixed-point algorithm,
Theorem 1), but other lemmas are not. Filters have already
been formalized in a previous work [15]. Then, the formal
description of the algorithm(s) will need to be done with care,
to be as readable as possible, in order to be as convincing as
possible. And then this proof will allow the formal proof of
more larger implementations like filters or controllers.

A more challenging perspective is the handling of overflow.
We assumed here that fixed-point numbers are big enough (in
the sense of a big enough MSB) in all our operations, but this
has a cost. Two directions are possible. As for LSBs, we could
provide correct MSBs for each operation to ensure no overflow
may happen. We could also try to have smaller MSBs inside
the computations by using modulo overflows if we know in
advance a maximal MSB for the final result. Both directions
would need careful proofs, or even formal ones, as overflow
proofs are quite error-prone.
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