N

HAL

open science

Constrained GA optimization

Marc Schoenauer, Spyros Xanthakis

» To cite this version:

Marc Schoenauer, Spyros Xanthakis. Constrained GA optimization. Proc. 5th International Confer-
ence on Genetic Algorithms, Jun 1993, Urbana Champaign, United States. pp.573-580. hal-02985385

HAL Id: hal-02985385
https://inria.hal.science/hal-02985385

Submitted on 2 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-02985385
https://hal.archives-ouvertes.fr

Constrained GA optimization

in Proceedings of the 5th International Conference on Genetic Algorithms, Urbana Champaign, 1993.

Marc Schoenauer

CMAP — CNRS URA 756
Ecole Polytechnique, F-91128 PALAISEAU

e-mail : marc@Qcmapx.polytechnique.fr

Abstract

We present a general method of handling con-
straints in genetic optimization, based on the
Behavioural Memory paradigm. Instead of
requiring the problem-dependent design of ei-
ther repair operators (projection on the feasi-
ble region) or penalty function (weighted sum
of the constraints violations and the objective
function), we sample the feasible region by
evolving from an initially random population,
successively applying a series of different fit-
ness functions which embody constraint sat-
isfaction. The final step is the optimization
of the objective function restricted to the fea-
sible region. The success of the whole process
is highly dependent on the genetic diversity
maintained during the first steps, ensuring a
uniform sampling of the feasible region.

This method succeeded on some truss struc-
ture optimization problems, where the other
genetic techniques for handling the con-
straints failed to give good results. Moreover
in some domains, as in automatic generation
of software test data, no other technique can
be easily applied, as some constraints are not
even computable until others are satisfied.

1 INTRODUCTION

Most optimization problems are constrained problems,
i.e. the search space is restricted to some subspace of
the defining space of the function to optimize. Let
us suppose we want to maximize a non negative real-
valued function F, called the objective function, de-
fined on some space F, called the search space.

The constraints are equalities or inequalities the solu-
tion is required to satisfy, involving some real-valued
functions C; defined on E. In many cases, the main
difficulty of this problem lies in identifying the feasible
region E', the subspace of E where the constraints are

Spyros Xanthakis
Research Department
OPL
10 rue Alfred Kastler, F-14000 CAEN

satisfied. The feasible region can have any shape: It
can be neither convex nor connected.

The classical numerical algorithms (see (Fletcher 87)
for instance) quickly fail to give the right solution (or
to give any solution at all) when the problem lacks
"regularity” (like linearity, convexity, differentiabil-
ity).

Genetic Algorithms (GAs) (Holland 75, Goldberg 89)
have now been used successfully to solve optimiza-
tion problems in many domains, even though they are
not function optimizers (De Jong 92). Their ability
to converge to the fittest points of the search space,
in a finite, though often very large, number of gen-
erations, has been studied in many works: Theo-
retically in (Zhigljavski 91, Davis 91) with uncheck-
able hypotheses, heuristically with the well-known
Schema Theorem (Holland 75) and its generalizations
(Radcliffe 91) and of course experimentally (see pa-
pers in (ICGA 89, ICGA 91, PPSN 92) for instance).
But most of the works on GAs address the general
optimization problem, rarely mentionning explicitely
constrained problems.

We present in this paper a general-purpose technique
for handling constraints in GA optimization processes.
It is based on the notion of Behavioural Memory
(de Garis 90), which takes into account the informa-
tion contained in the whole population after some ge-
netic evolution. The first steps of the whole process
are devoted to just sampling the feasible region. The
last step is then the genetic evolution of that sample,
to optimize the final objective function.

In section 2, we review some existing works in the
field of GAs devoted to constrained optimization. In
Section 3 we introduce and discuss our method on a
simple example. In Section 4 we give the first results
obtained on some Truss Structures Optimization prob-
lem, for which other GA approaches failed to succeed.
Section 5 presents the problem of Automatic Software
Test Data Generation, where other classical optimiza-

tion approaches have encountered major combinatorial
limitations. The particularity of this problem is that
constraint C; can only be computed after constraints
Ci,...,C;_ are satisfied.

2 GAs AND CONSTRAINTS

As constrained problems are quite numerous
among optimization problems, there has been many
attempts to solve them using GAs. Nevertheless, as
pointed out in (Davis 87), the methods used are ei-
ther based on some penalty function, or problem de-
pendent, or restricted to some particular objective
functions and/or constraints. A review of the dif-
ferent ways GAs handle constraints can be found in
(Michalewicz 91).

We shall briefly discuss the weaknesses or the limita-
tions of these approaches.

2.1 ADJUSTING THE WEIGHTS, OR
THE PENALTY FUNCTION METHOD

The most widely used method to treat constraints is
to incorporate them in the objective function, and to
use standard methods for unconstrained optimization:
In GAs, the fitness function usually becomes some
weighted sum of the original objective function minus
some penalty for every constraint violation. The prob-
lem then becomes to adjust the penalty function, and
the relative weight of the objective function as well as
the different constraint violation penalizations.

There is no general solution to this problem, neither
in classical numerical methods, nor in the GAs field.
Some guidelines for the penalty functions design are
given in (Richardson 89). The authors unfortunately
conclude that their method can hardly be generalized.
From our experience, the penalty function method is
robust when the feasible region is "large” ! or when
the problem is ”smooth”. It then remains the easiest
and best way to treat constraints.

On more difficult problems, designing a reasonnable
penalty function can become a domain dependent task.

2.2 DOMAIN SPECIFIC GAs

The best results obtained by GAs on constrained prob-
lems use problem dependent methods, where the ge-
netic operators, the fitness function and the search
space itself are tailored to take the constraints into
account. When possible, this approach, which uses as
much domain-specific knowledge as possible, is proba-
bly the best way to tackle constraints.

Cardinal-

and on

!depending for instance on the ratio
ity(E’)/Cardinality (E) for discrete problems,
measure(E’) /measure(E) for continuous problems.

Note that the constrained problem (P) on E can al-
ways be posed as the unconstrained problem on the
feasible region E’. But, as already mentioned, we are
concerned by constrained problems where the feasible
region is not computable by direct methods. In partic-
ular, in order to apply successfully GAs to the uncon-
strained problem, one should be able to both generate
an initial random population in E’, and design recom-
bination and mutation operators closed in E’, suitable
for genetic optimization.

Theoretical studies adressing the design
of good recombination operators are yet incomplete
(Radcliffe 91). It is nevertheless well established that
initial repartitions of the population and mutation op-
erators must have continuous density of probability
on E (Zhigljavski 91). And all the widely used (when
available) projection operators, and other repair algo-
rithms certainly don’t respect these conditions, as they
induce a discontinuity on the boundary of the feasible
region. Of course this warning does not prevent such
approaches from succeeding.

By domain-specific GAs we don’t exclusively mean the
above mentioned family of repair algorithms, but also
the following approaches:

e the TSP as solved in (Grefenstette 87) ;

e the handling of linear constraints where the feasible
region is convex, ensuring that the solution lies on its
boundary (Michalewicz 91) ;

e the general method based on constraint propagation
(Paredis 92), which applies on problems like job shop
scheduling, where the constraints are analytically de-
fined, and the propagation of the constraints is sym-
bolically or numerically possible.

3 BEHAVIOURAL MEMORY

We propose to address the general problem of ge-
netic constrained optimization by a multi-steps pro-
cess: The initial steps are devoted to sampling the
feasible region, i.e. initializing a population on which,
in the sole last step, the objective function is optimized
using standard GAs.

The scheme we use is based on the Behavioural Mem-
ory paradigm: the population resulting from an evo-
lution under genetic presssure can be viewed in a
whole as a memory containing some essential infor-
mation about the context it evolved in, that is the
fitness function used in the GA. Such scheme, de-
spite the fact that it has already been proved to
be helpful on some difficult optimization problems
(de Garis 90, Desquilbet 92), has not yet, as far as we
know, been systematically applied to constrained op-
timization.

In the simplest case, the whole optimization process is
a two phases process:

5 T \
Constraint 1 —
4 - Constraint 2 — _|
e
3 - —
2 - Maximum in A (0.10) +
Maximum in A (0.09) x
Maximum in B (120) =
1 Maximum near A (66) O
Maximun of F (256) A
0 Ad \ \ \ \
0 1 2 3 4 5

Figure 1: The feasible regions.

e Evolve an initial random population with some
standard GA, the fitness function being related
to the constraint satisfaction.

e Take the final population resulting from this evo-
lution, and use it as initial population for a GA
with the objective cost function as fitness func-
tion, which we override by assigning zero fitness
whenever the constraints are not satisfied.

3.1 AN ARTIFICIAL PROBLEM
Consider the following function of two real variables:

sin(z)? x sin(y)

Fow) = =y

on the space E = {(z,y); 0 <2 <10, 0 <y <10}

This function has many local optima in E. Let us treat
two optimization problems involving F:

Max { F(x,y) ; (x,y)€E }

(P1)q x*~y+1<0

x—(y—4)* <1

Max { F(x,y) ; (x,y)€E }
(P2) 4 x*~y+1<0

x—(y—4)? <1 OR x—(y—1)? <0.1

The characteristics of the problems can be found on
Fig. 1: Domain A (resp A|J B) is the feasible region
of P1 (resp. P2) ; there are in A two maxima (points
a and a') with very similar values for F ; but many
other local maxima take considerably higher values,

including the global maximum for P2 (point b in B),
and the overall global maximum of F (point d).

This explains why the design of a penalty function is
difficult here 2: with low weights, the global maximum
of the penalized function is still outside the feasible
region, near (0,0) ; with high weights, region A appears
in the fitness landscape like some plateau, making hard
for the GAs to distinguish between different maxima.

The experiments reported are done with a lab-made
GA package based on standards: real encoding,
stochastic remainder selection with fitness scaling fac-
tor of 2.0, crossover at rate 0.2 performed by random
barycentric combination, both offsprings replacing the
parents, and mutation at rate 0.2 by addition of gaus-
sian noise of standard deviation 0.5. The algorithm
stops after 50 generations without improvement.

3.2 SAMPLING THE FEASIBLE REGION

The scheme we propose is contained in Figure 2 for
problem P1:

e A randomly initialized population evolves to min-
imize the violation of the first constraint, until a
given percentage of the population (we call the
flip threshold, and denote by ¢) is feasible for the
first constraint.

e This population is then the starting point for the
second phase of evolution, minimizing the viola-
tion of the second constraint. During that phase,
points that are not feasible for the first constraint
have zero fitness, and thus disappear due to selec-
tion. The stop criterion is again the satisfaction
of the second constraint by the flip threshold per-
centage ¢ of the population.

e We now have a feasible population to start op-
timizing function F. During this last step, non
feasible points are in turn eliminated through se-
lection.

Of course, this is the ideal case. Let us now detail
some of the key features.

3.3 FITNESS FUNCTIONS

It is wellknown that the shape of the fitness landscape
is of utter importance for the behaviour of GAs. Dur-
ing the minimization of constraint C;, we set the fit-
ness function to M — C;, for a "sufficiently large” posi-
tive number M. But two reasons prohibit an absolute
choice of M:

e [t is not always easy to get even an approximation
of what the maximum of the violation of some

2though we did find sucessful weights and a priori max-
imum values of the constraint violations for these simple
and smooth problems.

Figure 2: End of first steps (Problem P1).

constraint will be (see section 4 for instance) ;
and

e choosing a too large constant leads to forbid any
distinction between "nearly feasible” and "really
feasible” points for the constraint C; at hand, as
the whole fitness landscape nearby the feasible re-
gion - with low constraint violation - will be flat-
tened by the zero fitness assigned to the points
failing to satisfy constraints Cy,...,C;_1.

This is why parameter M is adjusted dynamically at
each generation.

At generation t, the maximum value of the constraint
violation T'; is computed. But some fluke mutation
can suddenly give very high constraint violation, in
which case setting parameter M directly to I'; can have
the same disastrous effect than choosing a too large
constant value for M. So we want parameter M to be
non-decreasing along generations.

The fitness function we used throughout the following
experiments is defined at generation ¢ by (M; — C;)T,
where M; is the minimum of T'; and M;_;.

3.4 GENETIC DIVERSITY

All experiments on problem P1 made with the pre-
ceeding algorithms converged to the global maximum
(with pop. size 30 to 100, flip threshold from 0.5 to
0.9). The two first steps were achieved in 10 to 30
generations, the optimal point being reached after 100
to 150 more generations.

But the first experiments on problem P2 showed that
the key feature in the Behavioural Memory paradigm
is to sustain genetic diversity within the population:
We wish the final population of each intermediate step

0 O [| |

without sharing + _|
with sharing O

0 1 2 3

Figure 3: Effect of sharing (Problem P2).

to be the initial population of the following step, sam-
pled as uniformly as possible over the feasible region of
the current constraint.

e All the points of the target feasible region must
admit the same fitness value, to avoid any conver-
gence inside that region. In particular, the final
objective function must not be taken into account
before the final step.

e Premature convergence toward the first feasible
points found by the algorithm must be avoided.
And this is specially important when the feasible
region is not a connected domain, as in P2. To
this end, we use the sharing scheme as described
in (Goldberg 89, Deb 89), together with restricted
mating.

Figure 3 shows the repartition of the population at the
end of step 2 for problem P2, with and without shar-
ing: Without sharing, the smaller domain B is not
sampled at all and the initial population of the third
phase is completely contained in domain A. The right
solution, which lies in B, will only be found depending
on a lucky mutation, as the whole space between A
and B gets zero fitness in the last step.

The choice of the sharing factor ¢ is important, but
that of the flip thershold ¢ is as well, as demonstrates
Table 1. For a population size of 50 on problem P2,
it reports the results of ten independent runs: First
the number of successes of the algorithm in finding the
maximum in B and not in A, then the average number
of generations it took to get the required percentage
of feasible points for the second constraint 3.

3where *** indicates at least one run could not reach
that percentage.

Table 1 : Effects of the Flip Threshold and the
Sharing Factor

c\d | 50% | 60% | 0% | 80 %
0 |1-18]1-26| 2-32 | 0-32
01 |6-26|8-35| 7-40 | 5-71
05 | 6-24|9-32| 7-45 | 5-61
1 |7-33]9-36| 6-54 | 8-87
2 |6-35|5-46| 3-75 | 3-358
3 | 8-47|5-55|3-144 | 3- %¥x
5 | 9-64|6-81|6-133|4- **x

The time to correctly sample the feasible region in-
creases with the flip threshold ¢, which is natural, but
also with the sharing factor o.

Using sharing, every point can be thought of as a
small elastic ball of radius o, repelling other points
of the population, and - possibly - sending them in
other components of the feasible region. Therefore,
the "amount” of feasible region so sampled increases
with o.

But, in order to satisfy the second constraint, a certain
amount of such "balls” must get in the feasible region,
whose size is finite - small in our case. So, as o goes
on increasing, it becomes more and more difficult to
meet the requirement of constraint satisfaction for the
same number of points. In which case the unavoidable
genetic drift due to so numerous useless generations
spoils the possible genetic diversity this sharing factor
could have brought. And, of course, when o and ¢ are
too large, the required constraint satisfaction simply
becomes impossible.

The sharing factor o and the flip threshold ¢ must be
adjusted together: the order of magnitude of o can be
approximated from below using large ¢, and increasing
o until the required percentage of feasible points can-
not be reached any more. Slightly decreasing ¢ should
then allow to find good values for both ¢ and ¢.

4 TRUSS STRUCTURE
OPTIMIZATION

The previous scheme has been sucessfully applied
to the test problems of truss structure optimization
(Haug 79): The 10-bar (2D) and the 25-bar (3D) truss
structures.

The design variables to optimize are here the section
areas of the bars, the objective function to minimize
is the weight of the structure, and the constraints are
maximum values of the stress in the bars, to avoid
collapsing of the structure.

These problems can be solved by many gradient-like
numerical methods when the sections take continuous

real values. But such methods cannot be used when
some of the design variables are discrete: It could be
the material the bars are made of, or even the possi-
ble section areas (if limited to manufactured items).
And GAs indeed can solve both discrete and contin-
uous problems, as we shall now briefly report (more
details can be found in (Schoenauer 93)).

Only the section areas are taken here as design vari-
ables, taking values in some given real interval (the
continuous problem) or in a given set of 36 preset val-
ues (the discrete problem). The genetic operators are
those of section 3.1, "naturally” discretized in the dis-
crete case.

The constraints are maximal values for the stress in
every bar when some given loading is applied to the
structure. There is no analytical way to express such
stress values ; they have to be computed using some
finite element method (which takes up to a few tenth
of second on a 68040-based computer). Moreover, it
is not easy to guess some upper bound for these stress
values: The mechanical model will go on giving huge
values long after the structure has in fact collapsed.

We use 100 structures in the population ; the given
results express averages on 5 runs with different initial
populations. In the discrete case, around 30 gener-
ations are needed to satisfy all the stress constraints
in 70% of the population (being of the same nature,
the 10 constraints are counsidered in one single step).
The convergence toward the solution is reached in 500
to 800 generations. In the continuous case, about 100
generations are necessary to sample the feasible region,
and about 5000 generations are necessary to reach a
good approximation of the solution®.

On both problems, most of the penalty functions, first
tried with GAs, failed - converging towards local max-
ima, or failing to stabilize.

To end this section, it must be stated that GAs have
a huge field of application in Structure Optimization:
Problems involving qualitative variables (e.g. the ma-
terial), and even the topological optimization problem,
where the number and connections of the elements are
unknown. And all these problems involve constraints.

5 GENERATING SOFTWARE TEST
DATA

Software testing is generally considered to be the most
significant and labour intensive phase in the software
lifecycle because of both of its economic consequences
and technical complexity. The major part of the test-
ing effort is the Test Data Generation process (TDG),
nowadays poorly automated, which consists in choos-
ing a representative subset of inputs then executing

*which is more than 50 times slower than classical gra-
dient methods!

the program and verifying that the results are in ac-
cordance with the specifications. Our concern is the
automation of the structural test data generation task,
that is the generation of test data (TD) which are able
to execute (we also say ”cover” or ”sensitize”) selected
substructures of the software (i.e. statements, crucial
paths, etc). It has been established that providing a
general automated tool for TDG is formally impossi-
ble (Howden 77). In fact the sensitization of a software
substructure can be considered as the satisfaction of
a set of conditions, that is the conditions which lead
the execution flow to visit the specific statement. For
instance if we wish to execute the Do_exception state-
ment of the following program (a and b are inputs, f;
and fo are arbitrary functions) :

read(a,b) ;
a = fi(a,b);
if (a < b) {
b = f5(a,b);
if (a > b) Do_Exception;

we have to satisfy the two conditional if statements.
Moreover the second condition cannot be established
before the first one has been satisfied (we need to know
the new values of variables a and b after the execution
of function fa).

Three main approaches tackle the automatic TDG
problem :

e The predominant approach is random testing
(Duran 80): Input values are randomly gener-
ated and the substructures covered are observed
by means of instrumentation (additional state-
ments tracking program execution). The lim-
itation of this approach comes from its blind-
ness: Too nested structures are never executed
and equality conditions are rarely satisfied.

e In symbolic execution, variables are assigned sym-
bolic values and program statements are executed
symbolically by means of algebraic manipulations
(Clarke 83). However, dynamic informations (like
pointers, arrays or number of iterations) must be
hypothesized during symbolic execution, leading
to an unavoidable combinatorial explosion when
non toy programs are considered.

e In the dynamic approach (Korel 90), an initial
random set of TD is generated and progressively
adapted during consecutive executions with the
goal of sensitizing the substructure chosen by a
test strategy.

The condition satisfaction task (e.g. satisfy state-
ment if (@ < b) ...) is expressed in terms of opti-
mization (e.g. minimize the expression a — b where
a and b are the observed values just before the first i f
statement). Classic gradient-like optimization meth-
ods meet a number of difficulties. First there is no

analytic way (unless we adopt symbolic execution) to
express the condition to be optimized. Secondly, a
problem of lack of orthogonality comes from the inter-
dependency between parameters. Moreover, the values
may evolve discontinuously during the execution of the
program. Lastly is the problem of local optima.

All these observations lead to adopt GA for the au-
tomatic TDG using a dynamic approach. Given the
stepwise nature of the constraint satisfaction process,
we adopted the Behavioral Memory paradigm as pre-
viously described. The constrained GA optimisation
algorithm is embedded into an automatic test data
generator named TAGGER. The inner loop is the fol-
lowing: Given a structure,

1. A simple Data Flow Analysis algorithm as de-
scribed in (Xanthakis 92) is used to determine the
subset of inputs which affect the conditions ap-
pearing at the structure to cover.

2. An initial random population of values for this
subset is produced.

3. For each constraint, the popuulation evolves until
some given percentage of the population satisfies
it, allowing to compute the next one. When one
individual satisfies this last constraint, the given
structure is covered. The loop exits, asking the
generator for the next structure to cover.

The TAGGER prototype has been used on a number of
critical programs, though not yet in an industrial envi-
ronment. Nonetheless the results so far are extremely
promising. Coverage metrics of 100 % of branches are
often achieved with a performance well beyond by ran-
dom testing (5 - 35 times faster when a solution can
be found by random testing).

6 CONCLUSION

We presented a general method to handle constraints
in GAs: First sample the feasible region by genetically
evolving a population in the whole search space min-
imizing some constraint violation ; then, evolve the
resulting population to maximise the initial objective
function on the feasible region so sampled.

Our method is problem independent. We emphasize it
can handle any computable constraints. It also allows
GAs to be independant of the fitness landscape out-
side the feasible region: It can be non defined at some
points, or have numerous local optima, ... Moreover, it
optimizes in its last step the exact objective function,
not some artificial transformation.

The counterparts are an increased computational cost
as each step is a partial GA optimization in itself, and
the need to maintain genetic diversity during evolu-
tion, whatever scheme is used. And when using the

sharing scheme, the sharing factor must be adjusted
very carefully.

We do not claim to outperform all other methods for
constraints handling using GAs. In particular when
feasible region is large, using penalty function may be
a cheaper strategy. And designing problem-specific op-
erators will probably, when possible, give better results
than any general method.

But in many problems, like in engineering optimiza-
tion for instance, the feasible region is small and quite
sparse in the whole search space, and the constraints
are available only through some heavy numerical com-
putation. These restrictions forbid the use of standard
methods (the feasible region is not convex, nor does
the solution lie on its boundary) as well as the de-
sign of specific closed genetic operators. Moreover in
problems like the generation of software test data, the
method we propose seems to be the only one to be able
to handle ”hierarchically computable” constraints.

References

(Clarke 83) L.A. Clarke, D.J. Richardson, Symboli-
cally evaluation - an aid to testing and evalua-
tion, University of Massachussets Technical Re-
port, 83-41, 1983.

(Davis 87) L. Davis, M. Steenstrup, Genetic algo-
rithms and simulated annealing : an overview,
in (Davis ed. 87), pp 1-11.

(Davis 91) T. E. Davis, J. C. Principe, A simulated
annealing-like convergence theory for the simple
genetic algorithm, in (ICGA 91) pp 174-181.

(Deb 89) K. Deb, D. E. Goldberg, An investigation of
niche and species formation in genetic function
optimization, in (ICGA 89), pp 42-50.

(Fletcher 87) R. Fletcher, Practical Methods of Opti-
mization, second edition, John Wiley and Sons,
Inc., New York, 1987.

(de Garis 90) H. de Garis, Genetic Programming :
building artificial nervous systems using geneti-
cally programmed neural networks modules, in
Proceedings of the 7" International Conference
on Machine Learning, R. Porter B. Mooney Eds,
Morgan Kaufmann, 1990, pp 132-139.

(Haug 79) E.J. Haug, J.S. Arrora, Applied Optimal
Design, John Wiley and Sons, Inc., New York,
1979.

(De Jong 92) K. A. De Jong, Are genetic algorithms
function optimizers I, in (PPSN 92), pp 3-13.

(Desquilbet 92) C. Desquilbet, F. Sassus, sous
la direction de M. Schoenauer, Reconnais-
sance d'un detail d’'une image par algorithmes
génétiques, technical report, Ecole Polytech-
nique, Palaiseau, Mars 1992.

(Duran 80) J.W. Duran, S.C. Naftos, An evaluation
of random testing, IEEE Transactions in Soft-
ware Engineering, 10 (4), pp 438-444, 1980.

(Goldberg 89) D. E. Goldberg, Genetic algorithms in
search, optimization and machine learning, Ad-
dison Wesley, 1989.

(Grefenstette 87) J. J. Grefenstette, Incorporating
domain specific knowledge into genetic algo-
rithms, in (Davis ed. 87), pp 42-60.

(Holland 75) J. Holland, Adaptation in natural and
artificial systems, University of Michigan Press,
Ann Harbor, 1975.

(Howden 77) W.E. Howden, Symbolic testing and
the DISSECT symbolic evaluation system, IEEE
Transactions in Software Engineering, 3 (4), pp
266-278, 1977.

(Korel 90) B. Korel, Automated software test data
generation, IEEE Transactions in Software En-
gineering, 16 (8), 1990.

(Michalewicz 91) Z. Michalewicz, C. Z. Janikov,
Handling constraints in genetic algorithms, in
(ICGA 91), pp 151-157.

(Paredis 92) J. Paredis, Exploiting constraints as
background knowledge for genetic algorithms :
a case study, in (PPSN 92), pp 229-238.

(Radcliffe 91) N. J. Radcliffe, Equivalence Class
Analysis of Genetic Algorithms, in Complex Sys-
tems 5, pp 183-205, 1991.

(Richardson 89) J. T. Richardson, M. R. Palmer, G.
Liepins, M. Hilliard, Some guidelines for genetic
algorithms with penalty functions, in (ICGA 89)
pp 191-197.

(Schoenauer 93) M. Schoenauer, Z. Wu, Optimi-
sation discrete de structures par Algorithmes
Génétiques, Actes du Colloque National en Cal-
cul de Structures, Giens, Mai 1993.

(Xanthakis 92) S. Xanthakis, C. Skourlas, An auto-
matic tool for data flow verification of structured
program, Proceedings of the 2" International
Conference on Software Quality, Toulouse, 1992.

(Zhigljavski 91) A. A. Zhigljavski, Theory of global
random search, Chap. 5, Kluwer Academic Pub-
lishers, 1991.

(Davis ed. 87) L. Davis Editor, Genetic algorithms
and simulated annealing, Morgan Kauffman
Publishers, 1987.

(ICGA 89) J. Shaffer Editor, Proceedings of the 37¢
International Conference on Genetic Algorio-
thms, George Mason University, Morgan Kauff-
man Publishers, June 4-7 1989.

(ICGA 91) R. K. Belew, L. B. Booker Editors, Pro-
ceedings of the 4" International Conference on
Genetic Algoriothms, University of California,

San Diego, Morgan Kauffman Publishers, June
13-16 1991.

(PPSN 92) R. Manner, B. Manderick, Proceeding of
the second conference on Parallel Problem Solv-

ing from Nature, Free University of Brussel,
North Holland Publishers, 1992.

