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Abstract—Task-based runtime systems are adopted by appli-
cation developers for their valuable features including flexibility
of execution and optimized resource management. However,
the use of such advanced programming models in complex
HPC applications often requires significant training time and
programming effort. In this work, we share experiences and
lessons learned from the use of StarPU in three independent
projects of various complexity. We reach conclusions, with respect
to training, programming effort, and existing challenges, that are
useful to the communities of application developers, as well as to
the developers of runtime systems. Finally, we suggest extensions
to the runtime systems beneficial to application developers.

Index Terms—StarPU, task-based programming models, HPC

I. INTRODUCTION

Task-based programming models have been proposed to
address challenges imposed by the complexity of modern
parallel and heterogeneous computing architectures. Since
programming paradigms at lower abstraction levels (such as
thread-based) cannot effectively address the resource manage-
ment challenges, programming paradigms at higher level, such
as task-based models, are increasingly adopted by application
developers.

Available runtime systems that leverage the task-based
programming model include PARSEC [1], QUARK [2],
StarPU [3], and StarSs [4]. They offer features such as resource
allocation and scheduling policies of tasks in heterogeneous
systems, including CPU and accelerators. Scheduling deci-
sions are usually made at runtime, based on user-defined
constraints, application requirements and availability of re-
sources. These high-level programming models are a modular
alternative to the heavy tuning of the software for each specific

underlying hardware architecture, which, although it may pro-
vide optimal performance, often requires huge programming
effort. Instead, they offer a flexible and portable application
implementation.

Task-based programming models have been successfully
applied to applications from various domains [5]. However,
the exploitation of the advantages offered by the runtime
systems, is not always straightforward. Building complex
HPC applications on top of task-based runtime systems, of-
ten requires extended changes in code structure and many
algorithmic modifications. More specifically, expressing the
application algorithms as a graph of tasks such that the
dependencies between them are minimized which in turn
maximizes parallelism expression, is often very challenging
and requires significant development effort. Apart from the
development effort, the training time is also a critical factor
for the adoption of the runtime systems leveraging task-
based programming. Finally, the overhead imposed by the
runtime resource management mechanisms is another factor
that determines their effectiveness in each context.

There are several works that evaluate task-based program-
ming models applied either to a few microbenchmarks or to
entire benchmark suites. However, the evaluation is mainly
performed in terms of performance and scalability, often by
comparing taskified applications against other programming
models. For example, the performance and the scalability of
task-based programming models such as HPX, Cilk++ and
OmpSs are presented and often compared against PThreads
and OpenMP in several studies [6][7][8][9].

Only few works discuss aspects beyond performance and
consider programmability and programming effort issues. As
an example, in a recent work, the lines of code between OmpSs



and OpenMP application versions are compared, as an indica-
tor of the readability and compact level of application source
code [7]. However, since the runtime systems are widely
adopted in the HPC community due to their benefits in terms
of flexibility and portability, aspects beyond performance, such
as training and programming effort required should also be
investigated. Indeed, the effort needed to leverage task-based
runtime system advantages, as well as lessons learned by using
them are valuable to the communities of HPC application
developers.

In this work, instead of focusing on the evaluation of
the efficiency of runtime systems in terms of performance
and scalability, we focus on alternative aspects, such as the
training time needed to get familiarized with a task-based
runtime system and the programming effort required to apply
it. Therefore, this work is a contribution to sharing experiences
and lessons learned by building HPC applications on top of
a task-based runtime system. It targets the communities of
HPC application developers that consider the use of task-
based runtime systems and take into consideration not only the
expected performance gains, but also the programming effort
for application code modifications. Additionally, it targets de-
velopers of task-based runtime systems, who expect feedback
from application developers in order to improve their tools.

The approach followed in this work is based on the col-
lection of experiences from three independent projects, in
which an application leverages the StarPU task-based runtime
system. Based on the analysis of the experiences, we provide
interesting conclusions and suggest improvements for future
StarPU extensions. We argue that such experiences and lessons
learned are important for application developers considering
the use of task-based runtime systems, but are also a valuable
feedback to developers of runtime systems.

The rest of the paper is organized as follows: In Section 2
we provide a brief introduction of StarPU. In Section 3 we
provide information about the three independent projects in
which StarPU was applied in specific applications and present
results for each one. In Section 4 we discuss findings based
on cumulative results from all projects. Finally, in Section 5
we draw conclusions.

II. THE STARPU RUNTIME SYSTEM

The StarPU runtime system aims at providing optimized
application execution over large clusters of heterogeneous
systems, such as composed of CPUs and GPUs [10]. It uses a
task-based programming paradigm which captures high-level
information from the application, and allows its scheduler to
be very well informed of the computation performed by the
application.

A. Terminology

Although the fundamental programming interface of the
StarPU runtime system is the submission of a Directed Acyclic
Graph (DAG) of tasks, applications expressing their compu-
tation as a task graph would be tedious. The recommended
StarPU programming interface is thus rather based on the more

convenient notions of data, codelet, and tasks, and the actual
task graph is inferred from these.

A piece of data can be a vector, a matrix, a tile within a
matrix, a sparse matrix, a block of a block-sparse matrix, etc. It
represents the unit that StarPU will manipulate, i.e. transfer to
a GPU, send over the network etc. It will be given as input and
output parameters to tasks. The application needs to explicitly
register its data to StarPU before submitting tasks since StarPU
will handle all the transfers to GPUs and over the network. A
data can be partitioned into sub-data, for instance to split a
matrix into tiles.

A codelet is a collection of functions which achieve the
same computation, thus various implementations for the com-
putation. For instance, an sgemm codelet would be composed
of the pointer to the cblas_sgemm function for execution
on CPUs and the pointer to the cublasSgemm function for
execution on CUDA GPUs, and so on for OpenCL, FPGA, etc.
or even multiple implementations for the same architecture.
The codelet also records the number of parameters for the
function and whether they are used as input, output, or both.
In the sgemm example there are 3 parameters: matrix tile A
and B as input, and matrix tile C as input and output. Last
but not least, the codelet contains performance models for the
different implementations of the computation, which allows to
predict an estimation of the time taken by each implementation
for a given e.g. data input/output size. This notably allows
to make a balance between GPU acceleration and the cost
of transferring the data to the GPU. Different performance
models are available, the most commonly-used is the history-
based model which is calibrated on-line during application
execution.

Submitting a task then boils down to combining a codelet
with some data: for instance, applying the sgemm codelet over
three tiles of a matrix.

B. Sequential-Task-Flow (STF) programming paradigm

Since the codelet provides input/output information, the
programming interface can infer the dependencies between
tasks to attain a sequential consistency semantic. This yields
to what we called the Sequential-Task-Flow programming
paradigm. For instance, algorithm 1 is the tiled Cholesky
factorization, expressed with the STF paradigm.

In line 2, a task is submitted that applies the POTRF codelet
that will read and write tile A[k][k]. In line 4, tasks are
submitted that will make the TRSM codelet read the same
A[k][k] tile. StarPU will thus automatically add a read-after-
write dependency between the POTRF task and the TRSM
tasks. Similarly, all other dependencies are inferred, resulting
with building the Cholesky task graph, while the programmer
is only faced with a sequential-looking source code.

C. Features provided by a runtime system

Since the runtime system has a complete vision over the
data and the tasks to be computed, it is able to provide the
application with a flurry of features without further effort from



Algorithm 1 STF tile Cholesky
1: for (k = 0; k <NT; k++) do
2: starpu task insert(&POTRF, RW, A[k][k], 0);
3: for (m = k+1; m <NT; m++) do
4: starpu task insert(&TRSM, R, A[k][k], RW,

A[m][k], 0);
5: for (n = k+1; n <NT; n++) do
6: starpu task insert(&SYRK, R, A[n][k], RW,

A[n][n], 0);
7: for (m = n+1; m <NT; m++) do
8: starpu task insert(&GEMM, R, A[m][k], R,

A[n][k], RW, A[m][n], 0);
9: starpu task wait for all();

the application programmer. Some of these features are listed
below.

• Maximum parallelism, since tasks are released for exe-
cution as soon as their input data are available.

• Data transfer to/from accelerators, with
transfer/computation overlapping and data prefetching
and eviction.

• Optimized scheduling that takes into account load bal-
ancing, task duration and data transfer delays [11].

• Out-of-core management when the data set is larger than
the memory [12].

• Distribution of tasks over nodes of a cluster, with auto-
matic data transfers [13].

The support for these features however comes with some
cost which may limit the obtained performance gain. The typ-
ical overhead per task, due to runtime operations (submitting
the task, handling its dependencies and data, scheduling it),
is usually around one or two dozens of microseconds, which
means that for the overhead to remain negligible, the amount
of work per task should be well beyond 100µs worth of
computation, typically 1ms or even 10ms.

III. APPROACH DESCRIPTION AND APPLICATION RESULTS

The selection of the applications to be included in this study
was based on the following three criteria:

• Building the selected applications on top of StarPU to
be meaningful. In other words, the obtained results have
to be interesting to application developers, as well as to
StarPU developers.

• The complexity of the application source code should
vary: We selected both small linear algebra kernels, as
well as large and complex scientific applications.

• To include applications developed in various program-
ming languages which are dominant in HPC computer
programming: C, C++ and FORTRAN.

In the context of this study, we define project as all the
work undertaken by one or more engineers in an institute who
familiarized themselves with StarPU, taskified an application,
applied StarPU, collected evaluation results and finally pro-
vided feedback. The three projects included in this study are

TABLE I. OVERVIEW OF SELECTED PROJECTS

Projects
Linear Algebra

Kernels KKRnano MetalWalls

Original application
programming model - OpenMP/MPI OpenMP/MPI

Motivation Demonstrate
execution flexibility

Evaluate
StarPU

Exploit StarPU
features

Original app. LOC ∼200 per kernel ∼3K ∼7K
Programming

Language C FORTRAN F90 and C++

Institute LIU NTUA, Juelich Pau University, Maison
de la Simulation, Saclay

based on the use of StarPU in: i) A set of linear algebra kernels
ii) KKRnano (scientific application that belongs to materials
science domain) iii) MetalWalls (scientific application, which
is a supercapacitors simulator). An overview of each project
is shown in Table I. These projects were completed indepen-
dently between 2018 and 2019 by different research groups.
None of the engineers had prior experience with StarPU
and this applies to all projects. Also, all engineers followed
the guidelines prepared by StarPU developers and received
guidance from expert StarPU developers when necessary [14].

The information collected from each project is the follow-
ing:

• Training time required by engineers to get familiarized
with StarPU

• Programming effort required to apply StarPU in terms of
lines of code and development time

• Parameters that affect the performance of the StarPU-ized
version of each application and challenges to improve
performance

• Features that StarPU could include as future extensions
to assist application developers

A. Linear algebra kernels

We applied StarPU in a set of widely-used Linear Algebra
Kernels: i) Sum of matrix row elements, ii) 2D convolution,
iii) 1D Jacobi. The first kernel is the most computationally
intensive part of a count-based streaming aggregation algo-
rithm, as described in the literature [15], which is developed
both for CPU and GPU. The rest of the kernels are taken
from the Polybench benchmark suite (PolyBench/C 4.1 and
PolyBench/GPU 1.0), also available both in CPU and GPU
implementations [16]. The goal was to evaluate the flexibility
of execution of such kernels in heterogeneous systems, based
on StarPU scheduling decisions.

This work was conducted by a junior engineer in LIU
without prior experience in StarPU and the training time
required to get familiarized with StarPU was about 2 months.
The engineer was not initially familiar with the Linear Algebra
Kernels source code. The steps to apply StarPU to each one
of the kernels were the following:

1) Taskification and StarPU implementation: The main
computational part of each kernel was submitted to
StarPU as a single task.

2) Enable StarPU scheduling decision-making based on the
history-based performance model provided by StarPU



mechanisms. The model needed to be calibrated by
executing the task at least 10 times before starting to
collect results, according to StarPU instructions.

3) Execution of the application for each different input
size in an heterogeneous node (CPU and GPU) and
observation of the scheduling decisions taken by StarPU.

Applying the above steps in the first kernel required about
2 weeks due to limited familiarization with StarPU. However,
for the second and the third kernel it required 2 days, only. The
total number of StarPU-specific lines of source code needed
(initializing StarPU, defining and submitting tasks, etc.) were
about 35 in each kernel.

Linear algebra kernels evaluation results
The evaluation was conducted in a computing system with 2x
Intel Xeon Gold 6138, 2x20 H/T cores and an NVIDIA Tesla
V-100. With respect to memory specifications, the system con-
tains 8 DDR4 DIMMs of 16GB, clocked at 2666MT/s (total
128GB RAM). The first kernel processes double-precision,
while the rest process single-precision data. The scheduling
criterion was to minimize the execution time, based on the
StarPU history-based performance model.

The results are shown in Fig.1. It can be observed that
StarPU assigned the tasks with small computational workload
to CPU, while tasks with large workload to GPU. The task
size ranges from 15ms up to thousands of ms, depending on
the size of the input data.

B. KKRnano scientific application

KKRnano is an HPC application for performing density
functional theory (DFT) computations on nanostructure sys-
tems [17]. It uses a Green function based variant of the
Korringa-Kohn-Rostoker (KKR) method which can be shown
to have linear asymptotic scaling behaviour, as opposed to
the O(N3) scaling behaviour of classical eigensolver-based
DFT solvers. This makes KKRnano particularly suitable to
simulation of huge systems with hundreds of thousands of
atoms on exascale systems.

The most computationally expensive part of KKRnano is the
computation of the discretized and truncated Green function,
which is equivalent to solving a specific huge block-sparse
linear system. This system is solved using the transpose-free
quasi-minimal residual solver, or TFQMR. As a typical KKR-
nano run spends around 90% of its compute cost on this solver,
it was deemed useful to isolate KKRnano’s implementation of
the solver into a custom benchmarking suite.

StarPU, as an advanced programming model is evolving
with various new features [18]. Upcoming features include
multi-criteria scheduling, as well as fault tolerance, which
are important for complex scientific applications, such as
KKRnano. The goal of applying StarPU to KKRnano was
to evaluate an initial implementation of StarPU in such a
complex scientific application, not only in terms of func-
tional requirements (i.e. performance, scalability), but non-
functional, as well, such as programming effort and amount
of code refactoring required. The training time required by

a junior engineer in NTUA to get familiarized with StarPU
was about 2 months. The engineer was not familiar with the
original KKRnano source code.

Fig.2 shows the data flow of the original application (native
TFQMR linear solver) and the application version that inte-
grates StarPU. It is observed that each iteration consists of
two steps. Each step includes a set of Sparse matrix-vector
multiplications (Spvm) followed by a sparse-matrix zgemm
operation (SpGEMM). In the original application, the Spvm
operations are performed one after the other. Each Spvm
operation runs in parallel using OpenMP, when it is feasible.
The SpGEMM operation uses openMP-based parallelism, as
well.

In order to apply StarPU effectively, we followed the steps
below:

1) The Spvm operations are grouped in two StarPU tasks,
as can be seen in the “StarPU-ized” TFQMR linear
solver. Experiments showed that having more than two
tasks would reduce performance, due to the small com-
putational workload assigned to each one. Thus, the
sequential steps of the TFQMR-solver were submitted
to StarPU as two tasks (using C - Fortran interface) in
order to be scheduled in a more efficient way than the
purely sequential.

2) The next step was to register the block compressed
sparse row (bcsr) matrices in StarPU, to partition them
through StarPU and assign all dense matrix multipli-
cations to a single StarPU task. Inside the StarPU
task OpenMP parallelism was applied to the GEMM
operations.

The purpose of this implementation was to let StarPU execute
the six tasks (i.e.three tasks in each step) as a pipeline and
handle data management efficiently.

A significant challenge lied in the fact that the critical parts
of the application were developed in FORTRAN, which is
not fully supported by StarPU. More specifically, the StarPU
functions for partitioning the bcsr matrices were not available
for FORTRAN, so the corresponding application parts were
re-written in C. The re-writing effort was about 1500 lines of
FORTRAN code converted to C and required about 1 month.
The total time and programming effort in order to familiarize
oneself with StarPU, implement StarPU in KKRnano and
obtain results was approximately 5 months.

KKRnano evaluation results
The evaluation results are shown in Fig.3. The computing

system consists of a single node with 2x Intel Xeon E5-2658A,
2x12 H/T cores and 128 GB RAM. All implementations use
AVX2 (Advanced Vector Extensions 2) instructions.

The scalability results of Fig.3 show the execution time
for 690 iterations of the TFQMR solver for three different
implementations. The pure OpenMP is the original imple-
mentation of the KKRnano solver. The StarPU-based imple-
mentation with 6 StarPU tasks is described earlier (StarPU-6-
tasks). We notice that the execution time, compared to the
OpenMP implementation after 15 cores, increases between



Fig. 1. Execution time of a set of linear algebra kernels using StarPU.

Fig. 2. Data-flow of the native and the StarPU-ized KKRnano
versions.

Fig. 3. Execution time for 693 iterations of TFQMR solver of
KKRnano of original and StarPU-ized implementations.

x1.1 and x3. This overhead is attributed to the relatively small
StarPU tasks generated for performing SpGEMM operations.
Extensive profiling shows that the size of each one of these
tasks in terms of computing time is between 0.18 - 0.5ms.
Therefore, although the Spvm operations are about 2 times
faster in the StarPU version of KKRnano (Spvm task size is
about 10msec), the SpGEMM operations are about 3-4 times
slower. This conclusion is also supported by the results of
another StarPU-based implementation of KKRnano (StarPU-
small-tasks), in which, instead of using 6 StarPU tasks, we
assigned each SpGEMM operation to a single StarPU task.
So, instead of using OpenMP parallelization, we applied task-
based parallelization to the GEMM operations. However, re-
sults show that the StarPU-6-tasks implemenation significantly
outperforms the StarPU-small-tasks, due to the very small task
workload of the latter.

Enabling more features of StarPU, such as the seamless
scheduling between CPU and GPU was also investigated.
However, due to the sparsity of the matrix, the arithmetic
intensity is too small and the time needed for data transfer
is expected to exceed the computing time. Finally, one of
the features that would help application developers managing
legacy scientific codes is the extended support of FORTRAN
by StarPU. Indeed, as stated above, in the KKRnano case the
conversion of FORTRAN functions into C required significant
programming effort.



C. MetalWalls scientific application

MetalWalls is a classical molecular dynamics code able to
simulate electrochemical systems and in particular supercapac-
itors with an accuracy that put this numerical tool in a world
leading position [19]. The original production application is
a pure MPI F90 code made of more than 20k lines. A 7K
lines mini-app has been extracted from it and focuses on the
bulk of the computations: a matrix free conjugate gradient that
finds the charge distribution on the electrodes given a bulk
configuration such that a constant potential on the electrodes
is kept. This set of computing kernels are representative of the
application as kernels that have been stripped down retain the
same algorithms and data structures.

The motivation to use StarPU is threefold. i) The task-based
programming model allows to expose more parallelism. Three
physics quantities need to be computed in the conjugate gradi-
ent and they can be evaluated concurrently as they do not have
any dependencies between them. In the original MPI code,
these three quantities are computed in a sequence whereas
with tasks, they are computed concurrently. ii) Tasks allow
for a greater degree of freedom in exploiting the parallelism
in the code especially overcoming the load-imbalance issues.
iii) Tasks also enable the use of heterogeneous architecture
more efficiently with intelligent scheduling. Since StarPU has
the ability to handle heterogeneous architecture with feature-
rich scheduling techniques and sophisticated data-handling, it
enables a powerful framework for a future effort on porting
the application on GPU.

The implementation of StarPU in Metallwals was per-
formed by two senior engineers from CNRS, who have a
deep understanding of the original application, but were not
familiar with StarPU. As a whole, it took two weeks to get
trained on StarPU and another two weeks to implement it in
Metalwalls with some tuning and performance evaluation. This
relatively short time is mainly explained by the fact that the
StarPU implementation has been derived from an OpenMP-
Task implementation. Hence, the key concepts of taskification
and major refactorings were already assimilated and realised.
In total, approximately 650 lines of StarPU specific code were
added to the mini-app.

The process of implementing StarPU in the MetalWalls
mini-application was the following: Since the mini-application
computes data with an algorithm by block in all three of its
main compute kernels, the obvious candidate to create tasks
was based on these blocks. In order to avoid the data-race
condition, the only memory overhead is a temporary vector
created with the size of the original vector × the number of
StarPU workers. This essentially allows to create all tasks from
every kernel at once and they are then executed concurrently
when they are scheduled by the runtime system. At the end
of each conjugate-gradient iteration, the contribution of all
tasks is accumulated into the original vector. As a result,
only a single barrier/synchronisation point is needed for the
entire computation of a conjugate gradient iteration. Here,
although GPU computing is not exploited in this work, it can

Fig. 4. Speedup comparison of StarPU tasks and MPI for small
and large test-cases on a single node.

Fig. 5. Speedup comparison of StarPU tasks and MPI for small
and large test-cases on multiple nodes.

be implemented later in the future to take advantage of the
advanced StarPU task scheduling policies for heterogeneous
computing.

MetalWalls evaluation results
The performance evaluation was carried out on Intel Haswell
dual-socket nodes comprised of 10 cores processor per socket
and with the GNU 9.2.0 compilers. Two test cases (small and
large) were used whereby each kernel is used in different
proportions to evaluate the effectiveness of the StarPU task
performance. The multi-node tests were conducted with 1 MPI
process per socket while the StarPU workers were bound to
the cores analogous to compact for OpenMP threads.

The single-node and multi-node performance of StarPU
tasks in comparison to the original MPI implementation are
given in Fig.4 and Fig.5, respectively. As can be seen, the
StarPU tasks clearly outperform the original MPI implemen-
tation in all cases with an increase in performance going
from 18 to 33%. However, its performance drops noticeably
while going from a single socket to the complete node. This
could be attributed to memory affinity issues due to NUMA
effects between the two sockets. Considering the multi-node
scalability, one can see that the small test-case already reaches
its scalability limit due to its small size, while the large test-



TABLE II. CUMULATIVE RESULTS

Projects
Linear Algebra

Kernels KKRnano MetalWalls

Training time 2 months 2 months 2 weeks

Developing time 1st kernel: 2weeks
2nd-3rd: 2 days 3 months 2 weeks

StarPU-specific LOC ∼35 ∼700 ∼650

Task size 15ms or more 10ms(Spvm)˜
0.34ms(SpGEMM) 0.37ms - 1ms

StarPU extensions suggested - Extended FORTRAN support
Better support of

StarPU and OpenMP combination

case continues to scale almost perfectly.
One of the key factors to consider in task programming is

the size of tasks. It is fine-tuned in the current implementation
based on the execution time of each block for all kernels.
With the help of StarPU runtime overhead data available in
the StarPU handbook, it was chosen to increase the block
size from 8×8 to 128×128 to increase the task-size from
1.44− 3.83µs to about 370− 980µs. More importantly, since
the size of tasks is determined based on the time taken by
each task, it varies significantly from one processor to another.
Choosing the right task-size that performs well on every
machine is difficult and in the Metalwalls case, the too small
task size is the limiting factor for further scalability.

StarPU allows to combine OpenMP simply by enclosing the
OpenMP parallel construct within starpu_pause() and
starpu_resume() function calls within the StarPU region.
But, upon mixing OpenMP and StarPU, the results were not
promising. It is yet to be investigated whether it is due to the
combined overhead cost of both techniques or something else.
Element-wise dependency for vectors can be imposed only by
manually partitioning the vectors into segments/elements and
applying dependency over those segments. The possibility to
express dependency inside a vector could reduce some code
refactoring.

IV. DISCUSSION

Table II summarizes the main findings. The training time re-
quired for engineers without prior knowledge of StarPU ranges
from two weeks to months, depending on the extent by which
they are familiar with the original application. The training
time consists of understanding how to taskify applications
efficiently so as to take advantage of the StarPU features and
how to apply the StarPU API. The development time (i.e. the
time required to taskify the application and apply StarPU), also
depends on the complexity of the application. For example,
in the KKRnano case, since the engineer was not familiar
with the KKRnano application, significant amount of time
was required to understand how to taskify the application and
implement StarPU as efficiently as possible. On the other hand,
in the linear algebra kernels project, although the engineer
was not familiar with the original code, the low complexity of
the code made the process of taskification and implementing
StarPU much faster. This is also reflected in the number of
StarPU-specific LOC.

A difficult but critical process is the identification of an opti-
mal task granularity. Indeed, the task granularity is an utmost
important parameter for performance. It is worth estimating up
front how long the tasks will take, and expect having to group
several pieces of computation into the same task to amortize
the runtime overhead. For the Linear Algebra Kernels, the
task-size is 15ms or higher, therefore the StarPU overhead is
negligible. However, in the KKRNano cases, the relatively low
task size increases the StarPU implementation performance
overhead. Also, the fact that the right task size is platform-
specific as stated in the MetalWalls analysis of results, imposes
even more challenges to application developers.

A task-based runtime system is beneficial to easily obtain
optimized execution on GPUs and distribution over the net-
work with little effort from the programmer beyond migrating
the source code to a task-based paradigm, as demonstrated
in the Linear Algebra Kernels case. An advanced task-based
runtime system is not beneficial for applications with little task
size imbalance and that aim only for CPU execution without
network use.

Additional StarPU features, such as better FORTRAN
support would be very beneficial for developers, since the
conversion of FORTRAN code to C is often very time
consuming. Thus, modern advanced runtime systems would
be much more attractive to developers that maintain legacy
scientific code. Additionally, effectively combining StarPU
with widely used programming interfaces, such as OpenMP,
would allow developers to achieve the required performance
for their applications with increased flexibility.

Finally, although this study is about StarPU, similar con-
clusions can be drawn when using other task-based runtime
systems, such as StarSs [4] and HPX[9]. Even if the precise
overhead will vary according to the runtime implementation,
the same concerns are still applicable.

V. CONCLUSIONS

This work is a contribution to the communities of applica-
tion developers that are considering implementing advanced
task-based runtime systems, such as StarPU, within their ap-
plications. It focuses on the implementation effort and lessons
learned from its use. Based on the analysis of three projects,
we identified parameters that affect the training, development
time, as well as the performance of the StarPU implementa-
tions compared to the corresponding native applications, such



as the optimal task size. Finally, we pointed out FORTRAN
support and OpenMP within StarPU support as important
future StarPU extensions.
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