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Calcium: computing in exact real and complex fields

Fredrik Johansson
∗

Abstract

Calcium is a C library for real and complex numbers in a form suitable for exact
algebraic and symbolic computation. Numbers are represented as elements of fields
Q(a1, . . . , an) where the extensions numbers ak may be algebraic or transcendental.
The system combines efficient field operations with automatic discovery and certifi-
cation of algebraic relations, resulting in a practical computational model of R and C

in which equality is rigorously decidable for a large class of numbers.

1 Introduction

A field K is said to be effective if its elements can be enumerated and the operations
{+,−, ·, /,=} are computable. Examples include the rationals Q, finite fields Fq, and the
algebraic numbers Q.

The fields of real and complex numbers R and C are notably non-effective, even when
restricted to so-called computable numbers (a real number x is said to be computable if
there is a program which, given n, outputs some xn ∈ Q with |x − xn| < 2−n). The
problem is that equality is only semi-decidable: we can in general prove x 6= y, but not
x = y, as a consequence of the halting theorem. Nevertheless, as the example of Q shows,
we can hope for an equality test at least for some numbers within a suitable algebraic
framework.

This paper presents Calcium,1 a C library for exact computation in R and C. Num-
bers are represented as elements of fields Q(a1, . . . , an) where the extension numbers ak
are defined symbolically. The system constructs fields and discovers algebraic relations
automatically, handling algebraic and transcendental number fields in a unified way. It
is capable of deciding equality for a wide class of numbers which includes Q as a subset.
We show a few basic examples, here using a Python wrapper:

>>> (pi**2 - 9) / (pi + 3)

0.141593 {a-3 where a = 3.14159 [Pi]}

>>> phi = (sqrt(5)+1)/2; (phi**100 - (1-phi)**100)/sqrt(5)

3.54225e+20 {354224848179261915075}

>>> i**i - exp(pi / (sqrt(-2)**sqrt(2))**sqrt(2))

0

>>> log(sqrt(2)+sqrt(3)) / log(5+2*sqrt(6))

0.500000 {1/2}

>>> erf(4*atan(ca(1)/5) - atan(ca(1)/239)) + erfc(pi/4)

1

>>> -1e-12 < exp(pi*sqrt(163)) - 262537412640768744 < -1e-13

True

∗Inria Bordeaux and Institut Math. Bordeaux – fredrik.johansson@gmail.com
1Pronounced “kalkium” to distinguish it from the chemical element. Calcium is free and open source

(LGPL 2.1+) software. The source repository is https://github.com/fredrik-johansson/calcium and
the documentation is available at http://fredrikj.net/calcium/.
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In the first example, the field is Q(a) where a = π, and the element is a − 3. The
numerical approximation (x ≈ 0.141593) is computed to desired precision on demand, for
example when printing or evaluating a numerical predicate. Examples 2–5 were chosen
so that the field of the result simplifies to Q.

Such examples are within the scope of the expression simplification tools in computer
algebra systems like Mathematica and Maple.2 The key difference is that we work with
more structured representations; we also handle numerical evaluation and predicates rigor-
ously. Our approach is inspired by various earlier implementations of Q and by theoretical
work on transcendental fields.

This paper is structured as follows. Section 2 presents our high-level strategy for exact
computation, described at a general level without reference to low-level implementation
details. Section 3 discusses the architecture of Calcium. Section 4 relates our strategy to
earlier work and presents some benchmark results.

2 Computing in subfields of C

To simulate R and C, we may start with Q and lazily extend the field with new numbers
ak as they arise in computations. A general way to compute in such extension fields of Q
is in terms of quotient rings and their fields of fractions (henceforth formal fields).

In the following, we assume that a1, . . . , an is a finite list of complex numbers. We let
X1, . . . ,Xn denote independent formal variables, we let µ : Q[X1, . . . ,Xn] → C denote
the evaluation homomorphism induced by the map Xk 7→ ak, and we define

I := kerµ = {f ∈ Q[X1, . . . ,Xn] : f(a1, . . . , an) = 0}

as the ideal of all algebraic relations among a1, . . . , an over Q.

Theorem 1. Assume that I is known (in the sense that an explicit list of generators
I = 〈f1, . . . , fm〉 is known). Then

K := Q(a1, . . . , an) ∼= Kformal := Frac(Q[X1, . . . ,Xn]/I)

is an effective subfield of C.

Proof. The isomorphism is obvious. Decidability of “=” in the formal field follows from
the fact that we can compute a Gröbner basis for I. Given formal fractions p

q and r
s with

p, q, r, s ∈ Q[X1, . . . ,Xn], we can consequently decide whether ps ≡ qr mod I. Indeed,
we can also decide whether q, s 6≡ 0 mod I and thereby ensure that the fractions define
numbers in the first place.

Some easy special cases are worth noting:

• The trivial field K = Q (take n = 0).

• Transcendental number fields K = Q(a1, . . . , an) where the numbers a1, . . . , an are
algebraically independent over Q.

• Algebraic number fields K = Q(a) ∼= Q[X]/〈f(X)〉 where a is an algebraic number
with minimal polynomial f .

2Open source systems tend to perform much worse: SymPy, for example, fails to simplify examples
3–5. Maple curiously also fails to simplify example 3.
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The general case is a mixed field in which the extension numbers may be algebraic or
transcendental and algebraically dependent or independent in any combination.

Example 1. Q(log(i), π, i) ∼= Frac(Q[X1,X2,X3]/I) where I = 〈2X1 −X2X3, X
2
3 + 1〉.

Theorem 1 solves the arithmetic part of computing in finitely generated subfields of C,
at least up to practical issues such as the complexity of multivariate polynomial arithmetic
and Gröbner basis computations. The crucial assumption made in Theorem 1, however,
is that the ideal I is known. In general, finding I is an extremely hard problem. For
example, although Q(π) ∼= Q(X1) and Q(e) ∼= Q(X2), it is an open problem to prove
Q(π, e) ∼= Q(X1,X2). There are specific instances where we can prove algebraic indepen-
dence (the Hermite-Lindemann-Weierstrass theorem, Baker’s theorem, transcendence of
isolated numbers such as Γ(14 ), results for E-functions [11], etc.), but we typically only
have conjectures. Most famous (and implying Q(π, e) ∼= Q(X1,X2) as a special case) is:

Conjecture 2 (Schanuel’s conjecture). If z1, . . . , zn are linearly independent over Q, then
Q(z1, . . . , zn, e

z1 , . . . , ezn) has transcendence degree at least n over Q.

Thus, in general, we can only determine I conjecturally. We address this limitation
below in section 2.2.

2.1 Defining extension numbers

We stress that we cannot simply input I as a way to define the extension numbers
a1, . . . , an, since this does not give enough information about the embedding (that is,
µ) in C. We are not interested in computing in an abstract algebraic structure but in a
concrete model of R and C where we can do (at least) the following:

• Evaluate the complex conjugation map z → z.

• Evaluate numerical ordering relations (x < y, |x| < |y|, etc.).

• Exclude singularities (e.g. division by zero) and choose well-defined branches of
multivalued functions.

We therefore need a symbolic way to define extension numbers a1, . . . , an so that they are
explicitly (numerically) computable, and we need to construct I from this symbolic data
rather than vice versa. The following types of extensions are useful:

• Absolute algebraic: a is a fixed algebraic constant a ∈ Q, for example i,
√
2, e2πi/3,

or [a5 − a − 1 = 0; a ≈ 1.17]. Such a constant can be defined canonically by its
minimal polynomial over Q together with an isolating ball for a root.

• Relative algebraic: a is defined by an equation am/n = c with c ∈ C, or P (a) = 0
with P ∈ C[X] together with an isolating complex ball for a root.

• Transcendental : a is a symbolic transcendental (or conjecturally transcendental)
constant (π, γ, etc.) or function (ez, log(z), zw, Γ(z), Jν(z), etc.) evaluated at
some point.

• Black-box computable: a is defined by a program for numerical evaluation in ball
arithmetic. (We will not be able to prove algebraic relations except self-relations
like a− a = 0.)
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Calcium presently supports extension numbers of the first three types. We repre-
sent algebraic and transcendental extensions in the usual way as symbolic expressions
f(z1, . . . , zp). The arguments z1, . . . , zp are real or complex numbers which may belong
to different fields, say z1 ∈ Q(b1, . . . , br), z2 ∈ Q(c1, . . . , cs), etc.

Each extension number defines a computable number through recursive numerical eval-
uation of the symbolic function and its arguments in arbitrary-precision ball arithmetic.
This is at least true in principle assuming that we can decide signs at discontinuities. An
important improvement over many symbolic computation systems is that we exclude non-
numerical extension numbers: for example, when adding log(z) as an extension number,
we must be able to prove z 6= 0. We fix principal branches of all multivalued functions.

This is only a starting point: we can imagine other classes of extensions (periods,
solutions of implicit transcendental equations, etc.). The main point is not the precise
internal classification but the logical separation between field elements and extension
numbers.

2.2 Working with an incomplete ideal

As already noted, it is often not feasible to find the ideal I necessary to define a formal
field isomorphic to Q(a1, . . . , an). Even in cases where all relations in I in principle can
be determined, they may be costly to compute explicitly, for instance when they involve
algebraic extensions of even moderately high degree.

Fortunately, it is usually sufficient to construct a partial ideal Ired ⊆ I. We call this
the reduction ideal since it typically helps keeping expressions partially reduced (allowing
for efficient computations) even if Ired 6= I. The reason why we do not need to ensure
Ired = I is that we can use the evaluation map µ (implemented in ball arithmetic) as a
witness of nonvanishing for particular field elements. Algorithm 1 provides a template for
evaluating predicates, given a possibly incomplete reduction ideal Ired.

The algorithm uses a work parameter W . This can be taken as a numerical precision
in bits for step (c), say with Wmin = 64 and Wmax = 4096 and an implied doubling of W
on each iteration. We explain the meaning of “heuristics with strength W” in step (d)
below in section 2.3. If we take Wmax =∞ to force a True/False answer, then termination
when z = 0 is conditional on the asymptotic completeness of the methods to find relations
in (d).

Step (b) is applicable, for example, in simple algebraic or transcendental number fields
such as Q(

√
2) and Q(π).

In step (d), we may try to find a general relation for a1, . . . , an, or we may attempt to
prove µ(p) = 0 directly and take J = 〈p〉. The latter is sometimes easier. For example,
if a1, . . . , an are algebraic extension numbers, it is often cheaper to compute the minimal
polynomial specifically for z than to compute all of I.

It is an implementation detail whether we cache the updated ideal Ired for future use
in the same field after exiting Algorithm 1.

2.3 Constructing the ideal

We will now describe a practical strategy to construct a reduction ideal Ired for a given
field K = Q(a1, . . . , an).

Which relations are interesting to include, and when? The minimalist solution is that
we set Ired = {} when we construct K, and only populate Ired lazily in Algorithm 1. The
maximalist solution is to ensure Ired = I up front. There is a tradeoff: on one hand, we
want to capture as much of the true ideal I as possible so that testing equality is trivial
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Algorithm 1: Test if z = 0.

Input: Extension numbers a1, . . . , an, an element z ∈ Q(a1, . . . , an) represented
by a formal fraction p/q with p, q ∈ Q[X1, . . . ,Xn] (such that µ(q) 6= 0), a
reduction ideal Ired ⊆ I, and work limits Wmin, Wmax.

Output: True (implying z = 0), False (z 6= 0), or Unknown.

1. For W = Wmin, . . . ,Wmax, do:

(a) If p ≡ 0 mod Ired, return True.

(b) If it can be certified that Ired = I, return False.

(c) Using ball arithmetic with strength W , compute an enclosure E with
µ(p) ∈ E. If 0 6∈ E, return False.

(d) Using heuristics with strength W , attempt to find and prove a new set of
relations J with J ⊆ I, and set Ired ← Ired ∪ J . (See Algorithm 2.)

2. Return Unknown.

and so that there is minimal expression swell in computations. On the other hand, we
do not want to waste time finding potentially useless relations and computing Gröbner
bases every time we construct a field. As in Algorithm 1, it is useful to make the effort
dependent on a work parameter W controlling numerical precision, choice of heuristics,
and so forth.

Algorithm 2 implements a smorgasbord of methods for finding relations, most of which
involve searching for (linear) integer relations. We recall that an integer relation between
complex numbers a1, . . . , an is a tuple (m1, . . . ,mn) with some mk 6= 0 such that

m1a1 + . . . mnan = 0, mi ∈ Z.

The LLL algorithm can be used to compute a basis matrix for all integer relations
among a finite list of numbers; see for example Algorithm 7.13 in [16]. More precisely, LLL
finds a basis of candidate relations which may or may not be correct. We are guaranteed
to find all integer relations as W →∞ where W is the numerical precision, but we have
to use exact computations to certify or reject the relations obtained at a fixed finite W .
Since the certifications can be expensive, it is useful to make them dependent on W (for
example, limiting bit sizes of field elements in recursive computations).

Algorithm 2 will only find relations that are expressible in terms of the given a1, . . . , an.
For example, to add the relation for a square root extension ak =

√
z in step A, we need

to be able to express z in terms of K ′ = Q(a1, . . . , ak1 , ak+1, an) as a formal fraction
f/g with µ(f/g) = z. The relation is then 〈g2X2

k − f2〉. If z cannot be expressed in
K ′, then ak behaves like a transcendental number within the present field. However,
it is usually desirable to make z part of the field so that ideal reduction automatically
produces (

√
z)2 → z. One possibility is that we always adjoin z (or b1, . . . , bm such

that z ∈ Q(b1, . . . , bm)) to the field where we create
√
z. An alternative is to modify

Algorithm 2 so that it can append new extension numbers to the existing field whenever
it may help simplifications.

We will not attempt to prove the completeness of Algorithm 2 for any particular sets
of numbers here (see section 4 for a few remarks). We are constrained by the requirement
that potential relations have to be certifiable: it makes no sense to look for a hypothetical
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Algorithm 2: Construct ideal of algebraic relations.

Input: Extension numbers a1, . . . , an, a work parameter W .
Output: A reduction ideal Ired ⊆ I for Q(a1, . . . , an).

Initialize Ired ← {}. Depending on W , run a subset of A-F:

A Direct algebraic relations. For absolute or relative algebraic extensions ak, add
the defining relations to Ired.

B Vieta’s formulas. For algebraic extensions ak that are conjugate roots of the same
polynomial, add the interrelations defined by Vieta’s formulas to Ired.

C Log-linear relations. Let L denote the set of extension numbers of the form
ak = log(zk), along with πi if available. Use LLL with precision W to search for
relations

∑

j mj log(zj) = 0 or m0(2πi) +
∑

j mj log(zj) = 0. Attempt to certify each
candidate relation:

• Compute an enclosure of 1
2πi

∑

j mj log(zj) and verify that it contains a unique
integer.

• Attempt to prove
∏

j zj
mj = 1 using Algorithm 1 (using exact recursive

computations in the fields of the arguments zj).

• If both certification steps succeed, update the ideal with
Ired ← Ired ∪ 〈m0(2πi) +m1a1 + . . .+mnan〉.

D Exp-multiplicative relations. Let E denote the set of extension numbers of the
form ak =

√
zk, ak = zk

m/n, ak = zk
wk , ak = ezk or ak ∈ Q. Search for potential

multiplicative relations
∏

j aj
mj = 1 using LLL applied to log(E) and certify the

candidate relations through exact recursive computations similarly to the log-linear
case.

E Special functions. Update Ired with relations resulting from functional equations
and connection formulas such as Γ(z + 1) = zΓ(z) or erf(z) = − erf(−z) = −i erfi(iz).
Candidate relations can be found by numerical comparison of function arguments
and certified through exact recursive computations.

F Algebraic interrelations. Use resultants or LLL (followed by certification using
resultants) to search for linear (or bilinear, etc.) relations among algebraic extensions.
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relation that we will not be able to prove (say, mπ + ne = 0 with m,n ∈ Z).3

2.4 Choosing extension numbers

We have so far assumed that the extension numbers a1, . . . , an are given. We usually
have a great deal of freedom to choose the form of extension numbers to represent a
given field K. The following are some possible transformations that either generate a
new representation of K itself, generate a larger field K ′ ⊇ K, or generate a subfield or
overlapping field:

• Normalization: replacing an extension number by a simpler (by some measure)
generator of the same field. Example: Q(−5

3

√
8)→ Q(

√
2), Q(e−π)→ Q(eπ).

• Pruning : removing redundancy. Ex.: Q(−
√
2,
√
2)→ Q(

√
2).

• Unification: replacing extensions by a common generator. Ex.: Q(
√
2,
√
3) →

Q(
√
2 +
√
3), Q(π1/2, π1/3)→ Q(π1/6).

• Specialization: simplifying special cases. Ex.: Q(e0) → Q, Q(elog(z)) → Q(z) and
Q(log(ez))→ Q(z, π, i).

• Atomization: rewriting an extension in terms of more “atomic” parts. Ex.: Q(
√
2+√

3)→ Q(
√
2,
√
3), Q(ex+y)→ Q(ex, ey), and Q(log(xy))→ Q(log(x), log(y), π, i).

• Function replacement : rewriting a function in terms of a different function or combi-
nation of functions. Ex.: Q(sin(x))→ Q(eix, i), Q(ex+yi)→ Q(ex, cos(y), sin(y), i).

The problem of choosing appropriate extension numbers arises in various situations:

• Evaluating functions and solving equations: for example, given z, construct a field
to represent

√
z or ez.

• Merging fields, especially for arithmetic: given z1 ∈ K1 = Q(a1, . . . , an) and z2 ∈
K2 = Q(b1, . . . , bm), compute a field K3 containing z3 = z1 ◦ z2 where ◦ is an
arithmetic operation.

• Simplifying a single element (or finite list of elements): given z ∈ K, construct
K ′ ⊆ K with z ∈ K ′ that is better suited for deciding a predicate, user output,
numerical evaluation, etc.

We can attempt to set reasonable defaults, but a useful system should probably allow
the user to make intelligent choices. It is very difficult to define meaningful canonical
forms for general symbolic expressions, and the optimal form often depends on the ap-
plication [20, 5]. A classical problem is whether it makes sense to expand (π + 1)1000 in
Q(π) or whether the result should be represented in Q((π + 1)1000) (in Calcium, this is
configurable). Although atomization intuitively simplifies extensions, having more vari-
ables can slow down the task of constructing the ideal and performing operations in the
formal field, and in any case the choice of “atoms” is often somewhat arbitrary.

We follow a conservative approach in Calcium so far: merging fields simply takes
the union of the generators, evaluating functions or creating algebraic numbers only nor-
malizes or specializes in trivial cases, and automatic pruning is mainly done to demote

3We can imagine an optional “nonrigorous mode” similar to the algorithm in [1] which looks for nu-
merical integer relations and uses them to simplify symbolic expressions without guaranteeing correctness.
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rational numbers to Q. In the future, we intend to implement different behaviors and
make them configurable, allowing the user to choose different “flavors” of arithmetic (for
example, always unifying algebraic numbers to a single extension, always separating com-
plex numbers into real and imaginary parts, etc.).

Algorithm 2 is notably missing heuristics for trigonometric functions and complex
parts (real part, imaginary part, sign, absolute value). We can write trigonometric func-
tions and their inverses in terms of complex exponentials and logarithms, and complex
parts in terms of algebraic operations and recursive complex conjugation or separation of
real and imaginary parts, but this is not always appropriate, particularly when we end up
using complex extensions to describe a real field. We leave this problem for future work.

2.5 On formal field arithmetic

We conclude this section with some practical comments about implementing formal fields
Frac(Q[X1, . . . ,Xn]/I).

2.5.1 Normal forms of fractions

When computing in formal fraction fields, we face a difficulty which does not arise when
merely considering quotient rings Q[X1, . . . ,Xn]/I: a formal fraction p/q need not be in
a joint canonical form even if p and q are in canonical form with respect to I.4 A simple
example is that 1/

√
2 =
√
2/2. This is harmless for deciding equality since reduction by

I will give a zero numerator of p/q − r/s = (ps − rq)/(pq) for equivalent fractions p/q
and r/s. However, p and q can have nontrivial common content in Q[X1, . . . ,Xn]/I even
if they are coprime in Q[X1, . . . ,Xn], and failing to remove such content can result in
expression swell. This problem manifests itself, for example, in Gaussian elimination.

In special cases, it is possible to find content by computing polynomial GCDs over an
algebraic number field instead of over Q. Monagan and Pearce [19] provide an algorithm
that solves the general problem of simplifying fractions modulo an arbitrary (prime)
ideal. Their algorithm uses Gröbner bases over modules. We have not yet implemented
this method in Calcium, and only remove content in Q[X1, . . . ,Xn] from formal fractions
(except in the special case of simple algebraic number fields, where we compute a canonical
form by rationalizing the denominator).

2.5.2 Orderings

The choice of monomial order (lex, deglex, degrevlex, etc.), for multivariate polynomials in
formal fields can have a significant impact on efficiency and simplification power. Closely
related is the extension number order : we typically want to sort the extension numbers
in order of decreasing complexity a1 ≻ a2 ≻ . . . ≻ an for lexicographic elimination. The
notion of complexity is somewhat arbitrary, but typically for any symbolic function f and
any z, we want f(z) ≻ z. For a discussion of the problem of ordering symbolic expressions,
see [20, 5].

Overall, lex monomial ordering often seems to perform best due to its tendency to
completely eliminate extension numbers of higher complexity, and it is used by default in
Calcium, although degree orders sometimes lead to cheaper Gröbner basis computations
and overall simpler polynomials. Calcium currently uses a hardcoded comparison function
for extension numbers, but we intend to make it configurable or context-dependent. A

4For the present discussion, it does not matter whether we have Ired = I .

8



more sophisticated system might use heuristics to choose an appropriate extension number
order and monomial order (including weighted and block orders) for each extension field.

3 Architecture of Calcium

In this section, we describe the design of Calcium as a library and discuss certain low-level
implementation aspects.

We chose to implement Calcium as a C library to minimize dependencies. Calcium
includes a simple, unoptimized Python wrapper (using ctypes) intended for easy testing.

Calcium depends on Arb [14] for arbitrary-precision ball arithmetic, Antic [13] for
arithmetic in algebraic number fields, and Flint [12] for rational numbers, multivariate
polynomials and other functionality such as factoring and LLL. A central idea behind
Calcium is to leverage these libraries for fast in-field arithmetic combined with rigor-
ous evaluation of numerical predicates. At present, we use a naive implementation of
Buchberger’s algorithm for Gröbner basis computation, which can be a severe bottleneck.

3.1 Numbers and context objects

The main types in Calcium are context objects (ca ctx t) and numbers (ca t). The
context object is the parent object for a “Calcium field”, representing a lazily expanding
subset of C. It serves two purposes: it holds a cache of extension numbers and fields,
and it specifies work limits and other settings. Examples of configurable parameters in
the context object include: the maximum precision for numerical evaluation, precision for
LLL, the degree of algebraic number fields, use of Gröbner bases, use of Vieta’s formulas,
the maximum N for in-field expansion of (x+y)N . The user may create different contexts
configured for different purposes.

The main Calcium number type, ca t, holds a pointer to a field K and an element of
K. As in GMP, Flint and Arb, ca t variables have mutable semantics allowing efficient
in-place operations. Internally, ca t uses one of three possible storage types for field
elements:

• A Flint fmpq t if K = Q.

• An Antic nf elem t ifK = Q(a), a ∈ Q is a simple algebraic number field. There are
two storage sub-types: Antic uses a specialized inline representation for quadratic
fields.

• A rational function fmpz mpoly q t (implemented as a pair of Flint multivariate
polynomials fmpz mpoly t) if K is a generic (multivariate or non-algebraic) field.
Arithmetic in this representation relies on the Flint functions for multivariate arith-
metic, GCD, and ideal reduction. Some functions also use Flint’s multivariate poly-
nomial factorization.

Caching field data in a context object rather than storing the complete description
of a field in each ca t variable is essential for performance: creating new fields can be
expensive; repeated operations and creation of elements within a field should be cheap.

Calcium is threadsafe as long as two threads never access the same context object
simultaneously. The user can most easily ensure this by creating separate context objects
for each thread. For fine-grained parallelism, it is most convenient to convert elements
to simpler types such as polynomials. Some of the underlying polynomial and matrix
operations are parallelized in Flint.
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3.2 Fields and extension numbers

Separate types are used internally in the recursive construction of fields. A ca ext t

object defines an extension number. This can be an algebraic number (see below) or a
symbolic constant or function of the form f(x1, . . . , xn) where xk are ca t arguments and
f is a builtin symbol (Pi, Exp, etc.). A ca field t object represents a field Q(a1, . . . , an)
as an array of pointers to the ca ext t objects a1, . . . , an. Field objects also store com-
putational data such as the reduction ideal. Unlike field elements, fields and extension
numbers are in principle immutable, but cached data may be mutated internally: for
example, extension numbers cache Arb enclosures and update this data when the internal
working precision is increased.

The ca ctx t context object stores ca ext t and ca field t objects without dupli-
cation in hash tables for fast lookup. Presently, the context object holds on to all data
until it is destroyed by the user. For applications where memory usage could become an
issue, an improvement would be to add automatic garbage collection.

3.3 Canonical algebraic numbers

Calcium contains a type qqbar t which represents an algebraic number by its minimal
polynomial over Q together with an isolating complex interval for a root. Elements of Q
are thus represented canonically, whereas a ca t allows many different representations.

The qqbar t type is used internally to represent absolute algebraic extension numbers
and as a fallback to simplify or test equality of algebraic numbers when Algorithm 2 fails
to find a sufficient reduction ideal. We thus have a complete test for equality in Q.

An arithmetic operation in the qqbar t representation involves three steps: resultant
computation (using the BFSS algorithm [4]), factoring in Z[x] (using the van Hoeij algo-
rithm in Flint), and maintenance of the root enclosure (using interval Newton iteration
and other methods based on Arb). Factoring nearly always dominates, and this is usu-
ally much more expensive than a ca t operation in a fixed number field. Nevertheless,
qqbar t performs better than ca t in some situations and does not require a context
object, making it a useful implementation of Q in its own right.

3.4 Polynomials and matrices

Calcium provides types ca poly t and ca mat t for representing dense univariate polyno-
mials and matrices over R or C. They support arithmetic, predicates, polynomial GCD
and squarefree factorization (using the Euclidean algorithm), matrix LU factorization,
rank and inverse (using ordinary and fraction-free Gaussian elimination), determinant
and characteristic polynomial, and computing roots or eigenvalues with multiplicities.
Most algorithms are basic, and optimization could be an interesting future project.

3.5 Predicates and special values

There are two kinds of predicate functions: structural and mathematical. The structural
version of the predicate x = y for ca t variables asks whether x and y contain identically
represented elements of the same field. This is cheap to check and gives True/False. The
mathematical predicate asks whether x and y represent the same complex number. This is
potentially expensive, if not undecidable, and gives True/False/Unknown. We anticipate
that applications using Calcium from a high-level language will prefer to return True/False
and throw an exception for Unknown. The included Python wrapper does precisely this.
We illustrate matrix inversion:
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>>> ca_mat([[1, pi], [0, 1/pi]]).inv() # nonsingular

[1, -9.86960 {-a^2 where a = 3.14159 [Pi]}]

[0, 3.14159 {a where a = 3.14159 [Pi]}]

>>> ca_mat([[pi, pi**2], [pi**3, pi**4]]).inv() # singular

...

ZeroDivisionError: singular matrix

>>> ca_mat([[1, 0], [0, 1-exp(exp(-10000))]]).inv() # unknown

...

ValueError: failed to prove matrix singular or nonsingular

>>> ca_mat([[pi, pi**2], [pi**3, pi**4]]).det()

0

>>> ca_mat([[1, 0], [0, 1-exp(exp(-10000))]]).det()

0e-4342 {-a+1 where a = 1.00000 [Exp(1.13548e-4343 {b})],

b = 1.13548e-4343 [Exp(-10000)]}

>>> _ == 0

...

ValueError: unable to decide predicate: equal

(The third matrix can be inverted by raising the precision limit.)
Like IEEE 754 floating-point arithmetic, ca t also supports nonstop computing and

allows representing non-finite limiting values. To this end, the ca t type actually rep-
resents a set C∗∗ ⊃ C comprising numbers as well as various special values: unsigned
infinity (∞̃), signed infinities (c · ∞), undefined (u) and unknown (?). Formally, C∗ =
C ∪ {∞̃} ∪ {c · ∞ : |c| = 1} ∪ {u} and C∗∗ = C∗ ∪ {?}. The sets C∗ and C∗∗ are easily
implemented on top of C: the ca t type encodes special values by two bits in the field
pointer. Unlike IEEE 754, we disambiguate two NaN types (mathematical and computa-
tional indeterminacy u and ?), we do not distinguish between −0 and +0, and complex
infinities are represented in polar rather than rectangular form (we take ∞+ 2i =∞).

C∗ is a singularity closure of C in which we can extend partial functions f : C \
Sing(f) → C to total functions f : C∗ → C∗. For example: 1/0 = ∞̃, log(0) = −∞, and
0/0 = ∞−∞ = u. The definitions are simply a matter of convenience (this particular
choice of singularity closure is largely copied from Mathematica).

C∗∗ is ameta-extension of C∗ in which algorithms can be guaranteed to terminate. The
meta-value (?) represents an undetermined element of C∗. For example, 1/x evaluates to
? if Calcium cannot decide whether x = 0 since the value could be either a number or ∞̃.
Logical predicates on C extend to logical predicates on C∗ (∞ =∞, u = u and u 6= 3 are
all True) while predicates on C∗∗ are tripled-valued (? = 3, ? = ∞, ? = u and ? = ? are
all Unknown).

We stress the distinction between numbers and special values: a ca t is explicitly
a number, explicitly a singularity (infinity or undefined), or explicitly unknown. It is
thus easy to restrict usage strictly to C, in contrast to many symbolic computation sys-
tems where expressions that represent numbers are syntactically indistinguishable from
expressions that are singular or undefined.

4 Related work and benchmarks

The strategy we have discussed is essentially an attempt to unify several existing paradigms
for exact computation: effective real numbers, symbolic expressions, (embedded) number
fields, and (embedded) quotient rings. The novelty is not the combination of functionality
(any general-purpose computer algebra system supports the requisite operations), but the
implementation form and interface.
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4.1 Effective numbers

There are many implementations of “effective” or “computable” numbers which construct
a symbolic representation to permit lazy numerical evaluation to arbitrary precision,
without the ability to decide equality [33, 34, 21, 35]. Our representation is more powerful,
but likely inferior if the only goal is numerical evaluation: symbolic computations are
often slower, and the rewritten expressions can have worse numerical properties (they
will sometimes be better). We rather view Calcium as a second option to try if a direct
numerical evaluation fails because it stumbles on an exact comparison.

4.2 Symbolic and algebraic systems

Most computer algebra systems arguably belong to one of two paradigms. Algebraic sys-
tems (Singular [9], Magma [3], Pari/GP [30], SageMath [31], Nemo/Hecke [10], etc.) are
designed for computation in definite algebraic structures, favoring strong data invariants.
Symbolic ones (Mathematica, Maple, Maxima [17], SymPy [18], etc.), are designed around
more heuristic manipulation of free-form symbolic expressions. Roughly speaking, alge-
braic systems tend to prefer (x+1)100 in expanded (normal) form and view it as an element
of a particular ring such as Q[x], while symbolic systems tend to leave it unexpanded and
unassociated with a formal algebraic structure. Calcium is an attempt to provide a more
algebraic package for functionality for real and complex numbers previously only found in
symbolic systems. The algebraic approach has benefits for performance and correctness,
although we lose some flexibility: we notably give up most superficial manipulation of
rational expressions (expand, combine, apart, factor, etc.), for better or worse.

Calcium is not a general-purpose expression simplifier like the simplify or FullSimplify
routines in systems like Maple and Mathematica, which combine many heuristics. A
roundtrip expr → Calcium → expr can be a useful part in the toolbox of such a sim-
plifier, but will often have to be applied selectively. In fact, Calcium grew out of code
to manipulate and test symbolic expressions in FunGrim [15], with the view of having a
middle layer between symbolic expressions and polynomial and ball arithmetic.

4.3 Algebraic numbers

Computing in Q is a well-studied problem which admits multiple approaches [8, 35]. A
generally useful principle is to rely on arithmetic in fixed number fields for efficiency. Cal-
cium is partly inspired by Sage’s QQbar, which uses a hybrid representation: an algebraic
number exists either as an element of a number field Q(a) or an unevaluated symbolic ex-
pression. Numerical values are tracked rigorously using interval arithmetic. A comparison
that cannot be resolved numerically forces a simplification to an absolute field.

Sage’s approach has two problems: unevaluated symbolic expressions fail to capture
arithmetic simplifications, and combining extensions to a single absolute number field
can be costly. Calcium’s multivariate representation often avoids costly simplifications.
A simple test case is to compute x =

√
2+
√
3+ . . .+

√
pn and check x− (x− 1)− 1 = 0.

For n = 7 this takes 2200 s in Sage and 0.003 s in Calcium, including the time to set up
and clear a context object (Calcium takes 0.00007 s with the fields already cached).5

Calcium is also inspired by the algebraically closed field in Magma, which uses mul-
tivariate quotient rings Q[X1, . . . ,Xn]/I that grow automatically [28, 29]. Magma’s ACF
is not actually a satisfactory implementation of Q for our purposes because it does not

5For a more complex test problem that Calcium handles easily where Sage struggles unless carefully
guided, see: https://ask.sagemath.org/question/52653
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define the embedding of polynomial roots into C: choices that depend on permuting roots
are made arbitrarily by the system and cannot be predicted by the user. On the other
hand, Magma uses more sophisticated methods in its ideal construction than we currently
do for algebraic extensions; an interesting future project would be to integrate some of
its techniques with our system.

4.4 Elementary numbers

The next interesting structure after Q is the field of elementary numbers. To be precise,
there are two common definitions of such a field: the exp-log field E is the closure of
Q with respect to exponential and logarithmic extensions ez and log(z) (z 6= 0), while
the Liouvillian field L is the closure of Q with respect to algebraic, exponential and
logarithmic extensions.6

Richardson [27, 22, 23, 24, 25, 26] has constructed a decision procedure for equality
in E and L using computations in towers of extensions over Q, which always succeeds
if Schanuel’s conjecture is true and will loop forever when given a counterexample. The
surface part of such a decision procedure is essentially Algorithm 1, in which we itera-
tively attempt to either prove inequality or find an algebraic relation that implies equality.
Assuming Schanuel’s conjecture, it can be shown that any relation between elementary
numbers must result from a combination of log-linear relations, exp-multiplicative re-
lations, and relations resulting from the identical vanishing of algebraic functions (for
example,

√

(log(2))2 − log(2) = 0, due to the identical vanishing of
√
x2 − x on the lo-

cal branch). Algorithm 2 is inspired by Richardson’s algorithm, but incomplete: it will
find logarithmic and exponential relations, but only if the extension tower is flattened (in
other words, we must avoid extensions such as elog(z) or

√
z2), and it does not handle all

algebraic functions.
Much like the Risch algorithm, Richardson’s algorithm has apparently never been im-

plemented fully. We presume that Mathematica and Maple use similar heuristics to ours,
but the details are not documented [6], and we do not know to what extent True/False
answers are backed up by a rigorous certification in those system.

A practical difficulty when comparing numbers involving elementary functions is that
extremely high precision may be needed to distinguish nested exponentials numerically
(as an example, consider exp(−e−eN ) 6= 1). This problem can be overcome using asymp-
totic expansions [32]. We have not yet investigated such methods. The recent work [2]
uses irrationality criteria to prove some inequalities, but this is only applicable in very
restricted cases.

4.5 Miscellaneous examples

This section is short due to page limits. For code and additional benchmarks, we refer to
example programs included with Calcium.7

4.5.1 Exact DFT

As a test of basic arithmetic and simplification, we check x−DFT−1(DFT(x)) = 0 where
x = (xn)

N−1
n=0 and DFT(x) =

∑N−1
k=0 ω−knxk with ω = e2πi/N . For this benchmark, we

6Clearly Q 6= E, E ⊆ L and Q ⊆ L, but it is unknown if E = L and if Q ⊂ E. [7]
7See http://fredrikj.net/calcium/examples.html and http://fredrikj.net/blog/2020/09/

benchmarking-exact-dft-computation/ for the complete data for the DFT benchmark.
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Table 1: Time (s) for exact DFT and zero test.
xn−2 N Sage Q Sage SR SymPy Maple MMA Calcium

n

6 0.020 0.047 fail 0.016 0.078 0.00049
8 0.033 0.11 1.1 0.0060 0.057 0.00048
16 0.15 36 9.9 0.080 0.27 0.00068
20 0.22 124 fail 0.13 0.96 0.00081
100 9.2 fail fail 9.1 > 60 0.045

√
n

8 5.3 0.50 2.8 0.046 0.11 0.017
16 > 103 46 24 0.26 0.58 0.090
20 > 103 154 fail 1.1 2.3 0.17
100 > 103 fail fail > 103 > 60 38

log(n)

8 - 0.20 1.8 0.044 0.29 0.0059
16 - 44 17 0.37 0.66 0.025
20 - 136 fail 0.74 45 0.046
100 - fail fail > 103 > 60 26

e2πi/n

8 > 103 1.3 fail 0.042 0.10 0.019
16 > 103 78 > 103 0.17 0.41 0.32
20 > 103 277 fail fail > 60 1.1
100 > 103 fail fail > 103 > 60 699*

1
1+nπ

8 - 0.68 17 0.072 0.21 0.0041
16 - 48 > 103 0.32 6.4 0.046
20 - 167 fail 2.4 > 60 0.12
100 - fail fail > 103 > 60 216

1
1+

√
nπ

8 - 0.76 22 0.074 2.6 0.082
16 - > 103 > 103 127 > 60 8.1
20 - fail fail > 103 > 60 43

evaluate the DFT by naive O(N2) summation (no FFT). We test six input sequences
exhibiting both algebraic and transcendental numbers.

We compare with Sage’s QQbar (algebraics only), Sage’s SR (using GiNaC), SymPy,
Maple, and Mathematica (MMA). MMA was run on a faster computer in the free Wolfram
Cloud, with a 60 s timeout. Other systems were interrupted after 103 s. Table 1 shows
select timings; in most cases, we see order-of-magnitude speedups over the competing
systems. All timings were done with empty caches; most systems (including Calcium) run
faster a second time, but comparisons are difficult since the systems use caches differently.

SymPy fails to prove equality unless n = 2k, and Sage’s SR fails except for n =
2k, 3, 5, 6, 10, 12, 20; Maple (with simplify()) fails on the fourth test sequence for large
n. The test case marked (*) only succeeds if we manually disable Gröbner bases in
Calcium.

4.5.2 Conjugate logarithms

Example 1 in [1] asks for simplifying C1 = −1
8 iπ log2(23 − 2i

3 ) +
1
8 iπ log2(23 + 2i

3 ) +
1
12π

2 log(−1− i)+ 1
12π

2 log(−1+ i)+ 1
12π

2 log(13 − i
3)+

1
12π

2 log(13 +
i
3 ). Calcium evaluates

this to 1
96 (4 log(

1−i
3 )π2−8 log(−1−i

3 )π2−5π3i), eliminating redundant logarithms. Calcium
does not discover C1 = − 1

48π
2 log(18) (the output of Mathematica’s FullSimplify) since

it does not rewrite the extension numbers, but it proves equality when this form is given
(C1 +

1
48π

2 log(18) evaluates to 0). Calcium takes 0.008 s, or 0.00008 s when the fields
are already cached; Mathematica’s Simplify takes 0.015 s and leaves C1 unsimplified but
proves C1 +

1
48π

2 log(18) = 0 in 0.02 s, while FullSimplify takes 0.03 s.
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Maple’s simplify returns − 1
48π

2(log(2) + 2 log(3)) in 0.000024 s. Indeed, this is
a trivial computation if we (like Maple) atomize the logarithms. Since this is not yet
implemented in Calcium, we see the result of the slower, generic approach using integer
relations.

5 Future work ideas

We have already discussed several ideas for future work. Perhaps the most important
topics are: new classes of extension numbers; simplification, normalization and context-
dependent rewriting of extension numbers; improved numerical algorithms and methods
for working with equivalence classes of formal fractions; ideal construction. We conclude
by elaborating on the last point.

The usual bottlenecks in constructing ideals (and often in Calcium as a whole) are:
searching for integer relations with LLL, proving integer relations through recursive com-
putations, and computing Gröbner bases. Algorithm 2 could be improved in many ways,
most notably through preprocessing to avoid redundant work and reduce the dimension
or improve numerical conditioning of LLL matrices. Some preprocessing strategies are
discussed in [1].

The PSLQ algorithm is often claimed to be superior to LLL for integer relations
(see for example [1]), but this is not obviously true with modern floating-point LLL
implementations. One benefit of LLL is that we obtain a matrix of all integer relations
at once, whereas PSLQ has to be run repeatedly to eliminate relations one by one. We
invite further comparison of these algorithms. In some cases, purely symbolic methods
should be superior to either.

An explicit Gröbner basis computation can sometimes be avoided by setting up ex-
tension numbers and relations appropriately. This is exploited in Magma’s algebraically
closed field [29]. We have also observed empirically that many calculations in Calcium
work perfectly well (and faster) without computing a Gröbner basis, presumably because
the constructed ideal basis is sufficiently triangular to be effective for reductions (in some
cases, we found that it suffices to compute the Hermite normal form of the LLL output
matrices); a better understanding of this phenomenon would be welcome.

A glaring problem is that when introducing n extension numbers, say by adding
√
2+√

3+
√
5+ . . ., we construct all the intermediate fields Q(a1), Q(a1, a2), . . . , Q(a1, . . . , an),

from scratch. This is doing nearly n times more work than should be needed. One possible
solution is to let the user write down a list of extension numbers and create Q(a1, . . . , an) at
once for computations. Another solution is to take advantage of the data that has already
been computed for Q(a1, . . . , an−1) to generate the data for Q(a1, . . . , an). This seems
hard to solve efficiently and in such a way that the system does not behave unpredictably
depending on the order of computations.
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