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ABSTRACT
We consider assignment policies that allocate resources to users, where both resources and users
are located on a one-dimensional line [0,∞). First, we consider unidirectional assignment poli-
cies that allocate resources only to users located to their left. We propose the Move to Right
(MTR) policy, which scans from left to right assigning nearest rightmost available resource to
a user, and contrast it to the Unidirectional Gale-Shapley (UGS) matching policy. While both
policies among all unidirectional policies, minimize the expected distance traveled by a request
(request distance), MTR is fairer. Moreover, we show that when user and resource locations
are modeled by statistical point processes, and resources are allowed to satisfy more than one
user, the spatial system under unidirectional policies can be mapped into bulk service queueing
systems, thus allowing the application of many queueing theory results that yield closed form
expressions. As we consider a case where different resources can satisfy different numbers of
users, we also generate new results for bulk service queues. We also consider bidirectional poli-
cies where there are no directional restrictions on resource allocation and develop an algorithm
for computing the optimal assignment which is more efficient than known algorithms in the lit-
erature when there are more resources than users. Numerical evaluation of performance of uni-
directional and bidirectional allocation schemes yields design guidelines beneficial for resource
placement. Finally, we present a heuristic algorithm, which leverages the optimal dynamic pro-
gramming scheme for one-dimensional inputs to obtain approximate solutions to the optimal
assignment problem for the two-dimensional scenario and empirically yields request distances
within a constant factor of the optimal solution.

1. Introduction
The past few years have witnessed significant growth in the use of distributed network analytics involving agile

code, data and computational resources. In many such networked systems, for example, Internet of Things [5], a
large number of computational and storage resources are widely distributed in the physical world. These resources
are accessed by various end users/applications that are also distributed over the physical space. Assigning users or
applications to resources efficiently is key to the sustained high-performance operation of the system.

In some systems, requests are transferred over a network to a server that provides a needed resource. In other
systems, servers are mobile and physically move to the user making a request. Examples of the former type of service
include accessing storage resources over a wireless network to store files and requesting computational resources to
run image processing tasks; whereas an example of the latter type of service is the arrival of ride-sharing vehicles to
the user’s location over a road transportation network.

Not surprisingly, the spatial distribution of resources and users1 in the network is an important factor in determining
the overall performance of the service. A key measure of performance is average request distance, that is average
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1We use the terms “users” and “requesters” interchangeably and same holds true for the terms “resources” and “servers”.
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distance between a user and its allocated resource/server (where distance is measured on the network). This directly
translates to latency incurred by a user when accessing the service, which is arguably among the most important criteria
in distributed service applications. For example, in wireless networks, signal attenuation is strongly coupled to request
distance, therefore developing allocation policies to minimize request distance can help reduce energy consumption, an
important concern in battery-operated wireless networks. Another important practical constraint in distributed service
networks is service capacity. For example, in network analytics applications, a networked storage device can only
support a finite number of concurrent users; similarly, a computational resource can only support a finite number of
concurrent processing tasks. Likewise, in physical service applications like ride-sharing, a vehicle can pick up a finite
number of passengers at once.

Therefore, a primary problem in such distributed service networks is to efficiently assign each user to a suitable
resource so as to minimize average request distance and ensure no resource serves more users than its capacity. If the
entire system is being managed by a single administrative entity such as a ride sharing service, or a datacenter network
where analytics tasks are being assigned to available CPUs, there are economic benefits in minimizing the average
request distance across all (user, resource) pairs, which is tantamount to minimizing the average delay in the system.

The general version of this capacitated assignment problem can be solved by modeling it as a minimum cost flow
problem on graphs [4] and running the network simplex algorithm [17]. However, if the network has a low-dimensional
structure and some assumptions about the spatial distributions of users and resources hold, more efficient methods can
be developed.

In this paper, we consider two one-dimensional network scenarios that motivate the study of this special case of
the user-to-resource assignment problem.

The first scenario is ride-hailing on a one-way street where vehicles move right to left. If the vehicles of a ride-
sharing company are distributed along the street at a certain time, and users equipped with smartphone ride-hailing
apps request service, the system attempts to assign vehicles with spare capacity located towards the right of the users
so as to minimize average “pick up" distance. Abadi et al. [1] introduced this problem and presented a policy known as
Unidirectional Gale-Shapley2 matching (UGS) minimize average pick up distance. In this policy, all users concurrently
emit rays of light toward their right and each user is matched with the vehicle that first receives the emitted ray. While
the well-known Gale-Shapley matching algorithm [9] matches user-resource pairs that are mutually nearest to each
other, its unidirectional variant, UGS,matches a user to the nearest resource on its right. Note that, this one-dimensional
network setting also applies to vehicular wireless ad-hoc networks on a one-lane roadway [11, 14]3, where users are in
vehicles and servers are attached to fixed infrastructure such as lamp posts. Users attempt to allocate their computation
tasks over the wireless network to servers located to their right so that they can retrieve the results with little effort
while driving by.

In this paper, we propose another policy “Move to Right” policy (orMTR) which has the same “expected distance
traveled by a request” (request distance) as UGS but has a lower variance. MTR sequentially allocates users to the
geographically nearest available vehicle located to his/her right. When user and resource locations are modeled by
statistical point processes the one-dimensional unidirectional space behaves similar to time and notions from queueing
theory can be applied. In particular, when user and vehicle locations are modeled by independent Poisson processes,
average request distance can be characterized in closed form by considering inter-user and inter-server distances as
parameters of a bulk service M/M/1 queue where the bulk service capacity denotes the maximum number of users
that can be handled by a server. We equate request distance in the spatial system to the expected sojourn time in the
corresponding queuing model4. This natural mapping allows us to use well-known results from queueing theory and
in some cases to propose new queueing theoretic models to characterize request distances for a number of interesting
situations beyond M/M/1 queues.

A natural extension to our spatial framework is to consider more general communication costs associated with each
resource allocation. Assuming communication cost for each allocation is a function of request distance, we provide
closed form expressions for the expected communication cost for specific user-server distributions and specific server
capacities.

The second scenario involves a convoy of vehicles traveling on a one-dimensional space, for example, trucks on a
highway or boats on a river. Some vehicles have expensive camera sensors (image/video) but have inadequate com-

2We rename queue matching defined in [1] as Unidirectional Gale-Shapley Matching to avoid overloading the term queue.
3Furthermore, [11] confirms that vehicle location distribution on the streets in Central London can be closely approximated by a Poisson

distribution.
4Sojourn time is the sum of waiting and service times in a queue.
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putational storage or processing power. On the other hand, cheap storage and processing is easily available on several
other vehicles. The cameras periodically take photos/videos as they move through space and want them processed
/ stored. In such case, bidirectional assignment schemes are more suitable. Since no directionality restrictions are
imposed on the allocation algorithms, computing the optimal assignment is not as simple as in the unidirectional case.

We explore the special structure of the one-dimensional topology to develop an optimal algorithm that assigns a
set of requesters R to a set of resources S such that the total assignment cost is minimized. This problem has been
recently solved for |R| = |S| [7]. However, we are interested in the case when |R| < |S|. We propose a dynamic
Programming based algorithm which solves this case with time complexity O(|R|(|S| − |R| + 1)). Note that other
assignment algorithms in literature such as the Hungarian primal-dual algorithm and Agarwal’s variant [3] have time
complexities O(|R|3) and O(|R|2+�) respectively and assume |R| = |S| for general and Euclidean distance measures.

We leverage the optimal dynamic programming scheme for one-dimensional inputs to obtain approximate solutions
to the optimal assignment problem for the two-dimensional scenario where users and servers are located on the two-
dimensional plane,ℝ2. More precisely, we embed the points denotingR,S ⊂ ℝ2 into new locations inℝ such that the
distances between a user and its nearest servers are approximately preserved. Our approximation algorithm empirically
yields request distances within a constant factor of the optimal solution with O(|R|2) time complexity.

Our contributions are summarized below:
1. Analysis of simple unidirectional allocation policies MTR and UGS yielding closed form expressions for mean

request distance.
• When inter-requester and inter-resource distances are exponentially distributed, we model unidirectional

policies as a bulk service M/M/1 queue.
• When inter-requester distances are generally distributed but the inter-resource distances are exponentially

distributed, we model the situation using an accessible batch service G/M/1 queue.
• When inter-requester distances are exponentially distributed but inter-resource distances are generally dis-

tributed, wemodel the spatial system as an accessible batch serviceM/G/1 queue with the first batch having
exceptional service time. To the best of our knowledge this system has not been studied previously in the
queueing theory literature.

• We include several generalizations of our framework. In the first place we discuss a simulation driven
conjecture for evaluating request distance for general distance distributions under heavy traffic. We also
investigate the heterogeneous server capacity scenario where server capacity is a random variable and to
the best of our knowledge this system has not been studied previously in the queueing theory literature. We
derive expressions for expected request distance when servers have infinite capacity. We include commu-
nication cost associated with each resource allocation and provide a closed form expression for expected
communication cost for some specific scenarios. Finally we extend our framework to compute expected
request distance for the case where each user requests two resources residing in two different set of servers,
by mapping it to a two queue fork-join system.

2. A novel algorithm for optimal (bidirectional) assignment with time complexity O(|R|(|S| − |R| + 1)).
3. A numerical and simulation study of different assignment policies: UGS , MTR, bi-directional heuristic alloca-

tion policies (Gale-Shapley and Nearest Neighbor) and the optimal policy.
4. A heuristic based approximate solution to the optimal assignment problem for the two-dimensional scenario

with an empirically observed constant factor approximation of the optimal solution.
The paper is organized as follows. The next section discusses related work. Section 3 contains technical prelim-

inaries. We show the equivalence of UGS and MTR w.r.t expected request distance in Section 4, and present results
associated with the case when servers are Poisson distributed in Section 5. In Section 6, we develop formulations
for expected request distance when either user or server placements are described by Poisson processes. We include
some generalizations of our framework such as analysis under general distance distributions, results for heterogeneous
server capacity and uncapacitated allocation in Section 7. The optimal bidirectional allocation strategy is presented in
Section 8. We compare the performance of various local allocation strategies in Section 9. In Section 10, we extend
our one-dimensional framework to solve two-dimensional problem. We conclude the paper in Section 11.
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2. Related Work
PoissonMatching: Holroyd et al. [12] first studied translation invariant matchings between two d-dimensional Poisson
processes with equal densities. Their primary focus was obtaining upper and lower bounds on expected matching
distance for stable matchings. Abadi et al. [1] introduced “Unidirectional Gale-Shapley” matching (UGS) and derived
bounds on the expected matching distance for stable matchings between two one-dimensional Poisson processes with
different densities. In this paper, we propose another unidirectional allocation policy: “Move To Right” policy (MTR)
and provide explicit expressions for the expected matching distance for both MTR and UGS when either requesters or
servers are distributed according to a renewal process and the according to a Poisson process.
Exceptional Queueing Systems and Accessible Batches: Welch et al. [22] first studied an M/G/1 queue where a cus-
tomer arriving when the server is idle has a different service time than the others. Bulk service M/G/1 queues has been
studied in [6]. Authors in [10] analyzed a bulk service G/M/1 queue with accessible or non-accessible batches where
an accessible batch is considered to be a batch in service allowing subsequent arrivals, while the service is on. In
this work, we model the spatial system using an accessible batch service queue with the first batch having exceptional
service time. To the best of our knowledge this system has not been studied previously in queueing theory literature.
Euclidean Bipartite Matching: The optimal user-server assignment problem can be modeled as a minimum-weight
matching on a weighted bipartite graph where weights on edges are given by the Euclidean distances between the
corresponding vertices [15]. Well-known polynomial time solutions exist for this problem, such as the modified Hun-
garian algorithm proposed by Agarwal et al. [3] with a running time of O(|R|2+�), where |R| is the total number of
users. In the case of an equal number of users and servers, the optimal user-server assignment on a real line is known
[7]. In this paper, we consider the case when there are fewer users than servers.

3. Technical Preliminaries
Consider a set of users R and a set of servers S. Each user makes a request that can be satisfied by any server.

Assume that each server j ∈ S has capacity cj ∈ ℤ+ corresponding to the maximum number of requests that it can
process. Suppose users and servers are located on a line . Formally, let r ∶ R →  and s ∶ S →  be the location
functions for users and servers, respectively, such that a distance d(r, s) is well defined for all pairs (r, s) ∈ R × S.
Initially we assume that all servers have equal capacities i.e. cj = c ∀j ∈ S. Later in Section 7.2 we extend our analysisto a case in which server capacities are integer random variables.
3.1. User and server spatial distributions

Let 0 ≤ r1 ≤ r2 ≤ ⋯ represent user locations and 0 ≤ s1 ≤ s2 ≤ ⋯ be the server locations. Let Xj =
sj − sj−1, j ≥ 1, s0 = 0, denote the inter-server distances and Yi = ri − ri−1, i ≥ 1, r0 = 0, the inter-user distances. We
assume {Xj}j≥1 to be a renewal process with cumulative distribution function (cdf)

ℙ(Xj ≤ x) = FX(x). (1)
We also assume {Yi}i≥1 to be a renewal process with cdf FY (x), i.e.,

ℙ(Yi ≤ x) = FY (x). (2)
We denote �X = 1∕� and �2X to be the mean and variance associated with FX . Similarly let �Y = 1∕� and �2Y be the
mean and variance associated with FY . We let � = �∕� and assume that � < c. Denote by F ∗X(s) = ∫ ∞0 e−sxdFX(x)and F ∗Y (s) the Laplace-Stieltjes transform (LST) of FX and FY with s ≥ 0.

In our paper, we consider various inter-server and inter-user distance distributions, including exponential, deter-
ministic, uniform and hyperexponential.
3.2. Allocation policies

One of our goals is to analyze the performance of various request allocation policies using expected request distance
as a performance metric. We define various allocation policies as follows.

• Unidirectional Gale-Shapley (UGS): In UGS, each user simultaneously emits a ray to their right. Once the ray
hits an unallocated server s, the user is allocated to s.
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Figure 1: Allocation of users to servers on the one-dimensional network. Top: UGS, Bottom: MTR allocation policy.

• Move To Right (MTR): In MTR, starting from the left, each user is allocated sequentially to the nearest available
server to its right.

• Nearest Neighbor (NN) [21]: In this matching, starting from the left, each user is allocated sequentially to the
nearest available server. This policy can be viewed as the bidirectional version of MTR policy.

• Gale-Shapley (GS) [9]: In this matching, each user selects the nearest server and each server selects its nearest
user. Remove reciprocating pairs, and continue.

• Optimal Matching: This matching minimizes average request distance among all feasible allocation policies.

4. Unidirectional Allocation Policies
In this Section, we establish the equivalence of UGS and MTR w.r.t number of requests that traverse a point and

expected request distance. Define NP
x and DP

i to be random variables for the number of requests that traverse point
x ∈  and distance between user i and its allocated server under policy P , respectively. ThusNU

x andNM
x denote the

number of requests that traverse point x ∈  under UGS and MTR, respectively, as shown in Figure 1. Consider the
following definition of busy cycle in a service network.
Definition 1. A busy cycle for a policy P is an interval I = [a, b] ⊂  such that ∃ i, j with ri = a, sj = b for which
NP
x > 0,∀x ∈ I andNP

x = 0 for x = a − � and x = b + � with � being an infinitesimal positive value.

We have the following theorem.
Theorem 1. NU

x = NM
x , x ≥ 0.

Proof. Due to the unidirectional nature of matching, both UGS and MTR have the same set of busy cycles. Denote 
as the set of all busy cycles in the service network. In the case when x ∈  ⧵

⋃

I∈
I we already haveNU

x = NM
x = 0.

Let us now consider a busy cycle IU = [aU , bU ] under UGS policy. Let x ∈ IU . Let LUx,R = |{ri|aU ≤ ri ≤ x}|
and LUx,S = |{sj|aU ≤ sj ≤ x}|. NU

x = LUx,R − L
U
x,S . Similarly define LMx,R and LMx,S for MTR policy. Clearly

NM
x = LMx,R − L

M
x,S . As both policies have the same set of busy cycles we have LUx,R = LMx,R and LUx,S = LMx,S . Thuswe get

NU
x = NM

x , x ∈ ℝ+, (3)

Corollary 1. E[DU ] = E[DM ] i.e. the expected request distances are the same for both UGS and MTR under steady
state.
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Distribution Parameters FX(x)FX(x)FX(x) (x)(x)(x)
Exponential �: rate 1 − e−�x 1

�

[

1 − e−�x
]

− 1
�+�

[

1 − e−(�+�)x
]

Uniform b ∶ maximum value x∕b, 0 ≤ x ≤ b 1
�2b

[

1 − e−�b
]

− e−�x

�

Deterministic d0 ∶ constant 1, x ≥ d0
e−�d0−e−�x

�

Hyper l: order 1 −
l
∑

j=1
pje−�jx

1
�

[

1 − e−�x
]

−
l
∑

j=1

pj
�+�j

[

1 − e−(�+�j )x
]

-exponential pj ∶ phase probability
�j ∶ phase rate

Table 1
Properties of specific inter-server distance distributions.

Proof. Under steady state bothNU
x andNM

x converge to a random variable. Applying Little’s law we have E[DU ] =
E[DM ].

Remark 1. Note that Theorem 1 applies to any inter-server or inter-user distance distribution. It also applies to the
case where servers have capacity c > 1.

Remark 2. Although MTR and UGS are equivalent w.r.t. the expected request distance, MTR tends to be fairer, i.e.,
has low variance5 w.r.t. request distance.

5. Unidirectional Poisson Matching
In this section, we characterize request distance statistics under unidirectional policies when both users and servers

are distributed according to two independent Poisson processes. We first analyze MTR as follows.
5.1. MTR

Under this allocation policy, the service network can be modeled as a bulk service M/M/1 queue. A bulk service
M/M/1 queue provides service to a group of c or fewer customers. The server serves a bulk of at most c customers
whenever it becomes free. Also customers can join an existing service if there is roomwhich is an example of accessible
batch. In Section 6 we describe the notion of accessible batches in greater detail. The service time for the group
is exponentially distributed and customer arrivals are described by a Poisson process. The distance between two
consecutive users in the service network can be thought of as inter-arrival time between customers in the bulk service
M/M/1 queue. The distance between two consecutive servers maps to a bulk service time.

Having established an analogy between the service network and the bulk service M/M/1 queue, we now define the
state space for the service network. Consider the definition ofNx as the number of requests6 that traverse pointX ∈ L
under MTR. In steady state, Nx converges to a random variable N provided � < c�. Let �k denote Pr[N = k] with
k ≥ 0.

Following the procedure in Section 4.2.1 of [20], we obtain the steady state probability vector � = [�i, i ≥ 0]. In
the service network, request distance corresponds to the sojourn time in the bulk service M/M/1 queue. By applying
Little’s formula, we obtain the following expression for the expected request distance

E[D] =
r0

�(1 − r0)
, (4)

where r0 is the only root in the interval (0, 1) of the following equation (with r as the variable)
�rc+1 − (� + �)r + � = 0. (5)

5It is well known in queueing theory that among all service disciplines the variance of the waiting time is minimized under FCFS policy for
Poisson arrivals and exponential service times [13]. In Section 5 we show that MTR maps to a temporal FCFS queue.

6We drop the superscript (M) for brevity.

Panigrahy et al. Page 6 of 28



One-dimensional Distributed Service Networks

sj ri ri+1 ri+2 sj+1 sj+2

Busy Cycle

Xj+1 Xj+2

Zj+1
Servers
Users

Figure 2: Allocation of users to servers under MTR policy.

5.1.1. When server capacity: c = 1
When c = 1, r0 = � is a solution of (5). Thus we can evaluate the expected request distance as

E[D] = �
�(1 − �)

= 1
� − �

. (6)

Note that, when server capacity is one, the service network can be modeled as an M/M/1 queue. In such a case, (6) is
the mean sojourn time for an M/M/1 queue.
5.2. UGS

When both users and servers are Poisson distributed and servers have unit capacity, the request distance in UGS has
the same distribution as the busy cycle in the corresponding Last-Come-First-Served Preemptive-Resume (LCFS-PR)
queue having the density function [1]

fDU (x) =
1

x
√

�
e(�+�)xI1(2x

√

��), x > 0, (7)

where � = �∕� and I1 is the modified Bessel function of the first kind. Thus the expected request distance is equivalent
to the average busy cycle duration in a LCFS-PR queue given by 1∕(� − �) [1].

When servers have capacities c > 1 it is difficult to characterize the expected request distance explicitly. However,
by Theorem 1, the expected request distance under UGS is the same as that of MTR given by (4).

6. Unidirectional General Matching
We now derive expressions for the expected request distance when either users or servers are distributed according

to a Poisson process and the other by renewal process.
6.1. Notion of exceptional service and accessible batches

We discuss the notion of exceptional service and accessible batches applicable to our service network as follows.
Consider a service network with c = 2 as shown in Figure 2. Consider a user ri. Let sj be the server immediately to
the left of ri.We assume all users prior to ri have already been allocated to servers {sk, 1 ≤ k ≤ j}. MTR allocates
both ri and ri+1 to sj+1 and allocates ri+2 to sj+2.We denote [ri, sj+2] as a busy cycle of the service network. We have
the following queueing theory analogy.

User ri can be thought of as the first customer in a queueing system that initiates a busy period while ri+1 seesthe system busy when it arrives. Because only ri is in service at the arrival of ri+1, ri+1 enters service with ri and the
two customers form a batch of size 2. and depart at time sj+1. This is an example of an accessible batch [10]. An
accessible batch admits subsequent arrivals, while the service is on, until the server capacity c is reached.

The service time for the batch, ri, ri+1, is described by the random variable Zj+1 which is different or exceptional
when compared to service times of successive batches such as the one consisting of ri+2. The service time for the
second batch is Xj+2. Note that, Zj+1 only depends on Xj+2 and Yi+2. Thus when either Xj+2 or Yi+2 is describedby a Poisson process and the other by renewal process, Zj+1 converges to a random variable Z under steady state
conditions. Denote FZ (x) and fZ (x) as the distribution and density functions for the random variable Z. Thus the
Panigrahy et al. Page 7 of 28



One-dimensional Distributed Service Networks

service network can be mapped to an exceptional service with accessible batches queueing (ESABQ) model. We for-
mally define ESABQ as follows.
ESABQ: Consider a queueing system where customers are served in batches of maximum size c. A customer entering
the queue and finding fewer than c customers in the system joins the current batch and enters service at once, otherwise
it joins a queue. After a batch departs leaving k customers in the buffer, min(c, k) customers form a batch and enter
service immediately. There are two different service times cdfs, FZ (x) (exceptional batch) with mean �Z = 1∕�Z and
FX(x) (ordinary batch) with mean �X = 1∕�. A batch is exceptional if its oldest customer entered an empty system,
otherwise it is a regular batch. When the service time expires, all customers in the server depart at once, regardless
of the nature of the batch (exceptional or regular).

6.1.1. Evaluation of the distribution function: FZ(x)In this Section, we compute explicit expressions for the distribution function FZ (x) applicable to our service net-
work.
When FX(x) ∼FX(x) ∼FX(x) ∼ Expo(�)(�)(�): In this case, we invoke the memoryless property of the exponential distribution FX . Thusthe exceptional distribution, FZ , is

FZ (x) = FX(x) = 1 − e−�x, x ≥ 0. (8)
When FY (x) ∼FY (x) ∼FY (x) ∼ Expo(�)(�)(�): Using the memoryless property of FY , FZ can be computed as

FZ (x) = Pr(X − Y < x|Y < X) = Pr(X − Y < x|X − Y > 0) =
Pr(X − Y < x) − Pr(X − Y < 0)

1 − Pr(X − Y < 0)

=
DXY (x) −DXY (0)
1 −DXY (0)

, x ≥ 0, (9)

where DXY (x) is the distribution of the random variable X − Y (also known as difference distribution). DXY (x) canbe expressed as
DXY (x) = Pr(X − Y ≤ x) = ∫

∞

0
Pr(X − y ≤ x)Pr(Y = y)dy = ∫

∞

0
FX(x + y)�e−�ydy = ∫

∞

x
FX(z)�e−�(z−x)dz

= �e�x
[

∫

∞

0
FX(z)e−�zdz − ∫

x

0
FX(z)e−�zdz

]

= �e�x
[

(FX) − (x)
]

, (10)

where is the Laplace Transform operator on the function FX and (x) is denoted by

(x) = ∫

x

0
FX(z)e−�zdz

Clearly (0) = 0. Thus combining (9) and (10) yields

FZ (x) =
�e�x

[

(FX) − (x)
]

− �(FX)
1 − �(FX)

, (11)

fZ (x) =
�2e�x

[

(FX) − (x)
]

− �FX(x)
1 − �(FX)

, (12)

�Z = ∫

∞

0
xfZ (x)dx, �2Z =

[

∫

∞

0
x2fZ (x)dx

]

− �2Z . (13)

Expressions for (x) are presented in Table 1. We can evaluate (FX) by setting (FX) = B(∞). Detailed
derivations are relegated to Appendix 13.1.
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6.2. General requests and Poisson distributed servers (GRPS)
From our discussion in Section 6.1.1, it is clear that when servers are distributed according to a Poisson process,

the exceptional service time distribution equals the regular batch service time distribution. In such a case we have the
following queueing model.
Under GRPS, inter-arrival times and batch service times are, respectively, arbitrarily and exponentially distributed.
Before initiating a service, a server finds the system in any of the following conditions. (i) 1 ≤ n ≤ c−1 and (ii) n ≥ c.
Here n is the number of customers in the waiting buffer. For case (i) the server provides service to all n customers
and admits subsequent arrivals until c is reached. For case (ii) the server takes c customers with no admission for
subsequent customers arriving within its service time.

In such a case ESABQ can directly be modeled as a special case of a renewal input bulk service queue with
accessible and non-accessible batches proposed in [10] with parameter values a = 1 and d = b = c. Let Ns and Nqdenote random variables for numbers of customers in the system and in the waiting buffer respectively for ESABQ
under GRPS. We borrow the following definitions from [10].

Pn,0 = Pr[Ns = n]; 0 ≤ n ≤ c − 1, Pn,1 = Pr[Nq = n]; n ≥ 0. (14)
Using results from [10] we obtain the following expressions for equilibrium queue length probabilities.

P0,1 =
C
�

[rc−10 − rc0
1 − rc0

+ 1
r0
− 1

]

, Pn,1 =
Crn−10 (1 − r0)
�(1 − rc0)

; n ≥ 1, (15)

where 0 < r0 < 1 is the real root of the equation r = F ∗Y (� − �rc) and C is the normalization constant7 given by
C = �

[

1 − !c
1 − !

+ 1
1 − r0

−
!(r0 − F ∗Y (�))
rc0(1 − r0!)

( 1 − rc0
1 − r0

− rc−10
1 −wc
1 −w

)]−1
, (16)

with ! = 1∕F ∗Y (�). We then derive the expected queue length as

E[Nq] =
∞
∑

n=0
nPn,1 =

∞
∑

n=1
n
Crn−10 (1 − r0)
�(1 − rc0)

=
C(1 − r0)
�(1 − rc0)

∞
∑

n=1
nrn−10 = C

�(1 − rc0)(1 − r0)
. (17)

Applying Little’s law and considering the analogy between our service network and ESABQwe obtain the following
expression for the expected request distance.

E[D] = C
��(1 − rc0)(1 − r0)

+ 1
�
. (18)

6.3. Poisson distributed requests and general distributed servers (PRGS)
As discussed in Section 6.1.1, if servers are placed on a 1-d line according to a renewal process with requests being

Poisson distributed, the service time distribution for the first batch in a busy period differs from those of subsequent
batches. Below we derive expressions for queue length distribution and expected request distance for ESABQ under
PRGS.
6.3.1. Queue length distribution

We use a supplementary variable technique to derive the queue length distribution for ESABQ under PRGS as
follows.

Let L(t) be the number of customers at time t ≥ 0, R(t) the residual service time at time t ≥ 0 (with R(t) = 0 if
L(t) = 0), and I(t) the type of service at time t ≥ 0 with I(t) = 1 (resp. I(t) = 2) if exceptional (resp. ordinary)
service time.

Let us write the Chapman-Kolmorogov equations for the Markov chain {(L(t), R(t), I(t)), t ≥ 0}.
For t ≥ 0, n ≥ 1, x > 0, i = 1, 2 define
pt(n, x; i) = ℙ(L(t) = n,R(t) < x, I(t) = i) and pt(0) = ℙ(L(t) = 0).

7The normalization constant C derived in [10] is incorrect. The correct constant for our case is given in (16).
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Also, define for x > 0, i = 1, 2,
p(n, x; i) = lim

t→∞
pt(n, x; i) and p(0) = lim

t→∞
pt(0).

By analogy with the analysis for the M/G/1 queue we get
)
)t
pt(0) = −�pt(0) +

c
∑

k=1

)
)x
pt(k, 0; 1) +

c
∑

k=1

)
)x
pt(k, 0; 2),

so that, by letting t→ ∞,

�p(0) =
c
∑

k=1

( )
)x
p(k, 0; 1) + )

)x
p(k, 0; 2)

)

. (19)

With further simplification (See Appendix 13.2.1), for n ≥ 1, x > 0 we get
)
)x
g(n, x) − �g(n, x) − )

)x
g(n, 0) + �g(n − 1, x)1(n ≥ 2) + �p(0)FZ (x)1(n = 1) + FX(x)

)
)x
g(n + c, 0) = 0,

(20)
where g(n, x) = p(n, x; 1) + p(n, x; 2) for n ≥ 1, x > 0. Introduce

G(z, s) ∶=
∑

n≥1
zn ∫

∞

0
e−sxg(n, x)dx ∀|z| ≤ 1, s ≥ 0.

Denote by F ∗Z (s) = ∫ ∞0 e−sxdFZ (x) the LST of FZ for s ≥ 0. Note that

∫

∞

0
e−sxFZorX(x)dx =

F ∗ZorX(s)
s

, ∀s > 0.

Multiplying both sides of (20) by zne−sx, integrating over x ∈ [0,∞) and summing over all n ≥ 1, yields
s (�(1 − z) − s)G(z, s) =�zp(0)F ∗Z (s) −

∑

n≥1
zn )
)x
g(n, 0) + F ∗X(s)

∑

n≥1
zn )
)x
g(n + c, 0)) (21)

where �p(0) = ∑c
k=1

)
)xg(k, 0) from (19). We have

1
zc

∑

n≥1
zn+c )

)x
g(n + c, 0)) = 1

zc
∑

n≥1
zn )
)x
g(n, 0) − 1

zc
H(z) (22)

whereH(z) = ∑c
k=1 z

kak with ak ∶= )
)xg(k, 0), for k = 1,… , c. Introducing the above into (21) gives

s (�(1 − z) − s)G(z, s) =
(F ∗

X(s)
zc

− 1
)

Ψ(z) − F ∗
X(s)

H(z)
zc

+ �zp(0)F ∗
Z (s) (23)

where Ψ(z) ∶= ∑

n≥1 z
n )
)xg(n, 0). Since G(z, s) is well-defined for |z| ≤ 1 and s ≥ 0, the r.h.s. of (23) must vanish

when s = �(1 − z). This gives the relation

Ψ(z) = zc

zc − F ∗X(�(z))

[

−F ∗X(�(z))
H(z)
zc

+ �zp(0)F ∗Z (�(z))
]

with �(z) = �(1 − z) and |z| ≤ 1. Introducing the above in (23) gives

s (�(1 − z) − s)G(z, s) = −F ∗X(s)
H(z)
zc

+ �zp(0)F ∗Z (s) +
F ∗X(s) − z

c

zc − F ∗X(�(z))

[

�zp(0)F ∗Z (�(z)) − F
∗
X(�(z))

H(z)
zc

]

.

(24)
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LetN(z) be the z-transform of the stationary number of customers in the system. Integrating by part, we get for n ≥ 1,

s∫

∞

0
e−sxg(n, x)dx = ∫

∞

0
e−sxdg(n, x),

so that

lim
s→∞

s∫

∞

0
e−sxg(n, x)dx = lim

s→0∫

∞

0
e−sxdg(n, x) = ∫

∞

0
dg(n, x) = g(n,∞), (25)

where the interchange between the limit and the integral sign is justified by the bounded convergence theorem. There-
fore,

N(z) =
∑

n≥1
zng(n,∞) + p(0)

=
∑

n≥1
zn lim

s→∞
s∫

∞

0
e−sxg(n, x)dx from (25)

= lim
s→0

sG(z, s) + p(0), (26)
where the interchange between the summation over n and the integral sign is again justified by the bounded convergence
theorem. Letting now s→ 0 in (24) and using (26), gives

�(z)N(z) = 1 − zc
zc − F ∗X(�(z))

[

−F ∗X(�(z))
H(z)
zc

+ �zp(0)F ∗Z (�(z))
]

−
H(z)
zc

+ �p(0). (27)

By noting that �p(0) = ∑c
k=1 ak (cf. (19)), Eq. (27) can be rewritten as

N(z) = 1
�(z)

(

z(1 − zc)
zc − F ∗X(�(z))

c
∑

k=1
ak

[

F ∗Z (�(z)) − z
k−c−1F ∗X(�(z))

]

+
c
∑

k=1
ak(1 − zk−c)

)

. (28)

The r.h.s. of (28) contains c unknown constants a1,… , ac yet to be determined. Define A(z) = F ∗X(�(z)). It canbe shown that zc − A(z) has c − 1 zeros inside and one on the unit circle, |z| = 1 (See Appendix 13.2.3). Denote
by �1,… , �q the 1 ≤ q ≤ c distinct zeros of zc − A(z) in {|z| ≤ 1}, with multiplicity n1,… , nq , respectively, with
n1 +⋯ + nq = c. Hence,

zc − F ∗X(k(z)) = 

q
∏

i=1
(z − �i)ni .

Since zc −A(z) vanishes when z = 1 and that d
dz (z

c −A(z))|z=1 = c − � > 0, we conclude that zc −A(z) has one zeroof multiplicity one at z = 1.
Without loss of generality assume that �q = 1 and let us now focus on the zeros �1,… , �q−1. When z = �i,

i = 1,… , q − 1, the term F ∗Z (�(z)) − z
k−c−1F ∗X(�(z)) in (28) must have a zero of multiplicity (at least) ni sinceN(�i)is well defined. This gives c − 1 linear equations to be satisfied by �1,… , �q . In the particular case where all zeros

have multiplicity one (see Appendix 13.2.2), namely q = c, these c − 1 equations are
c
∑

k=1
ak

[

F ∗Z (�(�i)) − �
k−c−1
i F ∗X(�(�i))

]

= 0, i = 1,… , c − 1. (29)

With U (z) ∶= F ∗Z (�(z))∕F ∗X(�(z)) (29) is equivalent to
c
∑

k=1
ak

[

U (�i) − �k−c−1i )
]

= 0, i = 1,… , c − 1, (30)
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Figure 3: The plot shows the ratio E[D]∕Ds for deterministic and uniform inter-server distance distributions.

sinceF ∗X(�(�i)) ≠ 0 for i = 1,… , c−1 (F ∗X(�(�i)) = 0 implies that �i=0which contradicts that �i a zero of zc−F ∗X(�(z))since F ∗X(�(0)) = F ∗X(�) > 0). Eq. (28) can be rewritten as

N(z) =
∑c
k=1 ak

[

zc − zk + z(1 − zc )F ∗Z (�(z)) − (1 − z
k)F ∗X (�(z))

]

�(z)(zc − F ∗X (�(z))
. (31)

A c-th equation is provided by the normalizing condition N(z) = 1. Since the numerator and denominator in (31)
have a zero of order 2 at z = 1, differentiating twice the numerator and the denominator w.r.t z and letting z = 1 gives

c
∑

k=1
ak(c(1 + �z) − �k) = �(c − �), (32)

where �z = ��Z .We consider few special cases of the model in Appendix 13.2.4 and verify with the expressions of
queue length distribution available in the literature.
6.3.2. Expected request distanceFrom (31) the expected queue length is

N = d
dz
N(z)||

|z=1

= 1
2�(c − �)2

c
∑

k=1
ak

[

�2�(2)Z c(c − �) + �2�(2)X c(1 + �z − k) + (ck(c − k) + k(k − 1)� − c(c − 1))� + 2c2�z − c(c + 1)�z�

]

, (33)

where �(2)Z and �(2)X are the second order moments of distributions FZ and FX respectively. Again by applying Little’s
law and considering the analogy between our service network with ESABQ we get the following expression for the
expected request distance.

E[D] = N∕�. (34)

7. Discussion of Unidirectional Allocation Policies
In this section we describe generalizations of models and results for unidirectional allocation policies. We first

consider the case when inter-user and inter-server distances both have general distributions.
7.1. Heavy traffic limit for general request and server spatial distributions

Consider the case when the inter-user and inter-server distances each are described by general distributions. We
assume server capacity, c = 1. As � → 1, we conjecture that the behavior of MTR approaches that of the G/G/1
queue. One argument in favor of our conjecture is the following. As � → 1, the busy cycle duration tends to infinity.
Consequently, the impact of the exceptional service for the first customer of the busy period on all other customers
diminishes to zero as there is an unbounded increasing number of customers served in the busy period.
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It is known that in heavy traffic waiting times in a G/G/1 queue are exponential distributed and the mean sojourn
time is given by �X+[(�2X+�2Y )∕2�Y (1−�)] [20]. We expect the expected request distance to exhibit similar behavior.
Thus we have the following conjecture.
Conjecture 1. At heavy traffic i.e. as � → 1, the expected request distance for the G/G/1 spatial system with c = 1 is
given by

E[D] = �X +
�2X + �

2
Y

2�Y (1 − �)
. (35)

Denote byDs the average request distance as obtained from simulation. We plot the ratio E[D]∕Ds across various
inter-request and inter-server distance distributions in Figure 3. It is evident that as �→ 1, the ratioE[D]∕Ds convergesto 1 across different inter-server distance distributions.
7.2. Heterogeneous server capacities under PRGS

We now proceed to analyze a setting where server capacity is a random variable. Assume server capacity  takes
values from {1, 2,… , c} with distribution Pr( = j) = pj ,∀j ∈ {1, 2,… , c}, s.t. ∑c

j=1 pj = 1 and pc > 0. We
also assume the stability condition � <  where  is the average server capacity. Denote H as the random variable
associated with number of requests that traverse through a point just after a server location8.
7.2.1. Distribution ofH

Let V denote the number of new requests generated during a service period with kv = Pr(V = v),∀v ≥ 0.
According to the law of total probability, it holds that

kv =

∞

∫
0

Pr(V = v|X = �)fX(�) =
1
v!

∞

∫
0

e−��(��)vdFX(�). (36)

Then the corresponding generating function K(z) is denoted by

K(z) =
∞
∑

v=0
kvz

v = F ∗X(�(1 − z)). (37)

We now consider an embeddedMarkov chain generated byH . Denote the corresponding transition matrix asM. Thenwe have

Mm,l =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

c−m
∑

i=0
kiPi+m, 0 ≤ m ≤ c, l = 0;

c
∑

i=0
ki+l−mpi, 0 ≤ m ≤ l, l ≠ 0;
c
∑

i=m−l
ki+l−mpi, l + 1 ≤ m ≤ c + l, l ≠ 0;

0, o.w.,

(38)

where Pi = ∑c
j=i pj and p0 = 0. Let � = [�j , j ≥ 0] and N(z) = ∑

j≥0 �jz
j denote the steady state distribution and

its z-transform respectively. � is obtained out by solving

�l =
∞
∑

m=0
�mMm,l, l = 0, 1,… . (39)

Thus we have for l ∈ ℕ,

�0 =
c
∑

m=0
�m

c−m
∑

i=0
kiPi+m, �l =

l
∑

m=0
�m

c
∑

i=0
ki+l−mpi +

c+l
∑

m=l+1
�m

c
∑

i=m−l
ki+l−mpi. (40)

8An analysis for the distribution of number of requests that traverse through any random location would involve the notions of exceptional
service and accessible batches.
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Multiplying by zl and summing over l gives
N(z) = E� + v1(z) + v2(z) (41)

E� = �0
c−1
∑

i=0
kiPi+1 +

c−1
∑

m=1
�m

c−1
∑

i=m
ki−mPi+1 (42)

v1(z) =
∞
∑

l=0
zl

l
∑

m=0
�m

c
∑

i=0
ki+l−mpi (43)

v2(z) =
∞
∑

l=0
zl

c+l
∑

m=l+1
�m

c
∑

i=m−l
ki+l−mpi. (44)

The expressions for v1(z) and v2(z) can be further simplified (see Appendix 13.3) to
v1(z) = N(z)

{ c
∑

i=0
piz

−i
[

K(z) −
i

∑

j=0
kjz

j
]

+
c
∑

i=0
kiz

i
}

(45)

v2(z) =
[ c
∑

m=0
z−m

c
∑

i=m
ki−mpi

{

N(z) −
m−1
∑

j=0
�jz

j
}]

−N(z)
c
∑

i=0
kiz

i. (46)

Combining (41), (45) and (46) yields
N(z) = E� +N(z)

{

K(z)
c
∑

i=0
piz

−i
}

−
c−1
∑

j=0
�j

c−j
∑

m=1
z−m

c
∑

i=m+j
ki−(m+j)pi. (47)

Thus we obtain

N(z) =

E� −
c−1
∑

j=0
�j

c−j
∑

m=1
z−m

c
∑

i=m+j
ki−(m+j)pi

1 −K(z)
c
∑

i=0
piz−i

. (48)

Multipying numerator and denominator by zc yields

N(z) =

zcE� −
c−1
∑

j=0
�j

c−j
∑

m=1
zc−m

c
∑

i=m+j
ki−(m+j)pi

zc −K(z)
c
∑

i=0
pc−izi

. (49)

To determineN(z), we need to obtain the probabilities �i, 0 ≤ i ≤ c−1. It can be shown that the denominator of (49)
has c −1 zeros inside and one on the unit circle, |z| = 1 (See Appendix 13.3.2). AsN(z) is analytic within and on the
unit circle, the numerator must vanish at these zeros, giving rise to c equations in c unknowns.

Let �q ∶ 1 ≤ q ≤ c be the zeros of zc − K(z)∑c
i=0 pc−iz

i in {|z| ≤ 1}. W.l.o.g let �c = 1.We have the following
c − 1 equations.

E� −
c−1
∑

j=0
�j

c−j
∑

m=1
�−mq

c
∑

i=m+j
ki−(m+j)pi = 0, i = 1,… , c − 1, (50)

A c-th equation is provided by the normalizing condition limz→1 N(z) = 1. In the particular case where all
zeros have multiplicity one, it can be shown that these c equations are linearly independent9. Once the parameters
{�i, 0 ≤ i ≤ c − 1} are known, E[H] can be expressed as

E[H] = H = lim
z→1

N ′(z). (51)
7.2.2. Expected Request Distance

To evaluate the expected request distance we adopt arguments from [6]. Consider any interval of length � between
two consecutive servers. There are on averageH requests at the beginning of the interval , each of which must travel
� distance. New users are spread randomly over the interval and there are on an average �� new users. The request
made by each new user must travel on average �∕2. Thus we have

E[D] = 1
� ∫

∞

0
(H� + 1

2
��2)dFX(�) =

1
�

[

H
�
+ �
2

(

�2X +
1
�2

)]

. (52)
9For all cases evaluated across uniform, deterministic and hyperexponential distributions we found the set of c equations to be linearly inde-

pendent.
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7.3. Uncapacitated request allocation
An interesting special case of the unidirectional general matching is the uncapacitated scenario. Consider the case

where servers do not have any capacity constraints, i.e. c = ∞. In such a case, all users are assigned to the nearest
server to their right.
GRPS: When c → ∞ and given 0 < r0 < 1, r0 = F ∗Y (� − �r

c
0) = F ∗Y (�). Setting ! = 1∕F ∗Y (�) = 1∕r0 in (16) and

simplifying yields
C → 0, as c →∞, ⟹ E[D]→ 1

�
as c →∞. (53)

PRGS: Under PRGS, when c → ∞ there exists no request allocated to a server other than the nearest server to its
right. Again using Bailey’s method as in [6] and settingH = 0 in (52) we get

E[D]→ �
2

(

�2X +
1
�2

)

as c → ∞. (54)

7.4. Cost models
Consider the following generalization of the service network. We define cost of an allocation as the communication

cost associated with an allocated request-server pair. Consider communication cost as a function  of the request
distances. Then the expected communication cost across the service network is given as

T = E[cost] =

∞

∫
d=0

 (d)dW (d), (55)

whereW is the request distance distribution. One such cost model widely used in wireless ad hoc networks is [8]
 (d) = t0d� , (56)

where � is the path loss exponent typically 2 ≤ � ≤ 4 and t0 is a constant. Below we derive the expected communi-
cation cost for the scenario when c = 1.
7.4.1. GRPS with c = 1

In this case the service network directly maps to a temporal G/M/1 queue. ThusW can be expressed as the sojourn
time distribution of the corresponding G/M/1 queue. HenceW ∼ Expo(�(1 − r0)) with r0 as defined in Section 6.2.
We have

T =

∞

∫
d=0

t0d
�dW (d) =

t0
��(1 − r0)�

Γ(� + 1), (57)

where Γ(x) = ∫ ∞0 yx−1e−ydy is the gamma function.
7.4.2. PRGS with c = 1

In this case, the service network can be modeled as a temporal M/G/1 queue with first customer having exceptional
service [22]. DenoteW ∗(s) as the LS transform ofW . Using results from [22]

W ∗(s) =
(1 − �)

{

�
[

F ∗Z (s) − F
∗
X(s)

]

− sF ∗Z (s)
}

(1 − � + �Z )
[

� − s − �F ∗X(s)
] . (58)

When � is an integer,

T = t0(−1)�
d(�)

ds
W ∗(s)|s=0, (59)
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(a) (b)
Figure 4: Two resource scenario with c = 1 (a) Depiction of request distances and (b) Mapping to Fork-join queues.

7.5. Extension to two resources
Now consider the following scenario where each user requests two resources which reside on different servers as

shown in Figure 4(a). Let the corresponding servers be distributed according to a Poisson process with densities �1 and
�2. Let the users be distributed according to a Poisson process. The service network, in this case, can be modeled as a
fork-join queueing system as shown in Figure 4(b) [16]. In such a queue, each incoming job is split into two sub-jobs
each of which is served on one of the two servers. After service, each sub-job waits until the other sub-job has been
processed. They then merge and leave the system. In the service network as well, each request forks two sub-requests
one for each resource type. A request is said to be completed only if it has retrieved both the resources, thus mapping
it to a fork-join queue. We define the overall request distance to be the maximum value among the request distances
across all resource types and denote it as the random variable Dmax.
7.5.1. Identical service rates (�1 = �2 = ��1 = �2 = ��1 = �2 = � and c = 1c = 1c = 1)

The approximated expected request distance for this scenario is obtained from the expression for the expected
sojourn time of a fork join queue with homogeneous servers as [16]:

E[Dmax] =
12� − �
8�(� − �)

, (60)
Note that, the corresponding expected request distance in case of single resource is given by Equation (6) E[D] =
1∕(� − �). Clearly,

E[Dmax] =
12� − �
8�(� − �)

= [1.5 − 0.125�] 1
� − �

> 1
� − �

= E[D], (61)
Thus we have E[Dmax] > E[D].

8. Bidirectional Allocation Policies
Both UGS and MTR minimize expected request distance among all unidirectional policies. In this section we

formulate the bi-directional allocation policy that minimizes expected request distance. Let � ∶ R → S be any
mapping of users to servers. Our objective is to find a mapping �∗ ∶ R → S, that satisfies

�∗ = argmin
�

∑

i∈R
d(ri, s�(i))

s.t.
∑

i∈R
111�(i)=j ≤ c,∀j ∈ S (62)

W.l.o.g, let r1 ≤ r2 ≤ ⋯ ≤ ri ≤ ⋯ ≤ r
|R| be locations of requests and s1 ≤ s2 ≤ ⋯ ≤ si ≤ ⋯ ≤ s

|S| be locations ofservers. We first focus on the case when c = 1. We consider the following two scenarios.
Case 1: |R| = |S||R| = |S||R| = |S|
When |R| = |S|, an optimal allocation strategy is given by the following theorem [7].
Theorem 2. When |R| = |S|, an optimal assignment is obtained by the policy: �∗(i) = i, ∀i ∈ {1,⋯ , |R|} i.e.
allocating the itℎ request to the itℎ server and the average request distance is given by

E[D] = 1
|R|

|R|
∑

i=1
|s(i) − r(i)|. (63)
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9 331+ℇ 1 1 1 11+ℇ 1+ℇ 1+ℇ 1+ℇ 1+ℇ 1+ℇ 1+ℇ

Optimal minimum weight matching
Gale-Shapley stable matching

Figure 5: Worst case scenario for Gale-Shapley.

Case 2: |R| < |S||R| < |S||R| < |S| This is the case where there are fewer requesters than servers. In this case, a Dynamic Programming
(DP) based algorithm (Algorithm 1) obtains the optimal assignment.

Let C[i, j] denote the optimal cost (i.e., sum of distances) of assigning the first i requests (counting from the left)
located at r1 ≤ r2 ≤… ≤ ri to the first j servers (also counting from the left) located at s1 ≤ s2 ≤… ≤ sj . If j == i,the optimal assignment is trivial due to Theorem 2 and C[i, i] is computed easily for all i ≤ |R| by summing pairwise
distances d[1, 1], d[2, 2],… , d[i, i] (Lines 6–7). For the base case, i = 1, j > 1, only the first user needs to be assigned
to its nearest server (Lines 9–16). For the general dynamic programming step, consider j > i. Then C[i, j] can be
expressed in terms of the costs of two subproblems, i.e., C[i − 1, j − 1] and C[i, j − 1] (Lines 19–24). In the optimal
solution, two cases are possible: either request i is assigned to server j, or the latter is left unallocated. The former
case occurs if the first i − 1 requests are assigned to the first j − 1 servers at cost C[i − 1, j − 1], and the latter case
occurs when the first i requests are assigned to the first j − 1 servers at cost C[i, j − 1]. This is a consequence of the
no-crossing lemma (Lemma 1). The optimal C[i, j] is chosen depending on these two costs and the current distance
d[i, j].
Lemma 1. In an optimal solution, �∗, to the problem of matching users at r1 ≤ r2 ≤ … ≤ r

|R| to servers at
s1 ≤ s2 ≤… ≤ s

|S|, where |S| ≥ |R|, there do not exist indices i, j such that �∗(i) > �∗(i′) when i′ > i.

Proof. See Appendix 13.4.
The dynamic programming algorithm fills cells in an |R| × |S| matrix C whose origin is in the north-west corner.

The lower triangular portion of this matrix is invalid since |R| ≤ |S|. The base cases populate the diagonal and the
northernmost row, and in the general DP step, the value of a cell depends on the previously computed values in the
cells located to its immediate west and diagonally north-west. As an optimization, for a fixed i, the j-th loop index
needs to run only from i+1 through i+ |S|− |R| (Lines 11 and 18) instead of from i+1 through |S|. This is because
the first request has to be assigned to a server sj with j ≤ |S| − |R| + 1 so that the rest of the |R| − 1 requests have a
chance of being placed on unique servers10. The optimal average request distance is given by C[|R|, |S|].

The time complexity of themain DP step isO(|R|×(|S|−|R|+1)). Note that this assumes that the pairwise distance
matrix d of dimension |R| × |S| has been precomputed. The optimization applied above can be similarly applied to
this computation and hence the overall time complexity of Algorithm 1 is O(|R| × (|S| − |R| + 1)). Therefore, if
|S| = O(|R|), the worst case time complexity is quadratic in |R|. However, if |S| − |R| grows only sub-linearly with
|R|, the time complexity is sub-quadratic in |R|.

Note that retrieving the optimal assignment requires more book-keeping. An |R| × |S| matrix A stores key inter-
mediate steps in the assignment as the DP algorithm progresses (Lines 8, 16, 21, 24). The optimal assignment vector
� can be retrieved from matrix A using procedure READOPTASSIGNMENT.

Another bidirectional assignment scheme is the Gale-Shapley algorithm [9], which produces stable assignments,
though in the worst case it can yield an assignment that is O(|R|ln 3∕2) ≈ O(|R|0.58) times costlier than the optimal
assignment yielded by Algorithm 1, where |R| is the number of users [18]. The worst case scenario is illustrated in
Figure 5, with |R| = 2t−1, where t is the number of clusters of users and servers; and the largest distance between
adjacent points is 3t−2. However at low/moderate loads for the cases evaluated in Section 9, we find its performance
to be not much worse than optimal.

10Note that in this exposition, we consider server capacity c = 1. If c > 1, we simply add c servers at each prescribed server location, and
requests will still be placed on unique servers.
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Algorithm 1 Optimal Assignment by Dynamic Programming
1: Input: r1 ≤ ⋯ ≤ r

|R|; s1 ≤ ⋯ ≤ s
|S|

2: Output: The optimal assignment �
3: procedure OPTDP(r, s)
4: d

|R|×|S| = COMPUTEPAIRWISEDISTANCES(r, s)
5: C = {∞}

|R|×|S|
6: for i = 1,⋯ , |R| do
7: C[i, i] = TRIVIALASSIGNMENT(i, d)
8: A[|R|, |R|] = |R|
9: nearest = 0
10: nearestcost = C[1, 1]
11: for j = 2,⋯ , |S| − |R| + 1 do
12: if d[1, j] < nearestcost then
13: nearestcost = d[1, j]
14: nearest = j
15: C[1, j] = nearestcost
16: A[1, j] = nearest
17: for i = 2,⋯ , |R| do
18: for j = i + 1,⋯ , i + |S| − |R| do
19: if C[i, j − 1] < d[i, j] + C[i − 1, j − 1] then
20: C[i, j] = C[i, j − 1]
21: A[i, j] = A[i, j − 1]
22: else
23: C[i, j] = d[i, j] + C[i − 1, j − 1]
24: A[i, j] = j
25: return READOPTASSIGNMENT(A)
26: procedure TRIVIALASSIGNMENT(n, d)
27: Cost = 0
28: for i = 1,⋯ , n do
29: Cost = Cost + d[i, i]
30: return Cost
31: procedure READOPTASSIGNMENT(A)
32: |R|, |S| = DIMENSIONS(A)
33: s = |S|
34: for i = |R|,⋯ , 1 do
35: �[i] = A[i, s]
36: s = A[i, s] − 1
37: return �

9. Numerical Experiments
In this section, we examine the effect of various system parameters on expected request distance under MTR policy.

We also compare the performance of various greedy allocation strategies along with the unidirectional policies to the
optimal strategy.
9.1. Experimental setup

In our experiments, we consider a mean requester rate � ∈ (0, 1).We consider various inter-server distance distri-
butions with density one. In particular, (i) for exponential distributions, the density is set to � = 1; (ii) for deterministic
distributions, we assign parameter d0 = 1. (iii) for second order hyper-exponential distribution (H2), denote p1 and
p2 as the phase probabilities. Let �1 and �2 be corresponding phase rates. We assume p1∕�1 = p2∕�2. We express
H2 parameters in terms of the squared coefficient of variation, c2v , and mean inter-server distance, �X , i.e. we set
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Figure 6: Sensitivity analysis of MTR/UGS policy. (a) Effect of load on expected request distance with c = 2c = 2c = 2. (b)
Effect of squared coefficient of variation on expected request distance with � = � = 1� = � = 1� = � = 1 and c = 2c = 2c = 2. (c) Effect of server
capacity on expected request distance with � = 0.8� = 0.8� = 0.8. Effect of variability in server capacity on expected request distance
for (d) Deterministic distribution with � = 0.8� = 0.8� = 0.8 (e) Effect of load on variance of request distance with c = 2c = 2c = 2 across MTR
and UGS. (f) Comparison of expected request distance under Two Resource Non-homogeneous (TRN), Two Resource
Homogeneous (TRH), Single Resource Unit-service (SRU) and Single Resource Bulk-service (SRB) scenario across various
server distributions with � = 0.6, � = 1� = 0.6, � = 1� = 0.6, � = 1.

p1 = (1∕2)
(

1 +
√

(c2v − 1)∕(c2v + 1)
)

, p2 = 1 − p1, �1 = 2p1∕�X and �2 = 2p2∕�X . Unless specified, forH2 we take
c2v = 4 with c = 2. Also if not specified, users are distributed according to a Poisson process and servers a according
to a renewal process.

We consider a collection of 105 users and 105 servers, i.e. |R| = |S| = 105.We assign users to servers according
to MTR. Let RM ⊆ R be the set of users allocated under MTR. Clearly |RM | ≤ |R|.We then run optimal and other
greedy policies on the set RM and S. For each of the experiments, the expected request distance for the corresponding
policy is averaged over 50 trials.
9.2. Sensitivity analysis
9.2.1. Expected request distance vs. load

We first study the effect of load (= �∕c�) on E[D] as shown in Figure 6(a). Clearly E[D] increases as a function
of load. Note that H2 distribution exhibits the largest expected request distance and the deterministic distribution,
the smallest because the servers are evenly spaced. While for H2, c2v is larger than for the exponential distribution.
Consequently servers are clustered, which increases E[D].
9.2.2. Expected request distance vs. squared co-efficient of variation

We now examine how c2v affects E[D] when � is fixed. We compare two systems: a general request with Poisson
distributed servers (H2/M) and a Poisson request with general distributed servers (M/H2) where the general distributionis aH2 distribution with the same set of parameters, i.e. we fix � = � = 1 with c = 2. The results are shown in Figure
6(b). Note that, when c2v = 1H2 is an exponential distribution and bothH2/M andM/H2 are identical M/M/1 systems.

Panigrahy et al. Page 19 of 28



One-dimensional Distributed Service Networks

As discussed in the previous graph, performance of both systems decreases with increase in c2v due to increase in the
variability of user and server placements. However, from Figure 6(b) it is clear that performance is more sensitive to
server placement as compared to the corresponding user placement.
9.2.3. Expected request distance vs. server capacity

We now focus on how server capacity affects E[D] as shown in Figure 6(c). We fix � = 0.8. With an increase in c,
while keeping � fixed, E[D] decreases. This is because queuing delay decreases. Note that E[D] gradually converge
to a value with increase in server capacity. Theoretically, this can be explained by our discussion on uncapacitated
allocation in Section 7.3. As c →∞ the contribution of queuing delay to E[D] vanishes and E[D] becomes insensitive
to c.
9.2.4. Expected request distance vs. capacity moments

We investigate the heterogeneous capacity scenario as discussed in Section 7.2. Consider the plot shown in Figure
6(d). We fix � = 0.8. For the variable server capacity curve we choose a value for server capacity for each server
uniformly at random from the set {1, 2,… , 2c}. For the constant server capacity curve we deterministically assign
server capacity c to each server. We observe better performance for constant server capacity curve at lower values of
c under Deterministic distribution. Variability in constant server case is zero, thus explaining its better performance.
Both the curves exhibit similar performance underH2 distribution as well.
9.2.5. Variance vs. load

We now study the effect of load on variance of request distance as shown in Figure 6(e). Clearly variance increases
as a function of load. Also note that UGS has a higher variance as compared to MTR across all values of load and
across various inter-server distance distributions. Provable results exist (from queueing theory) that among all service
disciplines the variance of the request distance (or sojourn time in queueing terminology) is minimized under MTR (a
FCFS based policy) for Poisson request arrivals and exponential inter-server distances (or service times) [13]. However,
these results do not generalize to other inter-server distance distributions in an exceptional service accessible batch
queueing discipline. Our simulation based results in Figure 6(e) thus bolster our observation in Remark 2 mentioned
in Section 4. Again, a deterministic equidistant placement of servers produce the least variance for request distance
among all other placements.
9.2.6. Comparison of two resource and single resource policies

We compare the performance of MTR under various two resource (TR) and single resource (SR) settings as shown
in Figure 6(f). For a two resource setting, denote [�1, �2] as the server densities associated with resource types 1 and
2 respectively as described in Section 7.5. Denote c as the server capacity associated with each resource type. We
define a Two Resource Homogeneous (TRH) system to be a two resource setting with �1 = �2 = �. We define a
Two Resource Non-homogeneous (TRN) system to be a two resource setting with �1 ≠ �2. For simulation purpose,
we chose �1 = � + � and �2 = � − � such that the effective server density remains �. We also choose c = 1. A
Single Resource Unit-service (SRU) system is a single resource system with server density � and c = 1. A Single
Resource Bulk-service (SRB) system is also a single resource system with server density �∕2 and c = 2. Note that
the request density and effective server densities (c�) are same in all settings. From Figure 6(f), it is clear that TRH
performs better than TRN across all server distributions. This advocates for maintaining similar densities for each
resource type in a two resource system. As expected, a deterministic equidistant placement of servers produce the
least expected request distance for each system among all other choice of placements. SRB in deterministic server
placement scenario performs the best among all other settings. However, it does not perform well with other server
distributions. Also, note that, TRH has a higher expected request distance as compared to SRU across all server
distributions. Thus Equation (61) in Section 7.5 holds true even under non-markovian setting.
9.3. Comparison of different allocation policies

We consider the case in which both users and servers are distributed according to Poisson processes. From Figure 7
(a), we observe that due to its directional nature MTR has a larger expected request distance compared to other policies
while GS provides near optimal performance. At low loads i.e. when � ≪ 1, the Nearest Neighbor policy policy
performs similar to the optimal policy. But as �→ 1, the NN policy perform worse.

In Figure 7 (b), we compare the performance of allocation policies across different server capacities. The expected
request distance decreases with increase in server capacities across all policies. NN,GS and the optimal policy converge
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Figure 7: Comparison of different allocation policies: (a) ��� vs E[D]E[D]E[D] with c = 1c = 1c = 1, (b) ccc vs. E[D]E[D]E[D] with � = 0.4� = 0.4� = 0.4, (c) ��� vs TTT
with � = 2, t0 = 1, c = 1� = 2, t0 = 1, c = 1� = 2, t0 = 1, c = 1 and (d) ccc vs. TTT with � = 2, t0 = 1, � = 0.4� = 2, t0 = 1, � = 0.4� = 2, t0 = 1, � = 0.4.

to the same value as c gets higher.
We now consider the expected communication cost as the performance metric. We use a cost model described in

Section 7.4 with the parameter � = 2 and t0 = 1. From Figure 7 (c), we observe that while at low loads i.e. when
� ≪ 1, GS and NN perform similar to the optimal policy, as � increases both GS and NN perform worse. Note that,
NN has a higher expected request distance than GS at high load as shown in Figure 7 (a). However, the performance is
reversed with � = 2, i.e. NN has a lower expected cost than GS at high load as shown in Figure 7 (c). This depicts the
effect of � on the performance of various allocation policies. In Figure 7 (d), we observe that NN, GS and the optimal
policy converge to the same value as c gets higher.

We observe similar trends in the case of deterministic inter-server distance distributions. However, under equal
densities, all the policies produce smaller expected request distance as compared to their Poisson counterpart. This
advocates for placing equidistant servers in a bidirectional system with Poisson distributed requesters to minimize
expected request distance.

10. Allocating Resources in 2D
We now consider the case where requesters and servers are located on the two-dimensional plane,ℝ2. The problem

of minimizing the expected request distance can be solved by first constructing a complete R × S bipartite graph with
edge weights wr,s = ‖r, s‖2, r ∈ R, s ∈ S; followed by executing the Hungarian matching algorithm whose time
complexity is O(n3), where n = |R| + |S|11. In this section, we present a heuristic algorithm, which leverages the
optimal dynamic programming scheme for one-dimensional inputs to solve the two-dimensional problem, has O(n2)
time complexity, and empirically yields request distances within a constant factor of the optimal solution.

The key insight is to embed the points denotingR,S ⊂ ℝ2 into new locations inℝ such that the distances between
a requester r ∈ R and its K nearest neighbors (servers) s ∈ Neigℎbors(r) are approximately preserved. We observe
that while distance-preserving or even low-distortion embeddings into a very low dimensional space like ℝ typically
do not exist, embeddings that preserve distances to K nearest neighbors of the other node type (for not too large K)
may be plausible. This is useful because preserving the nearest servers fromℝ2 toℝ provides a reasonable opportunity
for the Dynamic Programming algorithm outlined in Section 8 to find good matchings.

We achieve the aforementioned embedding by adapting a non-linear dimensionality reduction method such as
Locally Linear Embedding (LLE) [19], which consists of the steps outlined below.
Estimation of nearest neighbor weights. For each requester ri, selectK nearest servers si1, si2,… , siK12. Estimate
a set of weights wi1, wi2,… , wiK such that the point ri can be reconstructed from si1, si2,… , siK ∶ ri =

∑K
j=1wijsij .

Similarly for each server si, select K ′ nearest requesters ri1, ri2,… , riK′ and estimated weights such that point si can
be reconstructed from the nearest neighbor requester locations: si = ∑K

j=1wijrij .This can be achieved by minimizing the reconstruction error for each node i ∈ R×S. Suppose K is fixed for both
requesters and servers. W is an n × n matrix of weights where n = |R| + |S| and the i-th rowWi, which corresponds

11While the specific case where the weights are Euclidean distances can be solved by Agrawal’s algorithm in O(n2+�) time, for a more general
weight function the more expensive Hugarian algorithm is needed.

12Note that in general, the nearest servers need not be the ones with the smallest Euclidean distance from ri; they could be the ones with low
costs to ri. However in this section, we equate the costs with the Euclidean distance.
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Figure 8: Approximate nearest-K-distance preserving ℝ2 → ℝ embedding (K = 25%)

to node i, has K non-zero elements. The structure ofW is as follows:

W =
(

0 WRS
WSR 0

)

,

where WRS and WSR are rectangular matrices with dimensions |R| × |S| and |S| × |R|, respectively. If the two-
dimensional coordinates of node i are represented by vector xi, the reconstruction error can be defined by:

�(Wi) = ‖xi −
K
∑

j=1
Wijxj‖2. (64)

It was shown in [19] that �(Wi) is minimized whenWi = (Gi + �I)−11, where Gi(j, k) = (xj − xi).(xk − xi), 1 is
the vector of all ones, and � is chosen such that the elements ofWi add up to 1.
Computing optimal embedding inℝ. LLE suggests that the relationships between the n points in the higher dimen-
sional space (R2 in our case) captured by the matrixW should be approximately preserved in the lower dimensional
space (R in our case). Then the optimal embedding y = {y1, y2,… , yn}, yi ∈ ℝ can be found by solving the following
quadratic optimization problem:

min
∑n
i=1(yi −

∑

jWijyj)2 = yT (I −W )T (I −W )y,
subject to: yT y = 1 (65)

(I−W )T (I−W ) is a positive semi-definite sparse matrix (sinceK << n) and the optimal solution to this “eigenvalue"
problem is given by the eigenvector corresponding to the smallest non-zero eigenvalue of (I−W )T (I−W ) [19]. Since
we do not need to compute all the eigenvectors, the second smallest eigenvalue of a matrix can be computed efficiently
without performing a matrix diagonalization using the Arnoldi algorithm in running time O(n2).
Using the ℝ-embedding for matching. After generating the embedding y, we applied our Dynamic Programming
Algorithm to compute the best resource allocation scheme. However, naive application of the algorithm led to high ex-
pected request distances. The reason behind this is illustrated in Figure 8, which visualizes an embedding computed for
a given set of requesters and servers from ℝ2 to ℝ; the zigzag lines denote the linear order imposed by the embedding.
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Figure 9: Matching for a clustered distribution: |R| = 50 requesters are spread uniformly at random in a square [0, 1]×[0, 1]
and each of the |S| = 100 servers is located uniformly at random in a box of size 0.1 around a randomly selected
resource. (a) Optimum weighted bipartite matching in 2D (E[D] = 0.0435); (b) Approximate matching after 1D embedding
(E[D] = 0.06) (K = 25%)

|R| |S| E[D] E[D]
Optimum ℝ2 → ℝ

200 400 0.023 0.05
200 500 0.0205 0.041
200 600 0.018 0.037
200 700 0.0166 0.0336
200 800 0.0158 0.0326
200 900 0.0151 0.02989
200 1000 0.014 0.02985

Table 2
Matching in larger networks: requesters are spread uniformly at random in a square [0, 1]×
[0, 1] and each server is located uniformly at random in a box of size 0.1 around a randomly
selected resource.

It is easy to see that it is quite possible that a pair of (requester (blue), server (orange)) nodes which are far away in
ℝ2 may be pretty close to each other in ℝ. Since our LLE-based scheme only tries to preserve close-by neighbors and
does not explicitly attempt to repel nodes that are farther away inℝ2, such pairs of nodes could end up being embedded
close to each other in ℝ. To circumvent this problem, we propose a heuristic scheme to adjust the embedding y such
that whenever for a pair of nodes {i, j} we have ‖xi − xj‖ > Δ but ‖yk − yk+1‖ < �, where xi is mapped to yk and xjis mapped to yk+1, and Δ, �, � are configurable constants, we increase the distance between yk and yk+1 by adding a
large cumulative constant ck+1 = ck + � to yk+1. This adjustment of y sequentially spreads out the points in ℝ toward
the right and the Dynamic Programing Algorithm is then able to find good requester-server matchings.

Figure 9 shows a comparison between an optimum matching and an approximate matching constructed by the
embedding methods proposed in this section. Table 2 shows results for the case when |S| is varied for a fixed |R|. We
can observe that the ℝ2 → ℝ embedding approach yields a solution which is empirically close to 2 × OPT . Given
that this procedure has a lower time complexity O(n2)13 than the usual O(n3) for Hungarian algorithm, it could be
practically useful for large resource allocation problems.

13Both the embedding process and the Dynamic Programming algorithm have time complexity O(n2).
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11. Conclusion
We introduced a queuing theoretic model for analyzing the behavior of unidirectional policies to allocate tasks

to servers on the real line. We showed the equivalence of UGS and MTR w.r.t the expected request distance and
presented results associated with the case when either requesters or servers were Poisson distributed. In this context, we
analyzed a new queueing theoretic model: ESABQ, not previously studied in queueing literature. We also proposed a
dynamic programming based algorithm to obtain an optimal allocation policy in a bi-directional system. We performed
sensitivity analysis for unidirectional system and compared the performance of various greedy allocation strategies
along with the unidirectional policies to that of optimal policy. We proposed a heuristic based approximate solution
to the optimal assignment problem for the two-dimensional scenario. Going further, we aim to extend our analysis for
unidirectional policies to a two-dimensional geographic region.
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13. Appendix
13.1. Derivation of FZ for various inter-server distance distrbutions
13.1.1. FX(x) ∼ Exponential(�)FX(x) ∼ Exponential(�)FX(x) ∼ Exponential(�)

In this case, both X and Y are exponentially distributed. Thus the difference distribution is given by

DXY (x) = 1 −
�

� + �
e−�x,when x ≥ 0 (66)

Combining (9) and (66), we get

FZ (x) =
1 − �

�+� e
−�x − 1 + �

�+�
�
�+�

= 1 − e−�x. (67)

Thus we obtain FX(x) = FZ (x) ∼ Exponential(�).
13.1.2. FX(x) ∼ Uniform(0, b)FX(x) ∼ Uniform(0, b)FX(x) ∼ Uniform(0, b)

The c.d.f. for uniform distribution is

FX(x) =

{

x
b , 0 ≤ x ≤ b;
1, x > b,

(68)

where b is the uniform parameter. Thus we have

DXY (x) = ∫

∞

0
FX(x + y)�e−�ydy =

[

∫

b−x

0

x + y
b

�e−�ydy
]

+
[

∫

∞

b−x
1 �e−�ydy

]

= �x − e−�(b−x) + e−�b

b� + e−�b − 1
(69)

Taking k� = 1∕(b� + e−�b − 1) and using Equation (9) we have
FZ (x) = k�

[

�x + e−�b(1 − e�x)
] and fZ (x) = �k�

[

1 − e−�be�x)
]

. (70)

Taking �Z = ∫ b0 xfZ (x)dx and �2Z = [∫ b0 x2fZ (x)dx] − �2Z we have

�Z =
b2�
2
k� −

1
�
, �2Z =

b3�
3
k� −

k�
�

[

b(b� − 2) + 2
�
(1 − e−�b)

]

− �2Z , �X = b∕2, �2X = b
2∕12. (71)

13.1.3. FX(x) ∼ Deterministic(d0)FX(x) ∼ Deterministic(d0)FX(x) ∼ Deterministic(d0)Another interesting scenario is when servers are equally spaced at a distance d0 from each other i.e. when FX(x) ∼Deterministic(d0). The c.d.f. for deterministic distribution is

FX(x) =

{

0, 0 ≤ x < d0;
1, x ≥ d0,

(72)

where d0 is the deterministic parameter. A similar analysis as that of uniform distribution yields

FZ (x) = c�
[

e−�(d0−x) − e�d0
]

; fZ (x) = �c�
[

e−�(d0−x)
]

, (73)
where c� = 1∕(1 − e−�d0 ). Thus we have

�Z = c�
d0� + e−�d0 − 1

�
, �2Z =

c�
�

[

d0(d0� − 2) +
2
�
(1 − e−�d0 )

]

− �2Z , �X = d0, �2X = 0. (74)
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13.2. ESABQ under PRGS
13.2.1. Chapman-Kolmorogov equations

Let us write the Chapman-Kolmorogov equations for theMarkov chain {(L(t), R(t), I(t)), t ≥ 0} defined in Section
6.3.1.For n ≥ 2 and x > 0 we get

)
)t
pt(n, x; 1) =

)
)x
pt(n, x; 1) − �pt(n, x; 1) −

)
)x
pt(n, 0; 1) + �pt(n − 1, x; 1)

)
)t
pt(n, x; 2) =

)
)x
pt(n, x; 2) − �pt(n, x; 2) −

)
)x
pt(n, 0; 2) + �pt(n − 1, x; 2) + FX (x)

)
)x
pt(n + c, 0; 1) + FX (x)

)
)x
pt(n + c, 0; 2).

Letting t → ∞ yields

0 = )
)x
p(n, x; 1) − �p(n, x; 1) − )

)x
p(n, 0; 1) + �p(n − 1, x; 1) (75)

0 = )
)x
p(n, x; 2) − �p(n, x; 2) − )

)x
p(n, 0; 2) + �p(n − 1, x; 2) + FX(x)

)
)x
p(n + c, 0; 1) + FX(x)

)
)x
p(n + c, 0; 2).

(76)
For n = 1, x > 0

)
)t
pt(1, x; 1) =

)
)x
pt(1, x; 1) − �pt(1, x; 1) −

)
)x
pt(1, 0; 1) + �pt(0)FZ (x)

)
)t
pt(1, x; 2) =

)
)x
pt(1, x; 2) − �pt(1, x; 2) −

)
)x
pt(1, 0; 2) + FX(x)

)
)x
p(1 + c, 0; 1) + FX(x)

)
)x
pt(1 + c, 0; 2).

Letting t→ ∞ yields

0 = )
)x
p(1, x; 1) − �p(1, x; 1) − )

)x
p(1, 0; 1) + �p(0)FZ (x) (77)

0 = )
)x
p(1, x; 2) − �p(1, x; 2) − )

)x
p(1, 0; 2) + FX(x)

( )
)x
p(1 + c, 0; 1) + )

)x
p(1 + c, 0; 2)

)

, x > 0. (78)

We can collect the results in (75)-(78) as follows: for n ≥ 1, x > 0,

0 = )
)x
p(n, x; 1) − �p(n, x; 1) − )

)x
p(n, 0; 1) + �p(n − 1, x; 1)1(n ≥ 2) + �p(0)FZ (x)1(n = 1) (79)

0 = )
)x
p(n, x; 2) − �p(n, x; 2) − )

)x
p(n, 0; 2) + �p(n − 1, x; 2)1(n ≥ 2) + FX(x)

( )
)x
p(n + c, 0; 1) + )

)x
p(n + c, 0; 2)

)

.

(80)
Define g(n, x) = p(n, x; 1) + p(n, x; 2) for n ≥ 1, x > 0. Summing (79) and (80) gives

0 = )
)x
g(n, x) − �g(n, x) − )

)x
g(n, 0) + �g(n − 1, x)1(n ≥ 2) + �p(0)FZ (x)1(n = 1) + FX(x)

)
)x
g(n + c, 0),

∀n ≥ 1, x > 0. (81)
13.2.2. Multiplicity of roots of zc − F ∗X(�(1 − z))Assume that FX(x) = 1 − e−�x (regular batch service times are exponentially distributed). Then,

zc − F ∗X(�(1 − z)) =
−�zc+1 + (1 + �)zc − 1

1 + �(1 − z)
.

zc − F ∗X(�(1 − z)) = 0 for |z| ≤ 1 iff Q(z) ∶= −�zc+1 + (1 + �)zc − 1 = 0. The derivative of Q(z) is Q′(z) =
zc−1((1 + �)c − �(c + 1)z). It vanishes at z = 0 and at z = (1+�)c

�(c+1) > 1 under the stability condition � < c. Since z = 0is not a zero of Q(z), we conclude that all zeros of zc − F ∗X(�(1 − z)) in {|z| ≤ 1} have multiplicity one.
More generally, it is shown in [6] that all zeros of zc − F ∗X(�(1 − z)) in {|z| ≤ 1} have multiplicity one if FX is a

�2-distribution with an even number 2p of degrees of freedom, i.e. dFX(x) = ap

Γ(p)x
p−1e−axdx so that 1∕� = p∕a.
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Figure 10: Uncrossing an assignment either reduces request distance or keeps it unchanged.

13.2.3. Roots of A(z)
Define A(z) = F ∗X(�(z)). If A(z) has a radius of convergence larger than one (i.e. A(z) is analytic for |z| ≤ � with

� > 1) and A′(1) < c ∈ {1, 2,…} a direct application of Rouché’s theorem shows that zc − A(z) has c zeros in the
unit disk {|z| ≤ 1}(see e.g. [2]). If the radius of convergence of A(z) is one, A(z) is differentiable at z = 1, A′(1) < c,
and zc − A(z) has period p, then zc − A(z) has exactly p ≤ s zeros on the unit circle and s − p zeros inside the unit
disk {|z| < 1} [2, Theorem 3.2]. Assume that the stability condition d

dzA(z)|z=1 = � < c holds. A(z) has a radius ofconvergence larger than one when FX is the exponential/Erlang/Gamma/ etc probability distributions.
13.2.4. Special Cases

One easily checks that (31) gives the classical Pollaczek-Khinchin formula for the M/G/1 queue when c = 1 and
FZ = FX .Let now c = 1 in (31) with FZ and FX arbitrary. Then,

N(z) =
a1
�

(F ∗X(�(1 − z)) − zF
∗
Z (�(1 − z))

F ∗X(�(1 − z)) − z

)

gives the z-transform of the stationary number of customers in a M/G/1 queue with an exceptional first customer in
a busy period. The constant a1∕� is obtained from the identity N(1) = 1 by application of L’Hopital’s rule, which
gives14 a1∕� = (1 − �)∕(1 − � + �Z ). This gives

N(z) =
1 − �

1 − � + �Z

(F ∗X(�(1 − z)) − zF
∗
Z (�(1 − z))

F ∗X(�(1 − z)) − z

)

.

The above is a known result [22].
If F ∗Z = F ∗X ∶= F ∗, then

N(z) =
∑c
k=1 ak

[

(zc − zk)zc + ((1 − zc)z − (1 − zk))F ∗(�(z))
]

�(z)(zc − F ∗(�(z))
.

13.3. Results for Section 7.2
13.3.1. Derivation of v1(z) and v2(z)

v1(z) in (43) can further be simplified to
v1(z) =

∞
∑

l=0
zl

l
∑

m=0
�m

c
∑

i=0
ki+l−mpi =

∞
∑

m=0
�m

∑

l≥m
zl

c
∑

i=0
ki+l−mpi =

∞
∑

m=0
�mz

m
∑

l≥m
zl−m

c
∑

i=0
ki+l−mpi =

∞
∑

m=0
�mz

m
∞
∑

j=0
zj

c
∑

i=0
ki+jpi

14Note that we retrieve this result by letting c = 1 in (32).
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= N(z)
c
∑

i=0
piz

−i
∞
∑

j=0
zi+jki+j = N(z)

c
∑

i=0
piz

−i
[

K(z) −
i

∑

j=0
kjz

j + kizi
]

= N(z)
{ c

∑

i=0
piz

−i
[

K(z) −
i

∑

j=0
kjz

j
]

+
c
∑

i=0
kiz

i
}

. (82)

Similarly v2(z) in (44) can further be simplified to

v2(z) =
∞
∑

l=0
zl

c+l
∑

m=l+1
�m

c
∑

i=m−l
ki+l−mpi =

[ ∞
∑

l=0
zl

c+l
∑

m=l
�m

c
∑

i=m−l
ki+l−mpi

]

−N(z)
c
∑

i=0
kiz

i =
[ c
∑

m=0
z−m

c
∑

i=m
ki−mpi

∞
∑

l=0
zm+l�m+l

]

−N(z)
c
∑

i=0
kiz

i

=
[ c
∑

m=0
z−m

c
∑

i=m
ki−mpi

{

N(z) −
m−1
∑

j=0
�jz

j
}]

−N(z)
c
∑

i=0
kiz

i. (83)

13.3.2. Roots of A(z)
Denote A(z) = K(z)∑c

i=0 pc−iz
i. Clearly, A(z) is also a probability generating function (pgf) for the non-negative

random variable V + ̃ where ̃ is a random variable on {0,… , c − 1} with distribution Pr(̃ = j) = pc−j ,∀j ∈
{0, 1,… , c − 1}. Also we have

A′(1) = K ′(1) +
c
∑

i=0
pc−ii = � +

c
∑

i=1
pi(c − i) = � +

c
∑

i=1
pic −

c
∑

i=1
ipi = � + c − 

From our stability condition we know that � < . Thus A′(1) < c. Since A(z) is a pgf and A′(1) < c, by applying the
arguments from [2, Theorem 3.2] we conclude that the denominator of equation (49) has c −1 zeros inside and one on
the unit circle, |z| = 1.
13.4. Proof of Lemma 1
Proof. It can be observed that if such a 4-tuple (i, j, i′, j′) exists, the cost can be reduced by assigning i to j′ and i′
to j, hence we arrive at a contradiction. To show this, consider the six possible cases of relative ordering between
ri, ri′ , sj , sj′ which obey ri < ri′ and sj > sj′ . We give a pictorial proof in Figure 1015. It is easy to see that in each of
the cases, the request distance of the uncrossed assignment is either smaller or remains unchanged.

15For ease of exposition, the requesters and servers are shown to be located along two separate horizontal lines, although they are located on the
same real-line.
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