J. Shi, . Eterna, R. Das, V. S. Pande, and . Sentrna, Improving computational RNA design by incorporating a prior of human design strategies, 2018.

F. Runge, D. Stoll, S. Falkner, and F. Hutter, Automated Machine Learning, Proceedings of ICLR 2019, 2019.

N. M. Angenent-mari, A. S. Garruss, L. R. Soenksen, G. Church, and J. J. Collins, A deep learning approach to programmable RNA switches, Nature Communications, vol.11, issue.1, p.5057, 2020.

C. Flamm, I. L. Hofacker, S. Maurer-stroh, P. F. Stadler, and M. Zehl, Design of multistable RNA molecules, RNA, vol.7, issue.2, pp.254-265, 2001.

V. Reinharz, Y. Ponty, and J. Waldispühl, A weighted sampling algorithm for the design of RNA sequences with targeted secondary structure and nucleotide distribution, Bioinformatics, vol.29, issue.13, pp.i308-i315, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00840260

C. H. Zu-siederdissen, S. Hammer, I. Abfalter, I. L. Hofacker, C. Flamm et al., Computational design of RNAs with complex energy landscapes, Biopolymers, vol.99, pp.n/a-n/a, 2013.

S. Hammer, B. Tschiatschek, C. Flamm, I. L. Hofacker, and S. Findeiß, RNAblueprint: flexible multiple target nucleic acid sequence design, Bioinformatics, vol.33, issue.18, pp.2850-2858, 2017.

S. Hammer, W. Wang, S. Will, and Y. Ponty, Fixed-parameter tractable sampling for RNA design with multiple target structures, BMC Bioinformatics, vol.20, issue.1, p.209, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02112888

Y. Zhou, Y. Ponty, S. Vialette, J. Waldispuhl, Y. Zhang et al., Flexible RNA design under structure and sequence constraints using formal languages, Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics - BCB'13, vol.2013, p.229, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00823279

Y. Zhang, Y. Ponty, M. Blanchette, E. Lécuyer, and J. Waldispühl, SPARCS: a web server to analyze (un)structured regions in coding RNA sequences, Nucleic Acids Research, vol.41, issue.W1, pp.W480-W485, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00819017

G. Rodrigo, T. E. Landrain, E. Majer, J. Daròs, and A. Jaramillo, Full Design Automation of Multi-State RNA Devices to Program Gene Expression Using Energy-Based Optimization, PLoS Computational Biology, vol.9, issue.8, p.e1003172, 2013.

S. Findeiß, M. Etzel, S. Will, M. Mörl, and P. F. Stadler, Design of Artificial Riboswitches as Biosensors, Sensors, vol.17, issue.9, p.1990, 2017.

I. Kalvari, J. Argasinska, N. Quinones-olvera, E. P. Nawrocki, E. Rivas et al., Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families, Nucleic Acids Research, vol.46, issue.D1, pp.D335-D342, 2017.

J. Lee, W. Kladwang, M. Lee, D. Cantu, M. Azizyan et al., RNA design rules from a massive open laboratory, Proceedings of the National Academy of Sciences, vol.111, issue.6, pp.2122-2127, 2014.

M. Hellmuth, D. Merkle, and M. Middendorf, Extended shapes for the combinatorial design of RNA sequences, International Journal of Computational Biology and Drug Design, vol.2, issue.4, p.371, 2009.

É. Bonnet, P. Rz??ewski, and F. Sikora, Designing RNA Secondary Structures Is Hard, Journal of Computational Biology, vol.27, issue.3, pp.302-316, 2020.
URL : https://hal.archives-ouvertes.fr/hal-01991541

H. S. Wilf, A unified setting for sequencing, ranking, and selection algorithms for combinatorial objects, Advances in Mathematics, vol.24, issue.2, pp.281-291, 1977.

Y. Ding and C. E. Lawrence, A statistical sampling algorithm for RNA secondary structure prediction, Nucleic Acids Research, vol.31, issue.24, pp.7280-7301, 2003.

R. Dechter, Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.7, issue.3, pp.1-191, 2013.

S. Will, Y. Ponty, H. Yao, and . Infrared, , 2020.

R. Lorenz, S. H. Bernhart, C. Höner-zu-siederdissen, H. Tafer, C. Flamm et al., ViennaRNA Package 2.0, Algorithms for Molecular Biology, vol.6, issue.1, p.26, 2011.

J. Mccaskill, The equilibrium partition function and base pair binding probabilities for RNA secondary structure, Biopolymers, vol.29, issue.6-7, pp.1105-1119, 1990.

R. Kleinkauf, M. Mann, and R. Backofen, antaRNA: ant colony-based RNA sequence design, Bioinformatics, vol.31, issue.19, pp.3114-3121, 2015.

X. Yang, K. Yoshizoe, A. Taneda, and K. Tsuda, RNA inverse folding using Monte Carlo tree search, BMC Bioinformatics, vol.18, issue.1, p.468, 2017.

A. Taneda, MODENA: a multi-objective RNA inverse folding, Advances and Applications in Bioinformatics and Chemistry, vol.4, p.1, 2010.

I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker et al., Fast folding and comparison of RNA secondary structures, Monatshefte f?r Chemie Chemical Monthly, vol.125, issue.2, pp.167-188, 1994.

A. Busch and R. Backofen, INFO-RNA--a fast approach to inverse RNA folding, Bioinformatics, vol.22, issue.15, pp.1823-1831, 2006.

J. N. Zadeh, B. R. Wolfe, and N. A. Pierce, Nucleic acid sequence design via efficient ensemble defect optimization, Journal of Computational Chemistry, vol.32, issue.3, pp.439-452, 2010.

M. C. Matthies, S. Bienert, and A. E. Torda, Dynamics in Sequence Space for RNA Secondary Structure Design, Journal of Chemical Theory and Computation, vol.8, issue.10, pp.3663-3670, 2012.

P. Eastman, J. Shi, B. Ramsundar, and V. S. Pande, Solving the RNA design problem with reinforcement learning, PLOS Computational Biology, vol.14, issue.6, p.e1006176, 2018.