T. Alldieck, M. Magnor, B. L. Bhatnagar, C. Theobalt, and G. Pons-moll, Learning to reconstruct people in clothing from a single RGB camera, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.3, p.4, 2019.

T. Alldieck, M. Magnor, W. Xu, C. Theobalt, and G. Pons-moll, Detailed human avatars from monocular video, International Conference on 3D Vision (3DV), 2018.

T. Alldieck, M. Magnor, W. Xu, C. Theobalt, and G. Pons-moll, Video Based Reconstruction of 3D People Models, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.

T. Alldieck, G. Pons-moll, C. Theobalt, and M. Magnor, Tex2Shape: Detailed full human body geometry from a single image, The IEEE International Conference on Computer Vision (ICCV), vol.2, p.3, 2019.

N. R?za-alp-güler, I. Neverova, and . Kokkinos, Densepose: Dense human pose estimation in the wild, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers et al., SCAPE: shape completion and animation of people, In ACM Transactions on Graphics, vol.24, p.3, 2005.

J. Bao, D. Chen, F. Wen, H. Li, and G. Hua, CVAE-GAN: fine-grained image generation through asymmetric training, The IEEE International Conference on Computer Vision (ICCV, 2017.

G. Bharat-lal-bhatnagar, C. Tiwari, G. Theobalt, and . Pons-moll, Multi-Garment Net: Learning to Dress 3D People from Images, The IEEE International Conference on Computer Vision (ICCV), vol.3, p.4, 2019.

F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero et al., Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image, European Conference on Computer Vision (ECCV), vol.2, p.7, 2016.

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, Spectral networks and locally connected networks on graphs, ternational Conference on Learning Representations (ICLR), 2014.

M. Defferrard, X. Bresson, and P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, Advances in Neural Information Processing Systems, vol.2, p.3, 2016.

V. Gabeur, J. Franco, X. Martin, C. Schmid, and G. Rogez, Moulding Humans: Non-Parametric 3D Human Shape Estimation From Single Images, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), vol.2, p.3, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02242795

M. Garland, S. Paul, and . Heckbert, Surface simplification using quadric error metrics, Proceedings of the 24th annual conference on Computer graphics and interactive techniques, p.3, 1997.

P. Ghosh, M. S. Sajjadi, A. Vergari, M. J. Black, and B. Schölkopf, From variational to deterministic autoencoders, International Conference on Learning Representations (ICLR

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, Advances in neural information processing systems, vol.2, p.4, 2014.

L. Peng-guan, . Reiss, A. David, A. Hirshberg, M. Weiss et al., DRAPE: DRessing Any PErson, ACM Transactions on Graphics (TOG), vol.31, issue.4, p.4, 2012.

P. Guan, A. Weiss, O. Alexandru, M. Balan, and . Black, Estimating human shape and pose from a single image, The IEEE International Conference on Computer Vision (ICCV), 2009.

E. Gundogdu, V. Constantin, A. Seifoddini, M. Dang, M. Salzmann et al., GarNet: A two-stream network for fast and accurate 3D cloth draping, The IEEE International Conference on Computer Vision (ICCV), 2019.

P. Henderson and V. Ferrari, Learning single-image 3D reconstruction by generative modelling of shape, pose and shading, International Journal of Computer Vision (IJCV), issue.7, 2019.

D. T. Hoffmann, D. Tzionas, M. J. Black, and S. Tang, Learning to train with synthetic humans, German Conference on Pattern Recognition (GCPR), vol.1, 2019.

P. Isola, J. Zhu, T. Zhou, and A. A. Efros, Image-to-image translation with conditional adversarial networks, The IEEE Conference on Computer Vision and Pattern Recognition, vol.5, p.7, 2017.

H. Joo, T. Simon, and Y. Sheikh, Total Capture: A 3D deformation model for tracking faces, hands, and bodies, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, p.3, 2018.

A. Kanazawa, J. Michael, . Black, W. David, J. Jacobs et al., End-to-end recovery of human shape and pose, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2002.

P. Diederik, M. Kingma, and . Welling, Auto-encoding variational bayes, International Conference on Learning Representations (ICLR), 2014.

N. Thomas, M. Kipf, and . Welling, Semi-supervised classification with graph convolutional networks, International Conference on Learning Representations (ICLR

N. Kolotouros, G. Pavlakos, M. J. Black, and K. Daniilidis, Learning to reconstruct 3D human pose and shape via model-fitting in the loop, The IEEE International Conference on Computer Vision (ICCV), vol.1, 2019.

N. Kolotouros, G. Pavlakos, and K. Daniilidis, Convolutional mesh regression for single-image human shape reconstruction, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

Z. Lähner, D. Cremers, and T. Tung, DeepWrinkles: Accurate and realistic clothing modeling, European Conference on Computer Vision, 2018.

A. Boesen-lindbo-larsen, S. K. Sønderby, H. Larochelle, and O. Winther, Autoencoding beyond pixels using a learned similarity metric, International Conference on Machine Learning (ICML), vol.2, p.4, 2016.

C. Lassner, J. Romero, M. Kiefel, F. Bogo, J. Michael et al., Unite the people: Closing the loop between 3D and 2D human representations, The IEEE Conference on Computer Vision and Pattern Recognition, vol.2, p.5, 2017.

Q. Li, Z. Han, and X. Wu, Deeper insights into graph convolutional networks for semi-supervised learning, Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

O. Litany and A. Bronstein, Michael Bronstein, and Ameesh Makadia. Deformable shape completion with graph convolutional autoencoders, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.2, p.3, 2018.

M. Loper, N. Mahmood, J. Romero, G. Pons-moll, and M. Black, SMPL: A skinned multi-person linear model, ACM Transactions on Graphics (TOG), vol.34, issue.6, p.3, 2015.

R. Natsume, S. Saito, Z. Huang, W. Chen, C. Ma et al., SiCloPe: Silhouette-based clothed people, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.3, p.4, 2002.

A. Neophytou and A. Hilton, A layered model of human body and garment deformation, International Conference on 3D Vision (3DV), 2014.

M. Omran, C. Lassner, G. Pons-moll, P. Gehler, and B. Schiele, Neural body fitting: Unifying deep learning and model based human pose and shape estimation, International Conference on 3D Vision (3DV), vol.1, 2018.

C. Patel, Z. Liao, and G. Pons-moll, The Virtual Tailor: Predicting Clothing in 3D as a Function of Human Pose, Shape and Garment Style, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.2020

G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. Ahmed et al., Expressive body capture: 3D hands, face, and body from a single image, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.2, p.3, 2019.

G. Pavlakos, L. Zhu, X. Zhou, and K. Daniilidis, Learning to estimate 3D human pose and shape from a single color image, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

G. Pons-moll, S. Pujades, S. Hu, and M. Black, Clothcap: Seamless 4D clothing capture and retargeting, ACM Transactions on Graphics (TOG), vol.36, issue.4, p.4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02162166

A. Ranjan, T. Bolkart, S. Sanyal, and M. Black, Generating 3D faces using convolutional mesh autoencoders, The European Conference on Computer Vision (ECCV), vol.5, p.6, 2003.

A. Ranjan, T. David, D. Hoffmann, S. Tzionas, J. Tang et al., Learning multi-human optical flow, International Journal of Computer Vision (IJCV), 2001.

A. Ranjan, J. Romero, and M. Black, Learning human optical flow, British Machine Vision Conference (BMVC), vol.1, 2018.

S. Saito, Z. Huang, R. Natsume, S. Morishima, A. Kanazawa et al., PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization, The IEEE International Conference on Computer Vision (ICCV), vol.3, p.4, 2019.

I. Santesteban, M. A. Otaduy, and D. Casas, Learning-Based Animation of Clothing for Virtual Try-On. Computer Graphics Forum, Proc. Eurographics), 2019.

D. Smith, M. Loper, X. Hu, P. Mavroidis, and J. Romero, FACSIMILE: Fast and Accurate Scans From an Image in Less Than a Second, The IEEE International Conference on Computer Vision (ICCV), 2019.

C. Stoll, J. Gall, S. Edilson-de-aguiar, C. Thrun, and . Theobalt, Video-based reconstruction of animatable human characters, ACM SIGGRAPH ASIA, p.3, 2010.

G. Varol, D. Ceylan, B. Russell, J. Yang, E. Yumer et al., Bodynet: Volumetric inference of 3D human body shapes, The European Conference on Computer Vision (ECCV, vol.2, p.4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01852169

G. Varol, J. Romero, X. Martin, N. Mahmood, J. Michael et al., Learning from synthetic humans, The IEEE Conference on Computer Vision and Pattern Recognition, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01505711

N. Verma, E. Boyer, and J. Verbeek, Feastnet: Featuresteered graph convolutions for 3D shape analysis, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.2, p.3, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01540389

Y. Tuanfeng, D. Wang, J. Ceylan, N. Popovi?, and . Mitra, Learning a shared shape space for multimodal garment design, In ACM SIGGRAPH ASIA, issue.3, 2018.

J. Yang, J. Franco, F. Hétroy-wheeler, and S. Wuhrer, Analyzing clothing layer deformation statistics of 3D human motions, The European Conference on Computer Vision (ECCV), vol.2, p.3, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01763706

C. Zhang, S. Pujades, M. J. Black, and G. Pons-moll, Detailed, accurate, human shape estimation from clothed 3D scan sequences, The IEEE Conference on Computer Vision and Pattern Recognition
URL : https://hal.archives-ouvertes.fr/hal-02162183

Z. Zheng, T. Yu, Y. Wei, Q. Dai, and Y. Liu, DeepHuman: 3D human reconstruction from a single image, The IEEE International Conference on Computer Vision (ICCV), vol.3, p.4, 2019.

H. Zhu, X. Zuo, S. Wang, X. Cao, and R. Yang, Detailed human shape estimation from a single image by hierarchical mesh deformation, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.2, p.4, 2019.

J. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, The IEEE Conference on Computer Vision and Pattern Recognition