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ABSTRACT

Several techniques can be used to reconstruct the internal
geometry of a wind instrument from acoustics measure-
ments. In this study, the passive linear acoustic response
of the instrument is simulated and an optimization pro-
cess is used to fit the simulation to the measurements. This
technique can be seen as a first step toward the design of
wind instruments, where the targeted acoustics properties
come no more longer from measurements but are imposed
by the designer. The difficulties of this approach are to
find the best acoustic observation allowing the reconstruc-
tion (impedance, reflection function, etc.) but also to have
an efficient optimization process. The ”full waveform in-
version” (FWI) is a technique coming from the seismol-
ogy community. It uses the knowledge of the equation
modeling the wave propagation into the instrument (here
the telegraphist equation) to have an explicit expression
of the gradient of the function which is minimized. This
gradient is evaluated with a low computational cost. The
FWI methodology, along with 1D spectral finite element
discretization in space, applied to the woodwind instru-
ments (with tone holes, losses and radiation) is presented in
this communication. The results obtained for the bore re-
construction with different acoustics observations are then
compared and discussed.

1. INTRODUCTION

The aim of the bore reconstruction is to deduce the internal
geometry of a wind instrument (bore profile) from acoustic
measurement (typically input impedance measurement),
giving a non-destructive tool to estimate the geometry of
existing instrument.

Several previous studies conducted bore reconstruction
of brass instruments, in which the resonator part is com-
posed of one unique main tube, but to our knowledge, no
reconstruction of woodwind instrument (with side holes)
has been conducted. One approach is the pulse reflec-
tometry technique [1, 2], a signal approach in which the
main tube is supposed to be composed of small conical
parts, the length of which are related to highest frequency
of the signal. However this technique can not be ap-
plied directly to woodwind instruments in which the res-
onator can be seen as a ”pipes network” due to the side
holes. A second possibility is to use optimization algo-
rithms to inverse the impedance computation: find the ge-
ometry which minimizes the residual between measured

and simulated impedance. This approach has been used
by W.Kausel [3] on brass instruments by using a zero or-
der optimization algorithm (Rosenbrock). This approach
can be seen as a first step toward the design of wind in-
struments, where the targeted acoustics properties come
no more longer from measurements but are imposed by the
designer. Even if this principle can be applied to woodwind
instruments, due to the complexity of the resonator geome-
try, it is necessary to use a more efficient optimization algo-
rithm like quasi-Newton algorithm [4, Chap.3] for which
the gradient of the objective function must be known.

The ”full waveform inversion” (FWI) is a technique
coming from the seismology community [5]. It uses the
knowledge of the equation modeling the wave propagation
to have an explicit expression of the gradient of the acous-
tic fields inside the propagation medium. It gives the pos-
sibility to evaluate, with a low computational cost, the gra-
dient of the objective function of the optimization problem
as long as its relation to the acoustic field is differentiable.

The general principle of the FWI and its adaptation to
woodwind instrument reconstruction are first presented.
The reconstruction of an illustrative ”instrument” is then
discussed: a cylindrical pipe with four side holes.

All the results presented in this paper are obtained
using the OpenWInD python GPLv3 toolbox, the lat-
est version of which can be downloaded at openwind.
gitlabpages.inria.fr.

2. INVERSE PROBLEM

2.1 Wave propagation model

To solve the wave equation in the resonator of the instru-
ment and compute its input impedance, it is described as a
pipes network. The main bore profile can be described by
one or several pipes with any shape (with axial symmetry).
At the side holes location, a T-joint junction is assumed
between the two pipes of the main bore and the cylindrical
pipe corresponding to the chimney hole. The design pa-
rameters necessary to describe this geometry are grouped
in the vector m. The physical coefficients of the equations
may therefore depend on m.

In each pipe n the scaled telegraphist equation is as-



sumed:
Ln(m)Zv(x,m, ω)un +

dpn
dx

= 0

Ln(m)Yt(x,m, ω)pn +
dun
dx

= 0
∀x ∈ [0, 1].

(1)
where Ln is the pipe length, pn is the acoustic pressure and
un the acoustic flow. The coefficients Zv and Yt account
for thermo-viscous effects and depend on the geometry:
Zv(x,m, ω) =

jωρ

S(x)
[1− J (kv(m, ω)R(x))]

−1

Yt(x,m, ω) =
jωS(x)

ρc2
[1 + (γ − 1)J (kt(m, ω)R(x))]

kv(m, ω) =

√
jω
ρ

µ
, kt(m, ω) =

√
jωρ

Cp

κ

whereR is the section radius, S = πR2 is the section area,
Table 1 describes the air constants and the function J of a
complex variable is defined as

J (z) = 2

z

J1(z)

J0(z)
, ∀z ∈ C (3)

where J0 and J1 are the Bessel functions of the first
kind [6].

Air density (kg.m−3) ρ = 1.2929(T0/(T + T0))

Sound celerity (m.s−1) c = 331.45
√

(T + T0)/T0
Viscosity (kg.m−1.s−1) µ = 1.708e−5(1 + 2.9e−3T )
Therm. cond. (Cal/(m.s.◦C)) κ = 5.77e−3(1 + 3.3e−3T )
Specific heat (Cal/(kg. ◦C)) Cp = 240
Ratio of spec. heat γ = 1.402

Table 1. Physical constant values [7]. T is the temperature
in Celsius and T0 = 273.15K. In this study T = 20◦C.

The boundary conditions of each pipe depend on its sit-
uation in the global instrument. At the entry (first point of
the first pipe), a unitary input flow is imposed : u1(x =
0, ω) = 1. At the junctions between two main pipes (in-
dexed by a and b) and one side hole (indexed by c), the en-
try flow is conserved and the entry pressures of each pipe
follow a coupled equation [7, Chap.7]:

va + vb + vc = 0,

(
pa − pc
pb − pc

)
=

(
m11 m12

m21 m22

)
jω

(
va
vb

)
where the efficient masses can be obtained from measure-
ments [7].

At each pipe end, a radiation impedance is imposed [8]:

(α+ jωβ) pn(1, ω) = jω Zcvn(1, ω) (4)

where α and β are chosen to describe various radiation
models, and can be put to (0, 0) to model a closed hole.

For each pipe the equations are discretized by the Finite
Element Method (FEM) leading to a linear matrix equa-
tion [9]. The junction and radiation equations are appended

in order to close the discrete system. This procedure re-
sults in a global matricial formulation for each considered
frequency f = ω/2π:

Atot(m, ω)Utot = Etot. (5)

where all the geometric coefficients contribute to the ma-
trix Atot, the vector Utot contains the acoustic flow and
pressure at each degree of freedom (dof) for all pipes and
the vector Etot the source term (associated with the input
boundary condition).

The system is then solved by inverting the matrix Atot.
The input impedance is then the pressure at the dof corre-
sponding to the entry of the instrument:

Z = RUtot (6)

whereR is the projection matrix to the corresponding dof.

2.2 Choice of observable

The aim of the reconstruction is to determine the value
of the parameters in the design vector m by minimiz-
ing the residuals between an experimental observation and
a simulated one. In our case, the measured data being
the impedance, the observation must be a function of the
impedance O(Z). To allow the use of quasi-Newton algo-
rithm, this function must be C1. The identity, the modulus
(as long as it is far from 0) and the phase are good candi-
dates. The reflection function

R =
Z − 1

Z + 1
(7)

and its modulus are also interesting. The phase of the
reflection function is wrapped and can not be used di-
rectly [10]. The cost function J minimized by the opti-
mization algorithm is:

J(m) =
∑
ω

1

2
|O(Zsimu(ω))−O(Zmeas(ω))|2 (8)

with Zsimu and Zmeas, the simulated and measured
impedances respectively.

To perform correctly the reconstruction, the chosen ob-
servation must ideally be such that the cost function only
has one local minimum in the design space at the point
corresponding to the actual geometry. The evolution of the
cost functions relying of previously evoked observations
along one axis of the design space (the position of the first
hole) are represented on Figure 1, for a specific scenario.
In this case, the reflection function appears to be the ob-
servation with the least local minima (and the impedance
phase to a lesser extent). It is the observation chosen for
this study.

2.3 Gradient computation

To perform the optimization with a quasi-Newton algo-
rithm it is necessary to estimate the gradient of the cost
function with respect to each design variable mi. It is
for this step that the approach used for the Full Wave-
form Inversion in geophysics is particularly interesting.
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Figure 1. Variations of the residuals computed with dif-
ferent observations on the fingering where only the first
hole is open, with respect to the relative location of the first
hole. The reflection function has the smoother evolution.

The Frechet derivative is the mathematical framework used
here. In some cases the adjoint state method can also be
used efficiently [11].

The gradient of the cost function can easily be deduced
from the differentiation of the acoustic fields with respect
to the design variables ∂Utot/∂mi, by formally using com-
posed derivations with equations (6), (7) and (8).

The differentiation of the direct problem of Eq.(5)
yields that the differentiation of the acoustic fields can be
obtained by solving a similar problem with another source
term:

Atot
∂Utot

∂mi
= −∂Atot

∂mi
Utot. (9)

This problem induces a low computational cost because the
matrixAtot is already to be inverted for the direct problem.
The most technical part is maybe the computation of the
derivative of Atot which necessitates to differentiate the
coefficients Zv and Yt.

3. RECONSTRUCTION OF AN ILLUSTRATIVE
CASE

This reconstruction approach is here applied to a sim-
ple ”woodwind-like” tube, the geometry of which is well
known.

3.1 Description of the instrument

3mm
3.5mm

3.5mm 2.5mm

Total Length: 287.5mm

100mm 130mm 180mm
240mm

1.7mm 1.3mm 1.5mm 1.4mm

4mm

Figure 2. Sketch of the cylindrical tube with 4 side holes
studied. It is described by 15 geometric parameters (3 for
the main bore profile and 3 for each of the four holes).

The simple ”woodwind-like” tube is a cylinder (treated
here as a specific cone) drilled by four holes. The dimen-
sions are indicated in Figure 2. In this study, only the main
bore radius at the entrance is supposed known. The aim of
the reconstruction is to determine the values of the 14 other
parameters: the length and the right-end radius of the main
pipe and the locations, the radii and the chimney heights of
the four holes (14 unknowns).

A preliminary study reveals that the most useful ”fin-
gering” for the reconstruction are the ones for which at
the most one hole is open. The 5 corresponding input
impedances are measured.

3.2 Results

The initial geometry is a 5 cm conical pipe with one hole
at each centimeter. A strategy is used to have a rough es-
timation of the geometry before refining the values of the
design variables. For this first step, the low frequencies
are the most important. Only 10 frequency values evenly
spread between 100 Hz and 200 Hz. First of all the “all
closed” impedance is used to adjust only the main bore
profile (length and right-end radius). The impedance for
which only the fourth hole is open is then used to adjust
this hole location, and so on to adjust the four holes lo-
cations. These first optimizations are very fast (around
20 sec.), but due to the bad dimensions of the holes (ra-
dius and chimney heights) these first estimations of the lo-
cations are quite bad.

To refine the values, all the fingerings are taken into ac-
count and all the design variables are adjusted together.
This time more frequencies are considered (100 values
evenly spread between 100 Hz and 3000 Hz). This step
is longer (around 5 min). The final results and the compar-
ison with the measured geometric values are indicated in
the tables 2, 3, 4, 5.

Variable Measured Reconstr. Error
Total length 287.5 ± 0.5 287.57 0.07

Right-end diam. 4 ± 0.01 3.92 0.08

Table 2. Main bore dimensions (in mm): values obtained
by geometric measurements and reconstruction.

Variable Measured Reconstr. Error
Hole 1 loc. 100 ± 0.5 100.50 0.5
Hole 2 loc. 130 ± 0.5 130.46 0.46
Hole 3 loc. 180 ± 0.5 180.12 0.12
Hole 4 loc. 240 ± 0.5 240.18 0.18

Table 3. Holes locations (in mm): values obtained by geo-
metric measurements and reconstruction.

It is important to notice that the measured locations
have uncertainties around 0.5mm and the other dimensions
around 0.01mm. The values obtained by the reconstruc-
tion process presented here are quite good for most of the
design variables. At low frequency, the diameter and the
chimney height of a hole have similar effect. The opti-
mization algorithm can have difficulties to adjust together



Variable Measured Reconstr. Error
Hole 1 diam. 3 ± 0.01 2.95 0.05
Hole 2 diam. 3.5 ± 0.01 3.54 0.04
Hole 3 diam. 3.5 ± 0.01 3.26 0.24
Hole 4 diam. 2.5 ± 0.01 2.19 0.31

Table 4. Holes diameters (in mm): values obtained by
geometric measurements and reconstruction.

Variable Measured Reconstr. Error
Chimney 1 1.7 ± 0.01 1.74 0.04
Chimney 2 1.3 ± 0.01 1.46 0.16
Chimney 3 1.5 ± 0.01 1.52 0.02
Chimney 4 1.4 ± 0.01 1.14 0.26

Table 5. Holes chimney heights (in mm): values obtained
by geometric measurements and reconstruction.

these two parameters. It can explain the ”wide” deviation
between measured and reconstructed values for the dimen-
sion of the hole 4. Using higher frequencies could improve
the reconstruction. The radiation model could also be a
source of uncertainties in the reconstruction, since a model
error should impact the way physical coefficients influence
the simulated impedances, especially close to the holes
open end.

Finally, the errors on the reconstruction can come from
uncertainties on the input impedance measurement. The
relative uncertainties on the input impedance of a cylin-
der are around 8% with the home-made sensor used for
this study and built following the principles described by
Gibiat [12] with five microphones. A preliminary study of
the error propagation in the studied geometry gives around
1mm of uncertainty on the locations, 0.4mm on the diam-
eters and 0.5mm on the chimney heights. It appears there-
fore that the major identified defect of the reconstruction
process presented here is the precision of the impedance
measurements.

4. CONCLUSION

This article presents the adaptation of the Full Waveform
Inversion to the bore reconstruction of woodwind instru-
ment (pipe with side holes). The process is applied to the
reconstruction of a cylinder pipe with four side holes. The
results indicate that the process is able to reconstruct such
an instrument but that it is very sensitive to the precision of
the measured impedance used for the reconstruction. Per-
forming the inversion directly from the measured pressure
at the five microphones instead of using post processed
quantities (impedance, reflection function) could reduce
these uncertainties by providing redundant data to the al-
gorithm.
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