
HAL Id: hal-03001493
https://inria.hal.science/hal-03001493

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Annotating Executable DSLs with Energy Estimation
Formulas

Thibault Béziers La Fosse, Massimo Tisi, Jean-Marie Mottu, Gerson Sunyé

To cite this version:
Thibault Béziers La Fosse, Massimo Tisi, Jean-Marie Mottu, Gerson Sunyé. Annotating Executable
DSLs with Energy Estimation Formulas. SLE 2020 - Software Language Engineering, Nov 2020,
Chicago, Illinois / Virtual, United States. pp.22-38, �10.1145/3426425.3426930�. �hal-03001493�

https://inria.hal.science/hal-03001493
https://hal.archives-ouvertes.fr

Annotating Executable DSLs with Energy Estimation
Formulas

Thibault Béziers la Fosse
IMT Atlantique, ICAM, LS2N

Nantes, France
thibault.beziers-la-fosse@ls2n.fr

Massimo Tisi
IMT Atlantique, LS2N

Nantes, France
massimo.tisi@imt-atlantique.fr

Jean-Marie Mottu
Université de Nantes, IMT Atlantique, LS2N

Nantes, France
jean-marie.mottu@ls2n.fr

Gerson Sunyé
Université de Nantes, LS2N

Nantes, France
gerson.sunye@ls2n.fr

Abstract
Reducing the energy consumption of a complex, especially
cyber-physical, system is a cross-cutting concern through
the system layers, and typically requires long feedback loops
between experts in several engineering disciplines. Having
an immediate automatic estimation of the global system con-
sumption at design-time would significantly accelerate this
process, but cross-layer tools are missing in several domains.
Executable domain-specific modeling languages (xDSLs)

can be used to design several layers of the system under de-
velopment in an integrated view. By including the behavioral
specification for software and physical components of the
system, they are an effective source artifact for cross-layer
energy estimation.
In this paper we propose EEL, a language for annotating

xDSL primitiveswith energy-related properties, i.e. how their
execution would contribute to the energy consumption on a
specific runtime platform. Given an xDSL, energy specialists
create EEL models of that xDSL for each considered runtime
platform. The models are used at design time, to predict the
energy consumption of the real systems. This avoids the
need of energetic analysis by deployment and measurement
on all runtime platforms, that is slow and expensive.
We augment an existing language workbench for xDSLs

with an editor for EEL models and a component that com-
putes energy-consumption estimations during model edit-
ing. The evaluation shows that EEL can be used to represent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’20, November 16–17, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8176-5/20/11. . . $15.00
https://doi.org/10.1145/3426425.3426930

estimation models from literature, and provide useful pre-
dictions.

CCS Concepts: • Software and its engineering→ Extra-
functional properties; •Hardware→Power estimation
and optimization.

Keywords: xDSL, Energy Estimation, Cyber-Physical Sys-
tems
ACM Reference Format:
Thibault Béziers la Fosse, Massimo Tisi, Jean-Marie Mottu, and Ger-
son Sunyé. 2020. Annotating Executable DSLs with Energy Esti-
mation Formulas. In Proceedings of the 13th ACM SIGPLAN Inter-
national Conference on Software Language Engineering (SLE ’20),
November 16–17, 2020, Virtual, USA. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3426425.3426930

1 Introduction
Energy consumption has become an important concern in
the domain of software engineering during the past decade
[44]. Significant efforts aim at reducing the CO2 emissions
of data-centers [52], electricity costs [54, 59], or improv-
ing the battery life of smartphones [33, 43]. Energy-aware
design of software systems and applications benefits from
an estimation of the energy consumption at design time.
Using this early feedback, software engineers can perform
design choices aimed at energy efficiency, e.g. using the right
data structures depending on the context, avoiding energy-
consuming code smells [13, 30, 39, 45, 47]. In particular, many
tools have been developed for measuring and estimating
the energy consumption at the software and middleware
levels [7, 15, 34, 40, 50, 55]. Existing approaches from liter-
ature address the energy consumption of general-purpose
programming languages instructions, e.g. based on LLVM
IR [24], Android Bytecode [26], or System call traces [1].

Energy optimization of cyber-physical systems (CPSs) in-
troduces further challenges, since consumption is impacted
both by the physical devices and the software running on
them, and constrained by limited power supplies. When
designing CPSs, software developers need to consider also
the physical characteristics of the devices included in the

https://doi.org/10.1145/3426425.3426930
https://doi.org/10.1145/3426425.3426930

SLE ’20, November 16–17, 2020, Virtual, USA Thibault Béziers la Fosse, Massimo Tisi, Jean-Marie Mottu, and Gerson Sunyé

system, since a significant part (usually most) of the con-
sumption goes into software-driven physical devices [48, 51].
If all engineering disciplines have ad hoc tools for estimat-
ing energy consumption, tools usable across engineering
disciplines are uncommon. As a result, energy-optimization
typically requires long feedback loops between experts in
several engineering disciplines.
Furthermore, using energy measurement and estimation

tools often requires complex software and system tweak-
ing, and competences about energy measurement that the
majority of software developers does not have [44, 46].

Finally, providing immediate feedback about energy con-
sumption is more complicated when the application under
development is meant to be executed on a large diversity
of platforms with their own energetic properties. Indeed, in
order to gather energy-relatedmetrics, deploying the applica-
tion on all platforms, or running several low-level hardware
simulators, can be long and expensive. Most existing work
targets specific languages, or runtime platforms.

In this work, we argue that models in executable domain-
specific languages (xDSLs) are an effective artifact for an
energy-aware development process for CPSs. Indeed, models
are already commonly used during the CPS engineering life
cycle [2]. The structure and behavior of executable models
are written in a modeling workbench that is typically able
to simulate their execution, verify their properties, compile
and deploy them on several platforms [4, 16, 21, 35, 56].

We introduce a generic approach for estimating the energy
consumption of systems designed by xDSLs. The approach
is based on a proposed Energy Estimation Language (EEL) for
annotating any given xDSL with energy-estimation formulas.
An energy specialist writes Energy Estimation Models (EEMs),
each one defining the energetic properties of the xDSL for a
single specific runtime platform. The modeling workbench is
capable of taking several EEMs into account while simulating
an executable model, and predict how much energy it would
consume when deployed on its respective platforms. This
feedback can help developers identifying energy waste and
improving their programs before actually deploying them.

This approach raises the following research questions:

RQ1: Can EEMs associated to xDSLs be used to encode
the energy estimation methods in literature?

RQ2: Can the evaluation of EEMs on xDSL execution
traces provide accurate energy estimations?

We show the benefits of our approach by a case study,
where we define an EEM for an xDSL for Arduino, i.e. Ar-
duinoML. We measure the consumption of Arduino devices
using small benchmark ArduinoML models, and we model
this consumption in the EEM. We automatically estimate the
consumption of three larger ArduinoML application mod-
els, obtained by combining these devices. Then we generate
code from them and deploy them on the runtime platform

to measure and compare the energy consumption to the es-
timation automatically performed at design time. We detect
in our case study an estimation error with an average 4.9%,
between 0.4% and 17.1%.
This paper is organized as follows. Section 2 proposes a

running case to exemplify the approach. Section 3 outlines
the EEL abstract and concrete syntax, and its semantics. Sec-
tion 4 experiments on the approach. Section 5 describes the
related efforts in literature and finally, Section 6 concludes
this paper.
This research work is partially funded by the MEASURE

project1.

2 Running Example
We illustrate the paper with a running example where a
developer wants to build a small CPS on top of Arduino.

Arduino is a open-source hardware and software company.
It proposes development boards embedding CPUs based on
AVR and ARM architectures, but also a cross-platform devel-
opment environment. A program to be deployed on Arduino
boards can be written in any language, as long as it com-
piles to binary code conforming to the targeted CPU. The
standard Arduino development environment supports C and
C++. A Arduino program is called a Sketch, and consists of
two functions setup and loop. The former is called at the start
of the program, and is generally used to initialize the vari-
ables, and to define the types of the signal used by the pins
of the Arduino board (digital or analogic, input or output).
The later defines the behavior of the Arduino board, and is
repeated indefinitely.
In this running example, the system that the developer

wants to deploy embeds an Arduino board, an infrared sen-
sor and a LED. The behavior to define in the sketch is the
following: when the sensor detects an obstacle, the LED is
turned on for one second and then turned off for another,
repeatedly. The CPS has to be produced in several versions,
based on different Arduino boards: Arduino Uno, Due, Nano,
etc. The developer needs to estimate and possibly improve
the energy consumption of her system on all platforms.
If this use-case is intentionally small to be completely

addressed in the paper, it shows the cumbersomeness of a
standard energy-aware development process. The standard
development process requires writing a C program in the
Arduino IDE. The main loop of the program checks if the
signal sent by the sensor is HIGH. As soon as it is, a HIGH
signal is sent to the LED to turn it on, followed by a one
second delay. Finally a LOW signal is sent to the LED to turn
it off, and another one second delay follows. The written
C code may differ among the different Arduino platforms.
The developer would manually perform the needed adap-
tations before deployment. In order to measure the energy
consumption, the developer has to deploy each C program on

1https://itea3.org/project/measure.html

Annotating Executable DSLs with Energy Estimation Formulas SLE ’20, November 16–17, 2020, Virtual, USA

their related platform, and use specific energy-measurement
devices. By reading these measurements, she tries to detect
possible inefficiencies and optimize her code.
Instead of developing in C, an developer relying on a

xDSL could choose to model the application as an executable
model in a modeling workbench such as GEMOC Studio [8],
AToM3 [18], Ptolemy [12], or ModHel’X [27], and generate
the C code for the different target platforms. This would
streamline the development phase but would not yet impact
the energy estimation effort to be made for each platform.

For instance, ArduinoML is an xDSL for representing struc-
tural and behavioral aspects of Arduino systems, embedded
in a standalone development environment called Arduino
Designer2. Figure 1 presents an excerpt of the ArduinoML
meta-model. The left part of this meta-model (Board) defines
the physical properties of the system: which pins are used, by
which modules, the level of the signal coming from/going to
this pin, etc. The right part of this meta-model (Sketch) de-
fines the behavioral properties of the system: what to do with
the modules, according to the signals coming from/going to
the pins. ArduinoML is executable in GEMOC, since its meta-
model defines semantic operations for the language instruc-
tions (defined in the execute() function). The operations
may change the value of runtime properties in ArduinoML,
e.g. the level of a Pin. The GEMOC workbench calls these
operations in order to simulate the system execution.
Figure 2 presents the ArduinoML model of the sample

program. Its lower part represents the structural aspects of
the Arduino system: a LED and an infrared sensor, plugged
on the pins 13 and 10 of the board, respectively. The upper
part of the model represents the behavioral aspects of the
system, previously described.
To optimize it, the developer needs to estimate the en-

ergy consumption of this model on the target platforms. The
platforms differ in the Arduino boards used (e.g. ProMini,

2https://github.com/mbats/arduino

0..1
*

0..1

11

*

0..1

0..1

Project

Module

+ name : String

Pin

Board Sketch

Block

Control

Instruction

+ execute()

LED PhotoResistor

InfraredSensor

ModuleAssignment

ModuleInstruction

DelayWaitFor

1

WhileIf

Figure 1. Excerpt of the ArduinoML meta-model

0

1

2

12

11

103

94 5 6 7 8

13

LED1

IRSensor1

if IRSensor1 == 1

LED1 = OFFLED1 = ON
1000

repeat

1000

Figure 2. ArduinoML model

UnoR3), but they may also employ different LEDs or infrared
sensors, with their own energy consumption. Typically the
developer would generate a different versions of the C code
from the model, for each platform, deploy them and exe-
cute the system to perform physical measurements. Deploy-
ing and performing the measurements with standard power
measurement tools can be long, complicated, and expensive,
especially if the developer needs to iterate multiple times
to tune the performance of her program. The next section
introduces our solution to perform this estimation at design
time, without deploying the model.

3 Energy-Estimation Modeling
3.1 An Energy-Estimation Model
Current modeling workbenches for xDSLs focus on model-
ing the systems, simulating their execution, verifying their
properties, compiling and deploying code on several plat-
forms. They lack features for providing energy estimations
at the model level.
We propose EEL, a modeling language to annotate meta-

models of executable DSLs with energy-related concepts,
allowing the workbench’s simulation engine to produce en-
ergy estimations. Each model written in EEL is dedicated to
one xDSL and one runtime platform. We consider a platform
as a set of multiple devices, whereas EEL estimates all the
executable models, conforming to the annotated meta-model,
and to be deployed on any possible assembly of these spe-
cific devices. In what follows, we describe an excerpt of the
EEM we attach to the ArduinoML xDSL, for estimating its
consumption on a specific platform. The platform we put the
focus on is based on a Arduino UnoR3 board, using LEDs and
infrared sensors with the references L-53MBDL and VMA
330, respectively.

SLE ’20, November 16–17, 2020, Virtual, USA Thibault Béziers la Fosse, Massimo Tisi, Jean-Marie Mottu, and Gerson Sunyé

1 Platform "ArduinoUnoR3" {
2 // LED L−53MBDL
3 LED.voltage = 5
4 LED.current = 0.00845
5 LED.power = LED.voltage ∗ LED.current
6 // IRSensor Velleman VMA 330
7 InfraredSensor.voltage = 3.3
8 InfraredSensor.current = 0.00235
9 InfraredSensor.power = InfraredSensor.voltage ∗

InfraredSensor.current
10 // Board Arduino Uno Rev 3 (ATMega328p CPU)
11 Board.voltage = 5
12 Board.cpuCurrent = 0.0241
13 Board.cpuPower = Board.voltage ∗ Board.cpuCurrent
14 Board.period = 1/16000000
15 Board.nLEDsOn = LED.allInstances()−>select(it|it.

oclContainer().oclAsType(Pin).level=1)−>size()
16 Board.nIR = InfraredSensor.allInstances()−>size()
17 Board.power = Board.cpuPower + (Board.nLEDsOn ∗

LED.power) + (Board.nIR ∗ InfraredSensor.power
)

18 // Instructions
19 ModuleAssignment.clockCycles = 44
20 ModuleAssignment.duration = ModuleAssignment.

clockCycles ∗ Board.period
21 Delay.clockCycles = 76
22 Delay.callDuration = Delay.clockCycles ∗ Board.

period
23 Delay.waitDuration = self.value/1000
24 Delay.duration = Delay.callDuration + Delay.

waitDuration
25 ModuleAssignment#execute.energy =

ModuleAssignment.duration ∗ Board.power
26 Delay#execute.energy = Delay.duration ∗ Board.

power
27 }
Listing 1. Excerpt of an EEM for platform made of an
Arduino UnoR3, a LED actuator, an infrared sensor

The EEM in Listing 1 attaches energy-related formulas to
each meta-class of the ArduinoML meta-model. After spec-
ifying the name of the platform, an EEM is a sequence of
estimations. Each estimation dynamically defines a property
in a xDSL metaclass, associating it with a value or an esti-
mation expression.
We first define the voltage, current and power consump-

tion of the LED element and infrared sensor using their
technical specifications, as shown at lines 3 to 9. Note that
since these values are identical for all LEDs and Infrared-
Sensors in that platform, we can simply refer to them as
static properties of the corresponding meta-class. We do
not need to estimate other modules in this example but a

more complex executable model would require to include all
the other sensors and actuators used in the system (motors,
photoresistors, etc...).

From lines 11 to 14, we define parameters of the Arduino
Board: its voltage, CPU power consumption, and clock period
as it impacts the duration of the instructions, and hence
their energy consumption. Line 15 counts the number of
LEDs turned on using a model query as only those ones will
consume energy, and line 16 define the Board total power
consumption by summing all the power-consuming devices
it holds. Note that we use OCL formulas to navigate the
ArduinoML model, that includes the information on system
state at runtime.
Then we define the duration of the instructions in the

behavioral part of the Arduino language (right part of Fig-
ure 1). In this particular example, we want to first estimate
the duration out of the number of clock cycles needed to
execute the instructions, and the clock period of the CPU.
We first define the ModuleAssignment duration at line 20, by
multiplying the number of clock cycles needed to execute
it by the clock period of the Arduino board. For the Delay
instruction, we also need to consider the delay duration (in
seconds) specified by the developer in the ArduinoML model.
This duration is queried using OCL, line 23, and divided in
order to get milliseconds.
Finally, lines 25 and 26 assign energy-consumption esti-

mations to the ModuleAssignment and Delay instructions.
We estimate the energy consumption of these instructions
by multiplying the duration of those instructions by the
power consumption of the system. We assign the result of
these computations to the execute operation of these xDSL
instructions.
Given an execution trace of the ArduinoML model, the

evaluation component of EEL uses the EEM to compute a
global estimation of the energy consumed during that exe-
cution. The same execution trace can be used with different
EEMs for estimating the consumption of different final plat-
forms before deployment.

3.2 The Energy-Estimation Language
In this section we illustrate the main concepts of our energy
estimation DSL, and how it is used for describing the energy
consumptions of the targeted xDSLs. An excerpt of the con-
crete syntax, written with XText [22], is defined in Listing 2,
and an excerpt of the abstract syntax is available in Appen-
dix A. We discuss later in Section 3.5 on why using a new
dedicated language, instead of OCL and/or Aspect-Oriented
techniques to annotate languages with energy-estimation
formulas.
The top-level container of this meta-model is the Plat-

form element. A single EEM is meant to define the energy
consumed by the xDSL on a single platform, defined here.
Estimations are defined through the Estimation element.

Annotating Executable DSLs with Energy Estimation Formulas SLE ’20, November 16–17, 2020, Virtual, USA

1 Platform:
2 'Platform' name=String '{'
3 estimations+=Estimation (',' estimations+=Estimation)

∗
4 '}';
5 Estimation:
6 (post?='post')? target=Target '.'
7 name=(EstimationName | UserEstimationName)
8 ('=' expr=EstimationExpr)?;
9 Target: EClass | EOperation;
10 EstimationName:
11 'duration' | 'frequency' | 'current' | 'voltage' | '

power' | 'energy' | 'absoluteTime';
12 UserEstimationName: ID;
13 EstimationExpr:
14 (EstimationValue | OCLEstimationExpr |
15 CompositeEstimationExpr);
16 EstimationValue: value=Double;
17 OCLEstimationExpr: query=OCLExpr;
18 CompositeEstimationExpr: TransitionEstimationExpr |
19 TailEstimationExpr;
20 TransitionEstimationExpr: LogisticEstimationExpr | ... ;
21 LogisticEstimationExpr:
22 'logfun('L=[EstimationExpr] ',' k=[EstimationExpr] ',

' x0=[EstimationExpr] ',' x=[EstimationExpr] ')';
23 ...

Listing 2. Excerpt of the EEL concrete syntax

First, estimations have a Target. A Target can be either a
meta-class of the xDSL or a meta-operation. We decorate
meta-classes whenwewant to declare general energy-related
properties on them. For instance, in our example we used an
estimation targeting the LED meta-class to define its voltage.
An estimation can also target a meta-operation. When an
operation conforming to this meta-operation is performed,
the estimations targeting it are evaluated, in order to produce
an energy consumption estimation.

Estimations have an EstimationName. While EEL users can
specify their custom UserEstimationNames, a set of energy-
related estimations (current, voltage, power, energy, frequency,
duration) are predefined. These estimations are meant to
have special support in the tooling, especially to be used by
generic energy-aware visualizations in the modeling work-
bench. For these estimations, EEL also verifies the consis-
tency of their physical units.
The right-hand side of an estimation is an EstimationEx-

pression. Expressions can simply hold an EstimationValue,
defined by a Double, or be more complex.

OCLEstimations contain an OCL query. This query is eval-
uated in the context of the targeted element, and the value is
assigned to the estimation. While we currently use standard
OCL (from the OCL Eclipse project), the connection with

OCL is completely modular, and the language is suitable
for integration with different flavors of OCL. For instance
uncertainty-aware OCL [36] may be used to specify estima-
tions that are better represented by probability distributions.
Besides inheriting the expressive power of OCL, the lan-

guage supports domain-specific composition of estimations
by extending the CompositeEstimationmeta-class. The exten-
sion, performed in Java, enables the integration of existing
mathematical libraries for representing complex functions,
calculus, or numerical estimations. For instance we can use
it to represent several sigmoid functions from literature to
model the transition from one state to another (like Logis-
ticEstimationExpr in Listing 2). We can also provide several
decreasing tail functions, typically used in energy estimation
to represent phenomenons like tail energy, i.e. hardware-
induced energy consumption corresponding to an activity
happening after a device is used (see Section 4.1).
Finally, a special estimation absoluteTime is used to refer

to the clock value, stored in the execution trace. This value is
useful to calculate durations of events during the execution,
e.g. the delay of user input. We will discuss these issues in
detail in Section 3.5.

3.3 Evaluation Semantics
The entry point of the semantics for EEL are the energy
estimations attached to meta-operations. The expressions
associated to these estimations are evaluated every time the
semantic operation is called, by default immediately before.
Since the state of the model before performing the operation
is known, the changes that the called operation will apply
can be anticipated. And thus the energy consumption of the
DSL operation can be estimated.
Each estimation is lazily evaluated when needed. Esti-

mations are built on top of each other, in a hierarchical
fashion (reference cycles between estimations are not al-
lowed). Hence, an estimation can be represented as a tree,
whereas the first estimation is the root, and depends on the
values of its children. When evaluating an estimation, the
tree is traversed depth-first, in post-order. Figure 3 shows
the estimation for a ModuleAssignment.execute() opera-
tion, in a tree shape, based on Listing 1. Thus, to estimate
this instruction, the leaves are first evaluated. They are de-
fined as simple double values, and used later by the com-
posite estimations of the trees. As an example, IR.power
computes the product between its two leaves IR.current
and IR.voltage, for an estimated power consumption of
0, 00775 Watts for the Infrared Sensor. The same reasoning
applies until reaching the root of the tree. This represents
an estimated energy consumption of 4.68 × 10−7 Joules for
the ModuleAssignment.execute() instruction, considering
that there are only one LED and Infrared sensor in the sys-
tem.

SLE ’20, November 16–17, 2020, Virtual, USA Thibault Béziers la Fosse, Massimo Tisi, Jean-Marie Mottu, and Gerson Sunyé

MAssignment.energy

Board.power

IR.power

IR.voltage

3.3

IR.current

0.00235

LED.power

LED.voltage

5.0

LED.current

0.00845

Board.CPUPower

Board.cpuVoltage

5.0

Board.cpuCurrent

0.0241

Figure 3. Evaluation tree for the
ModuleAssignment.execute() operation

As some durations cannot be anticipated, e.g. because of
user inputs in the trace, it is sometimes convenient to per-
form estimation at the end of the execution of a semantic
operation. EEL provides a specific keyword for the purpose,
post. Any estimation marked by post is executed right af-
ter the conclusion of a semantic operation. Note that if an
estimation depends on a post estimation, then it will also
be calculated after the execution of the semantic operation.
As an example, considering the WaitFor instruction de-

fined in ArduinoML. This instruction puts the board on sleep
mode until a pin’s signal changes. Computing the energy
estimation of this instruction requires to measure the du-
ration of this wait and then to use it along with the power
drawn during it, to compute an energy. This can be done by
using the Board.absoluteTime estimation. This value has
to be stored in an estimation property before performing Ar-
duinoML’s WaitFor instruction. Then, is has to be evaluated
a second time at the end of the WaitFor instruction, using
the post keyword of EEL. The difference between the val-
ues of these two Estimations is the duration of the WaitFor
instruction, which is then used to estimate the energy it
consumed.

Furthermore, considering the EEM in Listing 1, computing
the power drawn by LEDs is performed, line 17, by multiply-
ing the number of LEDs turned on by the individual power
of a LED. In this specific example, this works since a single
type of LED is used for this platform. However, if different
types of LEDs are used in the system, the individual power
of each LED may change. To estimate such platform, each
LED has to be properly identified in the Arduino model (e.g.,
by its name), so that these identifiers can be used in the EEM
to provide per-LED power consumptions. Listing 3 shows
an example of such EEM. Two types of LEDs are defined.
OCL is used to compute the number of LEDs of each type
currently turned on, and the total power consumed by LEDs
of all types can be computed. Nevertheless, it implies that
the developer using ArduinoML and the energy specialist
designing EEMs conform with the same naming conventions.
In fact, if the LED’s type is not properly defined in the Ar-
duinoML model, then EEL has no way of knowing which
type it is.

3.4 The Energy-Estimation Modeling Process
EEL is meant to be used in the process illustrated by example
in Figure 4. The developer designs (1) the Arduino application
model to be deployed on several platforms (2).
We introduce a new actor called Energy Estimation Spe-

cialist. This actor knows the xDSL (ArduinoML in our case)
and the platforms on which the models can be deployed. The
specialist provides the developer with one Energy-Estimation
Model (EEM) for each platform (3). Each EEM defines the
energy consumption of the ArduinoML operations for its
related platform.

To estimate the energy consumption, the developer needs
a set of execution traces of her ArduinoML model, storing
the timed execution of the semantic operations of the xDSL
(e.g. the execute operation) and the state of variables at these
times. The production of execution traces for an executable
DSL is outside the scope of this paper. They can be derived
e.g., by executing the simulator on a set of benchmarks (4),
by different trace synthesis methods, or by reusing/adapting
real-world traces for previous executions.
An execution trace can finally be analyzed by the EEM

evaluation component. This estimates (5) the energy each
Arduino platforms (based on different Arduino Device, e.g.
ProMini or UnoR3, and Modules, e.g. LED L-53MBDL or L-
7113ID) would consume when running the Arduino program.

1 Platform "DifferentLEDs" {
2 // LED L−53MBDL
3 LED.voltage = 5
4 LED.53MBDL_current = 0.00845
5 LED.53MBDL_power = LED.voltage ∗ LED.53

MBDL_current
6
7 // LED L−7113ID
8 LED.7113ID_current = 0.00765
9 LED.7113ID_power = LED.voltage ∗ LED.7113

ID_current
10
11 Board.numberOf7113ID = LED.allInstances() −> select (

it | it.oclContainer().oclAsType(Pin).level = 1) −>
select (it | it.name.substring(1,6) = '7113ID') −>
size()

12 Board.numberOf53MBDL = LED.allInstances() −> select
(it | it.oclContainer().oclAsType(Pin).level = 1) −>
select (it | it.name.substring(1,6) = '53MBDL') −>
size()

13 Board.powerOfLEDs = Board.numberOf53MBDL ∗ LED
.53MBDL_power + Board.numberOf7113ID ∗ LED
.7113ID_power

14 }
Listing 3. Excerpt of an EEM for a platform with different
types of LEDs

Annotating Executable DSLs with Energy Estimation Formulas SLE ’20, November 16–17, 2020, Virtual, USA

repeat

waitFor IRSensor1

LED1 = OFFLED1 = ON 1000 1000

Figure 5. Updated Behavioral part of the ArduinoML Model

An immediate feedback is given to the developer about the
energy that would be consumed on the final platforms. It
can hence help her doing the best design choices for energy
efficiency (6).

Applying the process to our example in Figure 2, the devel-
oper may analyze the trace of a benchmark simulation that
sets to 10 seconds the user time before triggering the infrared
sensor. The EEM evaluation component exploits the EEM in
Listing 1 to estimate for this trace an energy consumption
of 1.6044 J on the platform featuring an Arduino UnoR3.
The ArduinoML developer can immediately detect an el-

evated consumption, and try to improve the behavior by
replacing the if ArduinoML instruction by a waitFor in-
struction as shown in Figure 5. Instead of actively checking
this sensor, the Arduino is put to sleep until the sensor de-
tects a change.
The same benchmark is simulated again, and the evalua-

tion component analyzes the new trace, estimating an en-
ergy consumption of 0.924 11 J. That validates the developer
choice without requiring her to deploy the new ArduinoML
model, while keeping the same EEM.

3.5 Discussion and Limitations
EEM definition.Defining an EEM is not trivial. The energy-
estimation specialist needs specific measurement tooling,

knowledge about the platform on which the executable mod-
els will be deployed, and knowledge about the xDSL. Several
parameters can be retrieved from the technical specifica-
tions of the devices used in the system, usually provided by
manufacturers. Note that, when the same devices are used
in another platform, their description in EEL can often be
reused (e.g., in the case of Figure 4 with two platforms with
the same IRSensor VMA 330).

A typical way of estimating the EEM is by designing mul-
tiple small xDSL models, to study the consumption curves of
a single language element in its possible uses. Assisting the
energy specialist in writing EEM models by producing the
right executable models and analyzing the measurements is
the subject of our future work.
EEL and aspect-oriented programming. EEL is meant to
attach energy-related concepts to the classes and operations
of executable languages. These concepts are then evaluated
dynamically (at runtime, or on execution traces), and do
not impact the behavior of the executable model estimated.
Furthermore, specific keywords available in EEL can spec-
ify whether an estimation should be computed before, or
after the targeted operation. This approach might look close
to what aspect-oriented programming (AOP) and software
instrumentation propose, and thus might hamper the will
of learning a new DSL, especially since robust and mature
frameworks are available. EEL directly offers vocabulary and
mathematical functions for specifying concepts from the
domain of energy estimation, and make OCL expressions di-
rectly applicable for that purpose. We believe that it is easier
for energy-specialists, eventually oblivious to AOP, to write
completely declarative specifications of energy-estimation
formulas, instead of using an imperative programming lan-
guage such as Kermeta [29].
Non-determinism. An EEL model estimates the consump-
tion of each given execution trace of the system. If the system

ArduinoML

SketchBoard

Project

if IRSensor1 == 1

1000

repeat

conforms to

Developer

1: designs

Platform
Independent

Execution
Trace

4:
simulation

EEM1 EEM2

Energy Estimation
Models EEL Execution

Engine

 immediate energy
feedback

Platform1 Platform2

Platform Specific
energy estimation

5: estimates

U
no

R
3

Pr
oM

in
i

L-53MBDL

VMA330

Platform1

VMA330

L7113ID

Platform2

Energy
Estimation
Specialist

3:
produces

2: selects

6: energy-aware
refactors

uses

refers to

Figure 4. Process for the estimation of Arduino energy consumption at design time

SLE ’20, November 16–17, 2020, Virtual, USA Thibault Béziers la Fosse, Massimo Tisi, Jean-Marie Mottu, and Gerson Sunyé

has some non-deterministic behavior, or requires user inter-
action, the results of non-deterministic choices, user input
values and timings will be stored in the timed sequence of
events of the trace. Thus, since EEL estimates these deter-
ministic traces then it is not impacted by non determinism
in the simulator.

Furthermore, if the execution of a same model on both the
simulator and the final platform differ, e.g. because of non
determinism, then the estimation provided by EEL, based on
the simulation, might not be accurate. Using a simulator that
reflects the exact behavior of the final platform would solve
this issue.

Another source of non-determinism is concurrent execu-
tion of semantic operations, that typically impacts the rela-
tive order of events. Again timings and effects of concurrency
are stored in the execution trace, that can be deterministically
estimated by EEL.
Quality of traces. The quality of the right execution traces
(e.g. from the right benchmarks) has a strong impact on en-
ergy estimation. While the production of the right execution
traces and benchmarks lies outside the scope of this paper,
we report here some observations.

If traces are derived by a simulator, the simulator should
reflect as much as possible the behavior of the final platform.
Non-deterministic behavior and effects can differ between
the final platform and the simulator, because of a different
implementation, or because of variations in the execution
environment on which the models are executed.

To be usable by EEL, execution traces should contain the
entities executed, and also store execution times. As du-
rations can be different in the simulator than in the final
platform, if traces are derived from a simulator, then run-
time system times should be estimated. Time estimation is
possible on EEL, by defining a duration estimation. The
estimation should access the absoluteTime element to re-
trieve the execution-trace time, and apply a composite or
OCL estimation expression to perform the conversion.
Probabilistic EEMs. Current estimations by EEL return a
numeric value for each estimation. By using uncertainty
in OCL from [36] this value can be associated with uncer-
tainty measures. In case of non-deterministic behavior, a
larger number of traces can be energy-estimated to derive a
probability distribution.

An alternative approach would be encoding probabilities
directly within the EEM model. The resulting probabilis-
tic EEM would compute and store estimations as complex
objects representing a full probability distribution. This is
especially feasible when the energy-estimation specialist can
reasonably estimate the probability of the non-deterministic
choices or user interactions. This is a possible line for future
work.

3.6 Implementation Details
We implemented the editor and evaluation component of
EEL as an extension to GEMOC Studio3. GEMOC Studio is a
language and modeling workbench for model design and ex-
ecution [5, 9, 10]. Its execution engine embeds a generic trace
constructor, an omniscient debugger, and several extension
mechanisms. The ArduinoML integration within GEMOC
enables the execution of Arduino models in a simulator, as
well as code generation. For our experimentation, we directly
extend the GEMOC trace generator to estimate the energy
consumption during the simulation without waiting the full
trace to be completely produced.

Our implementation relies on the Java Engine of GEMOC
Studio [8]. This engine is dedicated to operational semantics
directly written with Java, Xtend [20], or Kermeta [29]. The
executable semantics is a sequence of calls to the semantic
operations of the xDSL (e.g. execute() in ArduinoML). It is
composed of several operations called during the execution
of models, including the followings: (1) initialize is called
before the execution, and performs the loading of the model
to be executed; (2) beforeStep is called before executing op-
erations annotated with @Step in the operational semantics;
(3) afterStep is called after executing operations annotated
with @Step in the operational semantics.

We extend GEMOC’s Java Engine with an addon that per-
forms additional behavior on top of the existing operations.
The initialize extension simply consists in loading the en-
ergy estimation model provided by the energy estimation
specialist, thus making it available during the xDSL model
execution. Estimations are performed in the beforeStep and
afterStep depending on the post keyword.

4 Evaluation
In this section we evaluate our approach against the research
questions that motivated this paper. The first part of this eval-
uation shows how EEL can model existing domain-specific
energy estimation approaches from literature, answering
RQ1. The second part presents a workflow where we use
EEL to estimate the energy consumption of Arduino systems,
answering RQ2.

4.1 Expressiveness
In this section we evaluate the expressiveness of EEL, i.e.
its ability to model energy-estimation approaches existing
in the literature. Since energy-estimation profiles for xD-
SLs are not currently available or not using Model-Driven
Engineering [49], we select from literature well-known per-
instruction energy-estimation profiles for general-purpose lan-
guages. EEL can represent those energy estimation-profiles
and evaluate them, when it is given execution traces of their
respective systems. While we can not argue about the com-
plexity of future energy-estimation profiles for xDSLs, this
3https://github.com/atlanmod/eel

Annotating Executable DSLs with Energy Estimation Formulas SLE ’20, November 16–17, 2020, Virtual, USA

shows that EEL is expressive enough to represent current
ones.

Shuai Hao et al. propose Software Energy Estimation Pro-
files (SEEPs). SEEPs associate Android instructions with
Hardware energy costs [26]. In previous work, they show
how to calculate per-line energy consumption [32], and in-
troduce tail energy consumption. Tail energy is a hardware-
induced energy consumption, corresponding to an activity
happening after a device is used. Such energy is calculated
using a mathematical function provided by the hardware
manufacturer. They illustrate this with an excerpt of An-
droid code featuring the HttpClient.execute() instruc-
tion. Figure 6a shows an example of tail energy consumption
occurring after using HttpClient.execute().
Estimating the energy consumption of this instruction

as well as the tail energy consumption do not represent a
challenge. However, the EEL model has to consider eventual
interruptions of the tail consumption. The Expressiveness of
EEL allows us to model such event. For instance, Listing 4
shows an equivalent SEEP modeled with EEL to estimate
the energy consumption of this Android instruction, and
considering the tail energy consumption with interruptions.
We detail this EEM.

Line 1 captures the absolute time when the instruction
HttpClient.execute() is called, using the absoluteTime
global property. Line 2 computes the energy consumed dur-
ing the execution of this instruction, which corresponds to
the area under the power plot in Figure 6a between t0 and
t1. We simplify this computation here to only focus on the
tail. Line 3 computes the tail energy consumption. As stated
before, this energy consumption is defined by a mathemati-
cal function provided by the manufacturer of the concerned
device.We define it as tailFunction(duration), a fictional math-
ematical function taking the duration of the tail as a param-
eter, but a more complex function, eventually available in

power

duration

HttpClient#execute

HttpClient tail
consumption

t0 t1

(a) Tail energy consumption
power

duration

tail interruption

t1 t2

(b) Tail interrupted

Figure 6. Tail consumption behaviors

EEL (logistic, exponential, integral, etc.), could have been
used. This duration is computed by subtracting the abso-
luteTime when the HttpClient.execute() instruction last
ended, corresponding to t1 in Figure 6b, to the absoluteTime
at which it started last, t2 in Figure 6b. This corresponds to
the interrupted tail’s duration, and can be used to estimates
the tail’s consumption. Then, line 4 sums the tail energy to
the call energy, to compute the energy of the instruction,
and finally line 5 updates the time at which this instruction
ended. Since these operations are performed sequentially,
the time elapsed since the last usage of the wi-fi card is up-
dated after computing this tail energy consumption. Such
EEM could be attached to an executable language defining
Android Java classes (using MoDisco [11], for instance).

Neville Gretch et al. associate LLVM IR instructions with
constant energy costs for a given platform, and statically esti-
mate the energy consumption of programs relying on control
flow graphs [24]. For such low-level consumption models,
EEL can simply list the energy consumptions of each LLVM
IR instructions as shown in Listing 5. The EEL evaluation
component will sum the consumptions of all instructions in
the trace.
The approach presented by Karan Aggarwal et al. ana-

lyzes system call traces for estimating the impact of software
changes on power consumption [1]. They build linear regres-
sion models, that associate a power usage to each system
call instruction. They model the global power usage as the
average power of all system calls, weighted by their number
of appearances in the execution trace. Their approach can
be used to estimate the energy consumption of an applica-
tion with EEL, as described in Listing 6. Each system call is
attached to an average power consumption. EEL counts the
times systems calls are executed, and it derives the average
power consumption. The total energy consumption is com-
puted multiplying the average power and the elapsed time
in the system.

4.2 Estimation Accuracy
In order to answer to RQ2, we evaluate our approach in pre-
dicting the energy consumption of Arduino systems. First,
we describe the runtime platforms where we will deploy
the ArduinoML application models, and we describe how
an energy estimation specialist would define EEL models for
those platforms. Then we consider a real-world ArduinoML
model. We estimate, using EEL, the energy consumption of
this ArduinoML model when deployed on those platforms.
To check the accuracy of the energy estimation, we mea-
sure and compare the actual consumption of that system by
generating C code, deploying it and performing hardware
measurement. Finally, we follow the same process for the
two sample systems in Figures 2 and 5.

4.2.1 Deployment Platforms. We consider two deploy-
ment platforms. A first platform is based on an Arduino

SLE ’20, November 16–17, 2020, Virtual, USA Thibault Béziers la Fosse, Massimo Tisi, Jean-Marie Mottu, and Gerson Sunyé

UnoR3 board. The platform defines a specific device for every
module in the ArduinoML model. All LED entities declared
in the structural part of the ArduinoML application models
(such as the one of Figure 2 or Figure 8) having the color
blue are deployed as Kingbright LEDs with the reference
L-53MDBL. Infrared sensors are deployed as Velleman Ob-
stacle Avoidance sensors with the reference VMA 330, servo
motors as TowerPro SG90 and photoresistors as GL55. We
will refer to this platform simply as UnoR3.

A second deployment platform has two differences w.r.t.
the first one: instead of featuring a Arduino Uno R3 board, it
uses a Arduino Pro Mini, and instead of using a blue LEDs,
it relies on Kingbright L-7113ID red LEDs. We will refer to
this platform simply as ProMini.

1 HttpClient#execute.absoluteTimeLastCallStart = HttpClient.
absoluteTime

2 HttpClient#execute.callEnergy = HttpClient.cpuEnergyCost
+ HttpClient.wifiEnergyCost

3 HttpClient#execute.tailEnergy = tailFunction(HttpClient#
execute.absoluteTimeLastCallStart − HttpClient#
execute.absoluteTimeLastCallEnd)

4 HttpClient#execute.energy = HttpClient#execute.
callEnergy + HttpClient#execute.tailEnergy

5 HttpClient#execute.absoluteTimeLastCallEnd = HttpClient.
absoluteTimeLastCallStart + HttpClient#execute.
duration
Listing (4) EEM for Android HttpClient

1 call#execute.energy = ...
2 op#execute.energy = ...
3 memload#execute.energy = ...
4 ...

Listing (5) EEM example for LLVM IR

1 mmap2.power = ...
2 mnap2#execute.count = mnap2#execute.count + 1
3 open.power = ...
4 open#execute.count = open#execute.count + 1
5 ...
6 app#execute.startTime = app.absoluteTime
7 post app#execute.calls = mnap2#execute.count + open#

execute.count + ...
8 post app#execute.power = ((mmap2.power ∗ mnap2#

execute.count) +
9 (open.power ∗ open#execute.count) + ...) / app#execute.

calls
10 post app#execute.energy = (app.absoluteTime − app#

execute.startTime)
11 ∗ app#execute.power
Listing (6) EEL Power estimation model example for system calls

4.2.2 ArduinoML EEM. Considering the couple platfor-
m/xDSL, the energy specialist will consider one by one the
meta-classes of ArduinoML meta-model to describe with
EEL what would be their impact on the global energy con-
sumption.
The energy specialist may use benchmarks to estimate

the power curves on the platform. Benchmarks are typically
made of several small ArduinoML models. Each ArduinoML
model focuses on a singlemodule, in order to understand how
its presence impacts the energy consumption of the entire
Arduino system. For more complex platforms, benchmarks
focusing on the interaction between pairs of components
are needed, to estimate if it can have effects of the energy
curves.

We provide in EEL estimations of the energy consumption
of the following meta-classes: Board (in two states: running,
and sleeping), LED, InfraredSensor, ServoMotor, PhotoResis-
tor. We individually deploy a specific ArduinoML model and
perform measurements for each one of these meta-classes, in
order to produce energy-consumption curves that we model
with EEL. The curves used to define the EEM are available
in Appendix B. In the simplest cases, producing an energy
estimation formula can be done by simply averaging the
power consumed by the meta-class measured. For instance,
the Arduino UnoR3 board in running state shows an aver-
age power of 122.5mW (Appendix B.a), thus we model this
power consumption with EEL, and attach it to the Board
meta-class of ArduinoML.

To measure the consumption of a Module (e.g., a LED), we
need to compare the consumption of the platform with and
without this Module activity (cf. Appendix B.a and Appen-
dix B.b). Some meta-classes require more reasoning in order
to be properly estimated and modeled with EEL, e.g. the
photoresistor and the servo motor . In fact, the power con-
sumption of the photoresistor is not constant, but depends
on the intensity of the light it measures (cf. Appendix B.c).
The technical specifications of the photoresistor provided by
the manufacturer define the resistance of the module as a
linear function of the light it measures. We model this spec-
ification in OCL as a linear function of the signal received
from the analog pin.
The energy consumption of the servo motor requires a

more complex formula: the energy consumption peaks dur-
ing the first degrees of the rotation, falls, and finally remains
(approximately) constant until the rotation finishes (cf. Ap-
pendix B.f). We use three mathematical functions to estimate
this energy consumption. A first linear function estimates
the peak of power at the beginning of the rotation, and is
applied to the first degrees of the rotation. A second expo-
nential function estimates the power dropping. Finally a
constant power function estimates the power until the rota-
tion finishes. The duration of each of those steps is calculated
using the technical specifications of the servo motor used.
These functions are also defined using OCL.

Annotating Executable DSLs with Energy Estimation Formulas SLE ’20, November 16–17, 2020, Virtual, USA

All these estimations are modeled with EEL to produce
the EEM of the first platform, partially shown in Listing 1.
Finally we replicate the process with the second platform.
We produce a different EEM for estimating ArduinoML on
the new platform. The energy-consumption curves are very
similar, but the new platform impacts the parameters in the
EEL model for the Board and LED elements. In fact, in this
second EEL model the Board and LED power consumptions
are respectively 32.5mW and 11.5mW smaller than in the
first EEL model.

4.2.3 ArduinoML Model Estimation. We use the EEM
model just defined to estimate the energy consumption of
the two sample ArduinoML models (Figure 2 and Figure 5,
respectively labeled IfTempo and WaitForTempo) and of a
third ArduinoML model (Figure 8), from a realistic applica-
tion. The structural part of this ArduinoML model relies on
four modules: a button, a LED, an infrared sensor and a servo
motor. This model represents an automatic door, defining the
following behavior: once a button is pressed, the motor starts
rotating. This rotation is divided in thirty 6° rotations (180°
total) separated by 90ms delays4. If at any time the infrared
sensor detects an obstacle, the rotation is interrupted, and a
LED blinks four times, during 500ms, as a warning. The user
can then resume the rotation by pressing the button.
We simulate the execution of this model within GEMOC

studio and use our EEL evaluation component with, as an
input, the EEMs. In the benchmark we manually simulate
the button press and the obstacle presence. This execution
produces energy estimations for each operations of the Ar-
duinoML language.
4While the delay is not perceived by the user of the door, separating the
rotation in small steps is customary for reducing the speed of fixed-speed
servo motors

0

1

2

12

11

103

94 5 6 7 8

13

LED1

IRSensor1 Servo1

Button1

if Button1

while IRSensor1 && i <= 180

Servo1 = i 90

i + 1

i + 6

i = i + 6

i =

if !IRSensor1

LED1
= ON

500 LED1
= OFF

500 LED1
= ON

500 LED1
= OFF

500 LED1
= ON

500 LED1
= OFF

500 LED1
= ON

500 LED1
= OFF

500

Figure 8. ArduinoML model of an automatic door

Table 1 shows the results of the estimations. The energy
estimation for the UnoR3 platform is decomposed into the
first four rows. The first row corresponds to the energy esti-
mation of the rotation of the servo motors. Second and third
rows correspond to the blinking behavior, estimating the
energy consumed when the LED is respectively off, and on.
The fourth row shows the totals. The columns show dura-
tion of the benchmarks, number of measurements, measured
energy, estimation and accuracy.
The following two lines show the result of the estima-

tion of the IfTempo and WaitForTempo (WFT) applications
on UnoR3. The rest of the table shows all the previous esti-
mations, this time applied to the second platform, ProMini.
Note that for each case study, estimations for both platforms
are computed and shown to the developer at the same time.

4.2.4 Deployment and Physical Measurements. In or-
der to validate these energy estimations, we proceed to phys-
ical measurements. We first generate the C code of the three
ArduinoML models using Acceleo [38] model-to-text trans-
formations. Structural information of the ArduinoML model
is used to configure the setup() function in the Arduino
code, whereas the behavioral information of the ArduinoML
model is used to write the loop() Arduino function. The
generated code is then deployed via USB through the Ar-
duino IDE. The Measurement column of Table 1 decomposes
the energetic measurements made on the platform deployed
for the door system and for the two other systems. The last
column computes the accuracy of the estimation w.r.t. the
physical measurements.

4.2.5 Discussion. As shown in Table 1, total energy es-
timations are consistently closer than 10% to the ground
truth, thus answering positively to RQ2. In some cases we
obtain very high accuracy, especially on the ProMini plat-
form (99.0% for IfTempo and 98.9% for WaitForTempo). For
the larger use case the two platforms are estimated with

Table 1. Comparison of the measures and estimations for
the Arduino models

Platf. Dur. #Meas. Meas. Estim. Accur.
Rotations UnoR3 2.7 s 507 0.77 J 0.67 J 86.7%
LED off UnoR3 2.0 s 378 0.32 J 0.32 J 98.5%
LED on UnoR3 2.0 s 376 0.41 J 0.40 J 99.6%
Total Door UnoR3 6.7 s 1261 1.51 J 1.40 J 92.7%
IfTempo UnoR3 12.98 s 986 1.72 J 1.60 J 92.9%
WFT UnoR3 12.93 s 982 1.02 J 0.92 J 89.8%
Total UnoR3 32.61s 3229 4.27 J 3.93 J 92.1%
Rotations ProMini 2.7 s 487 0.70 J 0.58 J 82.9%
LED off ProMini 2.0 s 377 0.25 J 0.25 J 97.6%
LED on ProMini 2.0 s 376 0.31 J 0.32 J 97.0%
Total Door ProMini 6.7 s 1240 1.23 J 1.16 J 94.0%
IfTempo ProMini 13.00 s 992 1.49 J 1.50 J 99.0%
WFT ProMini 12.99 s 990 0.72 J 0.73 J 98.9%
Total ProMini 32.69 s 3222 3.47 J 3.38 J 97.4%

SLE ’20, November 16–17, 2020, Virtual, USA Thibault Béziers la Fosse, Massimo Tisi, Jean-Marie Mottu, and Gerson Sunyé

similar accuracy (92.7% for UnoR3, 94.0% for ProMini). If our
estimations are accurate, this is also due to the high quality
of the simulator in which we performed this evaluation. Ar-
duinoML’s operational semantics defined in GEMOC Studio
are fine grained, and thus can be accurately estimated.
Performing accurate measurements of the Arduino final

platform requires (1) a stable power supply, and (2) an accu-
rate current sensor. In order to have a stable power supply,
we power the final platform with the deployed ArduinoML
model through the 5V port, which is wired to a second Ar-
duino that outputs a regulated 5V. This second Arduino
measures the current it delivers using a INA219 current sen-
sor. This sensor has a high accuracy (0.5%), and can send
data over the Arduino’s 𝐼2𝐶 interface, which can then be
easily gathered and analyzed by a computer through the
Arduino’s Serial port. We perform measurement every 3ms
for this evaluation.
If the estimation is very close to the energy measured

when the LED blinks (resp. 98.5% and 99.6%), it is slightly
less accurate for the motor’s rotation (86.5%). This is due
to several factors: (1) the energy consumption behavior of
the motor is different when performing small and large ro-
tations (2) the frequency at which measurements are per-
formed is not sufficient, and power spikes happen between
measurements (3) the behavior of the servo motor is non
deterministic, and our EEM cannot estimate it accurately.

5 Related Work
In this section we present the main related work on energy
estimation, model-driven approaches for energy efficiency,
and properties for executable models.

Instruction-level Energy Estimation.Many tools have
been developed and are currently used for assessing of the
energy consumption of software and applications [17, 23, 40,
49]. While some of them rely on per-instruction energy esti-
mation, none of these approaches are focused on DSLs. These
approaches were mentioned in Section 4, and are detailed
here: Shuai Hao et al. propose an approach for providing
energy estimations to developer in order to help them imple-
menting efficient applications [26]. An instrumentation is
first performed in order to determine which paths of the code
are traversed. Then, using a per-instruction energy profile,
the energy consumption of the program is estimated. The
approach presented in this paper is accurate (within 10% of
the ground truth), and shows that it can be used for improv-
ing energy efficiency. Neville Gretch et al. statically estimate
the energy consumption of compiled programs, in order to
provide immediate feedbacks to developers without needing
hardware or software measuring tools [24]. They attach en-
ergy consumption information to instructions compiled to
LLVM IR, and rely on cost relations for representing the cost
of running the program considering its inputs. Using their
approach they can estimate the consumption within 10% and

20% of the ground truth for the two platforms they measured.
Karan Aggarwal et al. present an approach based on system
call traces for predicting the impacts of software changes on
energy consumption [1]. Power consumption is measured
during test execution, and associated to system call traces. A
linear regression model is built in order to associate a subset
of system calls with power consumptions. This model is then
used to estimate the consumption of the application based
on its system calls. The accuracy of the estimations vary
from 68.07% to 87.7%. This approach is interesting here, as
it uses execution traces for performing energy estimations,
and shows that it can be reliable.

These papers strongly influenced our line of research. We
aim at generalize and model instruction-level energy estima-
tions, especially applying them to domain-specific instruc-
tions. We overpass their approach by proposing a generic
language EEL to extend any xDSL when their models for
energy estimation are language specific.

Model-Driven approaches for Energy-Efficiency. Lit-
tle work has been done, to our knowledge, in the area of
Model-Driven Engineering for energy efficiency.We describe
existing approaches relying on models and DSLs for energy
optimization of particular software systems.
In a previous work we proposed an approach to attach

OCL expressions to the meta-elements of xDSLs [31]. These
OCL expressions are mathematical formulas defining en-
ergy estimations. When models conforming to the xDSL
are executed, the OCL expressions are evaluated in order to
calculate energy estimations. We extend this approach and
propose an external language with an ad-hoc semantics for
writing complex estimations, especially when they need to
use time and previous states of the system for computations.
It is applicable to systems with non-determinism, user inputs
and concurrency.
The other model-driven approaches we are aware of are

specific of a certain domain, and/or cannot be applied to
different languages. Brian Dougherty et al. propose an ap-
proach for modeling Cloud Infrastructures, transforming
them to CSP and optimizing with a constraint solver for re-
ducing the energy consumption [19]. Thomas Kurpick et al.
use models of cyber-physical systems for designing energy-
efficient buildings. The building models are constrained with
OCL rules, from which analysis algorithms are derived and
executed at runtime. Chris Thompson et al. use DSLs for
modeling mobile applications, the code generated is instru-
mented for enabling power measurement, and executed in
emulators to estimate the energy consumption [57]. This
approach performs energy estimations at design time us-
ing simulation. Luca Berardinelli et al. propose an exten-
sion of the Agilla Modeling Language (AML) instruction set
with an instruction for retrieving the battery voltage of CPS
Sensors at runtime [6]. The battery data measured is then
used for improving the design of the CPS, and predicting its

Annotating Executable DSLs with Energy Estimation Formulas SLE ’20, November 16–17, 2020, Virtual, USA

energy consumption using fUML executable models. How-
ever an energy model is built using real-time data, and is
later used for predicting energy consumption of a system,
through a simulation defined with fUML. This approach
differs from ours, as it requires the usage of a specific lan-
guage extension, the energy-related metrics only consider
the hardware, and offer little composability for complex es-
timations. Chiraz Trabelsi et al. propose a meta-model for
power estimation, that they use in the context of embed-
ded system design [3, 58]. They simulate the execution of
systems-on-chip, and according to the activity occurring on
the components, they estimate a power consumption of the
system. Their approach fosters power estimation through
simulation at design time, in order to ease the development
of systems. However, it is domain specific as it only considers
systems-on-chip. Marcio Oliveira et al. perform design space
exploration on UML representations, in order to optimize
Java software, and multi-processor system-on-chip [41, 42].
They estimate the resource consumptions of their models, in
order to choose the best modeling solution. Their approach
is static, whereas ours is dynamic, and considers execution
traces.

None of those approaches attaches estimations of energy
consumption at the language level in order to estimate any
xDSL. The list shows however that MDE can be a useful as-
set for energy efficiency, either through design space explo-
ration, simulation, code generation, model transformation,
or models at runtime.

Properties of executable models. Several alternative
methods have been considered for representing the com-
putation of properties of executable models, such energy
consumption. Eric Cariou et al. propose an approach for
weaving business code into executable models [14]. Business
operations are associated with executable elements, and exe-
cuted before, during, or after the execution of the targeted
element. David Mosteller et al. present a simulation envi-
ronment for prototyping and running DSMLs, providing a
simulation feedback through a graphical view [37]. Ábel
Hegedüs et al. present a generic replay mechanism for ex-
ecution traces of dynamic modeling languages [28]. This
proposals are suitable candidates for analyzing and estimat-
ing energy consumption of xDSMLs models. We base our
approach and implementation on the executable semantics
and extension points on GEMOC, in order to integrate our
tool with the GEMOC ecosystem. Gayane Sedrakyan et al.
propose an approach for enriching executable models with
user feedback [53]. Their approach gives the user visual in-
formation about the models they are executing, hence easing
the design and understanding of their models. It requires
important feedback from users which are not energy spe-
cialist whereas our approach separates the developer and
energy specialist roles to benefit independently of their own
expertise. The Object Management Group (OMG) introduce

the Structured Metrics Meta-model (SMM) [25]. SMM en-
ables the representation of properties, measurements, and
entities performing measurements. Entities can be composed
in many ways, hence fostering reusability in all engineer-
ing domains. It is a perspective to use SMM to persist the
energy in trace but it does not provide help to design energy-
consumption models.

6 Conclusion and Future Work
In this paper we presented an approach for estimating the
energy consumption of executable models when deployed
on their target platforms. We introduced EEL, a language
enabling the specification of the energy-related properties of
a system. Each EEL model attaches energy-related concepts
to the meta-elements of an xDSL for one specific deploy-
ment platform. Execution traces of models conforming to
the xDSL can be used along with an EEL model, to estimate
the energy consumption of this executable model, on its plat-
form. We propose a concrete syntax for writing EEL models
and evaluate our approach by estimating several ArduinoML
models. The results show that Arduino estimations written
with EEL are between 0.4% and 17.1% of the ground truth,
and 4.9% on average. Using this immediate feedback, the
developer can improve the energy efficiency of its models
before deploying them. These predictions do not require any
knowledge about energy consumption or measurement for
the developer and require little effort to be produced.
EEL is meant to be an interface between the estimators

of energy-consumption functions and system developers.
While in this paper we focused on the syntax, semantics,
and integration of the language with the modeling work-
bench, in future work we intend to focus on automatically
producing EEL models from a set of measures of the system
consumption curves. Furthermore, we want to be able to re-
use EEL models more easily, first across platforms. Reusing
EEL models is currently done using copy & paste, but future
implementations will enable the definition of libraries. Any
EEL model could be imported into an other one as a library,
and specific concepts in this model could be selected. As an
example, if two platforms embed different modules but share
the same LED definition, the second platform should be able
to import the LED definition available in the first EEMmodel,
using a line of EEL code similar to "from EEM_platform1
import LED". Reusing EEL models across languages is also
considered. Making EEL meta-model agnostic is challenging,
but can be useful to estimate platforms on which models
defined with different languages will be deployed. Moreover,
we want to improve the visual feedback within the modeling
workbench, to automatically highlight the parts of the model
that are the main culprits of energy waste. Also, EEL could
be integrated in other environments than GEMOC Studio. In
fact, environment used by CPS engineers such as Simulink
or Capella could benefit from EEL.

SLE ’20, November 16–17, 2020, Virtual, USA Thibault Béziers la Fosse, Massimo Tisi, Jean-Marie Mottu, and Gerson Sunyé

A EEL Abstract Syntax

0..1 target

+

Energy Estimation Language CoreEMF

Platform

+ name: String[?]

*

EClass

EOperation

EClassifier

<< Enumeration >>
Type

CURRENT
VOLTAGE
POWER
DURATION
ENERGY
SCALAR
FREQUENCY
ABSOLUTETIME

Estimation

+ name: String[?]
+ type: Type[?]
+ post: Boolean[?]

CompositeEstimation

EstimationOperationAdd

EstimationOperationSub

EstimationOperationMul

EstimationOperationDiv

EstimationValue

+ value: Double

CompositeEstimationOperation

LogisticEstimation

IntegrationEstimation

ExponentialEstimation

TailEstimation

OCLEstimation

+ query: OCL

Figure 9. EEL Meta-model

Annotating Executable DSLs with Energy Estimation Formulas SLE ’20, November 16–17, 2020, Virtual, USA

B ArduinoML Benchmarks

(a) Arduino UnoR3 running with no module. (b) Arduino UnoR3 running with LED on.

(c) Arduino UnoR3 running with Infrared sensor. (d) Arduino UnoR3 sleeping with Infrared sensor.

(e) Arduino UnoR3 running with Photoresistor. (f) Arduino UnoR3 running with Servo Motor rotating 180°.

Figure 10. ArduinoML Benchmarks Used for Building Arduino UnoR3 EEM

SLE ’20, November 16–17, 2020, Virtual, USA Thibault Béziers la Fosse, Massimo Tisi, Jean-Marie Mottu, and Gerson Sunyé

References
[1] Karan Aggarwal, Chenlei Zhang, Joshua Charles Campbell, Abram

Hindle, and Eleni Stroulia. 2014. The Power of System Call Traces:
Predicting the Software Energy Consumption Impact of Changes. In
Proceedings of 24th Annual International Conference on Computer Sci-
ence and Software Engineering (Markham, Ontario, Canada) (CASCON
’14). IBM Corp., USA, 219–233.

[2] Deniz Akdur, Vahid Garousi, and Onur Demirörs. 2018. A survey on
modeling and model-driven engineering practices in the embedded
software industry. Journal of Systems Architecture 91 (2018), 62 – 82.
https://doi.org/10.1016/j.sysarc.2018.09.007

[3] Rabie Ben Atitallah, Smail Niar, Alain Greiner, Samy Meftali, and
Jean Luc Dekeyser. 2006. Estimating energy consumption for an
MPSoC architectural exploration. In International Conference on Archi-
tecture of Computing Systems. Springer, 298–310.

[4] Nils Bandener, Christian Soltenborn, and Gregor Engels. 2010. Ex-
tending DMM behavior specifications for visual execution and debug-
ging. In International Conference on Software Language Engineering.
Springer.

[5] Olivier Barais, Benoit Combemale, and Andreas Wortmann. 2017. Lan-
guage Engineering with the GEMOC Studio.

[6] Luca Berardinelli, Antinisca Di Marco, Stefano Pace, Luigi Pomante,
and Walter Tiberti. 2015. Energy consumption analysis and design
of energy-aware WSN agents in fUML. In European Conference on
Modelling Foundations and Applications. Springer, 1–17.

[7] Aurélien Bourdon, Adel Noureddine, Romain Rouvoy, and Lionel Sein-
turier. 2013. Powerapi: A software library to monitor the energy
consumed at the process-level. ERCIM News 2013, 92 (2013).

[8] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer,
Julien Deantoni, and Benoit Combemale. 2016. Execution framework
of the gemoc studio. In Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Software Language Engineering. 84–89.

[9] Erwan Bousse, Dorian Leroy, Benoit Combemale, Manuel Wimmer,
and Benoit Baudry. 2018. Omniscient debugging for executable DSLs.
Journal of Systems and Software 137 (2018), 261–288.

[10] Erwan Bousse, Tanja Mayerhofer, and Manuel Wimmer. 2017. Domain-
Level Debugging for Compiled DSLs with the GEMOC Studio.

[11] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot.
2010. MoDisco: a generic and extensible framework for model driven
reverse engineering. In Proceedings of the IEEE/ACM international
conference on Automated software engineering. 173–174.

[12] Joseph Buck, Soonhoi Ha, Edward A Lee, and David G Messerschmitt.
2001. Ptolemy: A framework for simulating and prototyping heteroge-
neous systems. In Readings in hardware/software co-design. 527–543.

[13] Antonin Carette, Mehdi Adel Ait Younes, Geoffrey Hecht, Naouel
Moha, and Romain Rouvoy. 2017. Investigating the Energy Impact of
Android Smells. Technical Report 10. https://hal.inria.fr/hal-01403485/
file/carette-saner-17.pdf

[14] Eric Cariou, Olivier Le Goaer, Léa Brunschwig, and Franck Barbier.
2018. A generic solution for weaving business code into executable
models.. In MODELS Workshops. 251–256.

[15] Maxime Colmant, Mascha Kurpicz, Pascal Felber, Loïc Huertas, Romain
Rouvoy, and Anita Sobe. 2015. Process-level power estimation in vm-
based systems. In Proceedings of the Tenth European Conference on
Computer Systems. 1–14.

[16] Benoît Combemale, Xavier Crégut, and Marc Pantel. 2012. A design
pattern to build executable DSMLs and associated V&V tools. In 2012
19th Asia-Pacific Software Engineering Conference, Vol. 1. IEEE.

[17] Robertas Damaševičius, Vytautas Štuikys, and Jevgenijus Toldinas.
2013. Methods for measurement of energy consumption in mobile
devices. Metrology and measurement systems 20, 3 (2013), 419–430.

[18] Juan De Lara and Hans Vangheluwe. 2002. AToM 3: A Tool for Multi-
formalism and Meta-modelling. In International Conference on Funda-
mental Approaches to Software Engineering. Springer, 174–188.

[19] Brian Dougherty, Jules White, and Douglas C Schmidt. 2012. Model-
driven auto-scaling of green cloud computing infrastructure. Future
Generation Computer Systems 28, 2 (2012), 371–378.

[20] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian Zarnekow,
Robert von Massow, Wilhelm Hasselbring, and Michael Hanus. 2012.
Xbase: implementing domain-specific languages for Java. ACM SIG-
PLAN Notices 48, 3 (2012), 112–121.

[21] Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, and Stefan
Sauer. 2000. Dynamic meta modeling: A graphical approach to the
operational semantics of behavioral diagrams in UML. In International
Conference on the Unified Modeling Language. Springer, 323–337.

[22] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: implement your
language faster than the quick and dirty way. In Proceedings of the ACM
international conference companion on Object oriented programming
systems languages and applications companion. 307–309.

[23] Taher Ahmed Ghaleb. 2019. Software energy measurement at different
levels of granularity. In 2019 International Conference on Computer and
Information Sciences (ICCIS). IEEE, 1–6.

[24] Neville Grech, Kyriakos Georgiou, James Pallister, Steve Kerrison,
Jeremy Morse, and Kerstin Eder. 2015. Static analysis of energy con-
sumption for LLVM IR programs. In Proceedings of the 18th Interna-
tional Workshop on Software and Compilers for Embedded Systems.

[25] OM Group et al. 2012. Structured metrics metamodel (smm). no.
October (2012), 1–110.

[26] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. 2013.
Estimating mobile application energy consumption using program
analysis. In 2013 35th international conference on software engineering
(ICSE). IEEE, 92–101.

[27] Cécile Hardebolle and Frédéric Boulanger. 2007. Modhel’x: A
component-oriented approach to multi-formalism modeling. In In-
ternational Conference on Model Driven Engineering Languages and
Systems. Springer, 247–258.

[28] Ábel Hegedüs, István Ráth, and Dániel Varró. 2012. Replaying ex-
ecution trace models for dynamic modeling languages. Periodica
Polytechnica Electrical Engineering and Computer Science 56, 3 (2012).

[29] Jean-Marc Jézéquel, Benoit Combemale, Olivier Barais, Martin Mon-
perrus, and François Fouquet. 2015. Mashup of metalanguages and
its implementation in the kermeta language workbench. Software &
Systems Modeling 14, 2 (2015), 905–920.

[30] Zachary King, Mohammed Sayagh, and Abram Hindle. 2016. Energy
Profiles of Java Collections Classes. (2016).

[31] Thibault Béziers La Fosse, Massimo Tisi, Erwan Bousse, Jean-Marie
Mottu, and Gerson Sunyé. 2019. Towards platform specific energy
estimation for executable domain-specific modeling languages. In 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C). IEEE, 314–317.

[32] Ding Li, Shuai Hao, William GJ Halfond, and Ramesh Govindan. 2013.
Calculating source line level energy information for android applica-
tions. In Proceedings of the 2013 International Symposium on Software
Testing and Analysis. 78–89.

[33] Xun Li, Pablo J Ortiz, Jeffrey Browne, Diana Franklin, John Y Oliver,
Roland Geyer, Yuanyuan Zhou, and Frederic T Chong. 2010. Smart-
phone evolution and reuse: Establishing a more sustainable model. In
2010 39th International Conference on Parallel Processing Workshops.
IEEE, 476–484.

[34] Kenan Liu, Gustavo Pinto, and Yu David Liu. 2015. Data-oriented
characterization of application-level energy optimization. In Interna-
tional Conference on Fundamental Approaches to Software Engineering.
Springer, 316–331.

[35] Tanja Mayerhofer, Philip Langer, Manuel Wimmer, and Gerti Kappel.
2013. xMOF: Executable DSMLs based on fUML. In International
Conference on Software Language Engineering. Springer, 56–75.

[36] Tanja Mayerhofer, Manuel Wimmer, Loli Burgueño, and Antonio Val-
lecillo. 2018. Specifying quantities in software models. Technical Report.
Submitted.

https://doi.org/10.1016/j.sysarc.2018.09.007
https://hal.inria.fr/hal-01403485/file/carette-saner-17.pdf
https://hal.inria.fr/hal-01403485/file/carette-saner-17.pdf

Annotating Executable DSLs with Energy Estimation Formulas SLE ’20, November 16–17, 2020, Virtual, USA

[37] David Mosteller, Michael Haustermann, Daniel Moldt, and Dennis
Schmitz. 2019. Integrated Simulation of Domain-Specific Modeling
Languages with Petri Net-Based Transformational Semantics. In Trans-
actions on Petri Nets and Other Models of Concurrency XIV. Springer,
101–125.

[38] Jonathan Musset, Étienne Juliot, Stéphane Lacrampe, William Piers,
Cédric Brun, Laurent Goubet, Yvan Lussaud, and Freddy Allilaire. 2006.
Acceleo user guide. See also http://acceleo. org/doc/obeo/en/acceleo-2.6-
user-guide. pdf 2 (2006), 157.

[39] Adel Noureddine, Aurelien Bourdon, Romain Rouvoy, and Lionel
Seinturier. 2012. A preliminary study of the impact of software en-
gineering on GreenIT. In 2012 1st International Workshop on Green
and Sustainable Software, GREENS 2012 - Proceedings. 21–27. https:
//doi.org/10.1109/GREENS.2012.6224251

[40] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. 2013. A
review of energy measurement approaches. ACM SIGOPS Operating
Systems Review 47, 3 (2013), 42–49.

[41] MF da S Oliveira, Lisane B de Brisolara, Luigi Carro, and Flávio Rech
Wagner. 2006. Early embedded software design space exploration using
UML-based estimation. In Seventeenth IEEE International Workshop on
Rapid System Prototyping (RSP’06). IEEE, 24–32.

[42] Marcio FS Oliveira, Eduardo W Brião, Francisco A Nascimento, and
Flávio R Wagner. 2007. Model driven engineering for MPSOC design
space exploration. In Proceedings of the 20th annual conference on
Integrated circuits and systems design. 81–86.

[43] Pablo J Ortiz, Jeffrey Browne, Diana Franklin, John Y Oliver, Roland
Geyer, Yuanyuan Zhou, and Frederic T Chong. 2015. Smartphone
Evolution and Reuse : Establishing a More Sustainable Model Smart-
phone Evolution and Reuse : Establishing a more Sustainable Model.
90 (2015). https://doi.org/10.1109/ICPPW.2010.70

[44] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E. Hassan. 2016.
What Do Programmers Know about Software Energy Consumption?
IEEE Software 33, 3 (2016), 83–89. https://doi.org/10.1109/MS.2015.83

[45] Rui Pereira, João Saraiva, Haslab Inesc Tec, Nova Lincs, and João Paulo
Fernandes. 2016. The Influence of the Java Collection Framework on
Overall. (2016).

[46] Gustavo Pinto, Fernando Castor, and Yu David Liu. 2014. Mining
questions about software energy consumption. In Proceedings of the
11th Working Conference on Mining Software Repositories. 22–31.

[47] Giuseppe Procaccianti, Héctor Fernández, and Patricia Lago. 2016.
Empirical evaluation of two best practices for energy-efficient software

development. Journal of Systems and Software 117 (2016), 185–198.
https://doi.org/10.1016/j.jss.2016.02.035

[48] Charles Reams. 2012. Modelling energy efficiency for computation. Ph.D.
Dissertation. University of Cambridge.

[49] Felix Rieger and Christoph Bockisch. 2017. Survey of approaches
for assessing software energy consumption. In Proceedings of the 2nd
ACM SIGPLAN International Workshop on Comprehension of Complex
Systems. 19–24.

[50] Felix Rieger and Christoph Bockisch. 2020. Evaluating Techniques
for Method-Exact Energy Measurements: Towards a Framework for
Platform-Independent Code-Level Energy Measurements. In Proceed-
ings of the 35th Annual ACM Symposium on Applied Computing (Brno,
Czech Republic) (SAC ’20). Association for ComputingMachinery, New
York, NY, USA, 125–128. https://doi.org/10.1145/3341105.3374105

[51] Eric Saxe. 2010. Power-efficient software. Commun. ACM 53, 2 (2010),
44–48.

[52] Jed Scaramella. 2007. Solutions for the Datacenter ’ s Thermal Chal-
lenges. January (2007).

[53] Gayane Sedrakyan and Monique Snoeck. 2016. Enriching Model Exe-
cution with Feedback to Support Testing of Semantic Conformance
between Models and Requirements. (2016).

[54] Arman Shehabi, Sarah Smith, Dale Sartor, Richard Brown, Magnus Her-
rlin, Jonathan Koomey, Eric Masanet, Nathaniel Horner, Inês Azevedo,
and William Lintner. 2016. United States Data Center Energy Usage
Report. Technical Report. http://eta-publications.lbl.gov/sites/default/
files/lbnl-1005775{_}v2.pdf

[55] Digvijay Singh and William J Kaiser. 2010. The atom LEAP platform
for energy-efficient embedded computing. (2010).

[56] Jérémie Tatibouët, Arnaud Cuccuru, Sébastien Gérard, and François
Terrier. 2014. Formalizing execution semantics of UML profiles with
fUML models. In International Conference on Model Driven Engineering
Languages and Systems. Springer, 133–148.

[57] Chris Thompson, Jules White, Brian Dougherty, and Douglas C
Schmidt. 2009. Optimizing mobile application performance with
model–driven engineering. In IFIP International Workshop on Software
Technolgies for Embedded and Ubiquitous Systems. Springer, 36–46.

[58] Chiraz Trabelsi, Rabie Ben Atitallah, Samy Meftali, Jean-Luc Dekeyser,
and Abderrazek Jemai. 2011. A model-driven approach for hybrid
power estimation in embedded systems design. EURASIP Journal on
Embedded Systems 2011 (2011), 1–15.

[59] Molly Webb et al. 2008. Smart 2020: Enabling the low carbon economy
in the information age. The Climate Group. London 1, 1 (2008), 1–1.

https://doi.org/10.1109/GREENS.2012.6224251
https://doi.org/10.1109/GREENS.2012.6224251
https://doi.org/10.1109/ICPPW.2010.70
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1016/j.jss.2016.02.035
https://doi.org/10.1145/3341105.3374105
http://eta-publications.lbl.gov/sites/default/files/lbnl-1005775{_}v2.pdf
http://eta-publications.lbl.gov/sites/default/files/lbnl-1005775{_}v2.pdf

	Abstract
	1 Introduction
	2 Running Example
	3 Energy-Estimation Modeling
	3.1 An Energy-Estimation Model
	3.2 The Energy-Estimation Language
	3.3 Evaluation Semantics
	3.4 The Energy-Estimation Modeling Process
	3.5 Discussion and Limitations
	3.6 Implementation Details

	4 Evaluation
	4.1 Expressiveness
	4.2 Estimation Accuracy

	5 Related Work
	6 Conclusion and Future Work
	A EEL Abstract Syntax
	B ArduinoML Benchmarks
	References

