W. Azizian, D. Scieur, I. Mitliagkas, S. Lacoste-julien, and G. Gidel, Accelerating smooth games by manipulating spectral shapes, AISTATS '20: Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, 2020.

T. Chavdarova and F. Fleuret, SGAN: An Alternative Training of Generative Adversarial Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.391-401, 2018.

Y. K. Cheung and G. Piliouras, Vortices instead of equilibria in minmax optimization: Chaos and butterfly effects of online learning in zero-sum games, COLT '19: Proceedings of the 32nd Annual Conference on Learning Theory, 2019.

K. Chung, On a Stochastic Approximation Method, The Annals of Mathematical Statistics, vol.25, issue.3, pp.463-483, 1954.

C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng, Training GANs with optimism, ICLR '18: Proceedings of the 2018 International Conference on Learning Representations, 2018.

F. Facchinei and J. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, 2004.

A. Fallah, A. Ozdaglar, and S. Pattathil, An optimal multistage stochastic gradient method for minimax problems, 2019.

L. Flokas, E. V. Vlatakis-gkaragkounis, and G. Piliouras, Poincaré recurrence, cycles and spurious equilibria in gradient-descent-ascent for non-convex non-concave zero-sum games, NeurIPS '19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019.

G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-julien, A variational inequality perspective on generative adversarial networks, ICLR '19: Proceedings of the 2019 International Conference on Learning Representations, 2019.

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, 1998.

Y. Hsieh, F. Iutzeler, J. Malick, and P. Mertikopoulos, On the convergence of single-call stochastic extra-gradient methods, NeurIPS '19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp.6936-6946, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02403555

A. N. Iusem, A. Jofré, R. I. Oliveira, and P. Thompson, Extragradient Method with Variance Reduction for Stochastic Variational Inequalities, SIAM Journal on Optimization, vol.27, issue.2, pp.686-724, 2017.

S. Jelassi, C. D. Enrich, D. Scieur, A. Mensch, B. et al., Extra-gradient with player sampling for provable fast convergence in n-player games, 2019.

A. Juditsky, A. S. Nemirovski, and C. Tauvel, Solving Variational Inequalities with Stochastic Mirror-Prox Algorithm, Stochastic Systems, vol.1, issue.1, pp.17-58, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00318043

A. Kannan and U. V. Shanbhag, Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants, Computational Optimization and Applications, vol.74, issue.3, pp.779-820, 2019.

G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Èkonom. i Mat. Metody, vol.12, pp.747-756, 1976.

G. Piliouras and J. S. Shamma, Optimization Despite Chaos: Convex Relaxations to Complex Limit Sets via Poincaré Recurrence, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 2013.

B. T. Polyak, Smooth Optimization Methods in Discrete Minimax Problems, Annals of the New York Academy of Sciences, vol.491, issue.1, pp.191-193, 1987.

L. D. Popov, A modification of the Arrow-Hurwicz method for search of saddle points, Mathematical Notes of the Academy of Sciences of the USSR, vol.28, issue.5, pp.845-848, 1980.

H. Robbins and D. Siegmund, A Convergence Theorem for Non Negative Almost Supermartingales and Some Applications, Herbert Robbins Selected Papers, pp.111-135, 1985.

E. K. Ryu, K. Yuan, Y. , and W. , Stochastic Quasigradient Methods in Minimax Problems

W. H. Sandholm, Population Games and Evolutionary Dynamics. Economic Learning and Social Evolution. By William H. Sandholm. Cambridge (Massachusetts): MIT Press. $65.00. xxv + 589 p.; ill.; index. ISBN: 978-0-262-19587-4. 2010., The Quarterly Review of Biology, vol.88, issue.3, pp.259-259, 2013.

M. V. Solodov, Convergence rate analysis of iteractive algorithms for solving variational inequality problems, Mathematical Programming, vol.96, issue.3, pp.513-528, 2003.

P. Tseng, On linear convergence of iterative methods for the variational inequality problem, Journal of Computational and Applied Mathematics, vol.60, issue.1-2, pp.237-252, 1995.

S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel et al., Painless stochastic gradient: Interpolation, line-search, and convergence rates, NeurIPS '19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp.3732-3745, 2019.

G. Zhang and Y. Yu, Convergence behaviour of some gradient-based methods on bilinear zero-sum games, ICLR '20: Proceedings of the 2020 International Conference on Learning Representations, 2020.

, CHAPTER III. THE ISOMETRIC ASSUMPTION, Relativity and Modern Physics, pp.33-45, 1927.

?. , I. , and ?. {x-t-?-b-r, x )} , we get E[? 2 the error bound condition (EB) is satisfied on B ?r (x ) with ? = ? min ? ?