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FLOATING POTENTIAL BOUNDARY CONDITION IN SMOOTH

DOMAINS IN AN ELECTROPORATION CONTEXT

A. COLLIN, S. CORRIDORE, C. POIGNARD

INRIA, Bordeaux INP, CNRS, Univ. Bordeaux, IMB, UMR 5251
351 Cours de la Libération, F-33400 Talence, France.

Abstract. In electromagnetism, a conductor that is not connected to the ground is an equipo-
tential whose value is implicitly determined by the constraint of the problem. It leads to a non-
local constraints on the flux along the conductor interface, so-called floating potential problems.
Unlike previous numerical study that tackle the floating potential problems with the help of
advanced and complex numerical methods, we show how an appropriate use of Steklov-Poincaré
operators enables to obtain the solution to this partial differential equations with a non local
constraint as a linear (and well-designed) combination of N+1 Dirichlet problems, N being the
number of conductors not connected to a ground potential. In the case of thin highly conductive
inclusion, we perform an asymptotic analysis to approach the electroquasistatic potential at
any order of accuracy. In particular, we show that the so-called floating potential approaches
the electroquasistatic potential with a first order accuracy. This enables us to characterize the
configurations for which floating potential approximation has to be used to accurately solve the
electroquasistatic problem.

1. Introduction

The computation of the electroquasistatic electric field in high contrasted domains is a re-
search field which is active for several decades in both electrical engineering and applied math-
ematics research areas [3, 1, 9, 4, 12]. The interest has increased a lot for the last decade with
the use of pulse electric field for clinical ablation [7, 8, 5]. In particular, in the context of the
insertion of multiple needles, the influence of the inactive electrods on the electric field distri-
bution has to be precisely accounted to accurately determine the ablation region. The focus of
this paper is to present an effective and rigorous way to compute the static electric field in the
case of highly conductive thin inclusions.

The electroquasistatic theory states that the surface of a highly conductive conductor is an
equipotential surface, whose value is determined implicitly by the constraints of the problem.
This is the so-called floating potential problem which has been studied for several decades.
In [1] Amann et al. have shown that the penalization method, which consists in imposing a
high conductivity in the inclusion provides a less accurate electric potential than a well-designed
numerical method for the floating potential problem. This result may seem strange, since the
penalization is somehow the model of the real problem, while the floating potential is a perfect
conductor approximation. Thus it is natural to wonder how the floating potential approaches
the real electric potential, whether there is a relation between the size and the conductivity of
the high conductive material which prevents the use of this approximation, and if it is possible
to increase the accuracy with an asymptotic analysis. The aim of this paper is to address these
questions for thin and highly conductive inclusions.

E-mail address: clair.poignard@inria.fr, corresponding author.
Key words and phrases. Floating Potential, Dirichlet to Neumann Operator, Thin Conductive Layer, Asymp-
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1.1. Preliminary numerical observations on concentric disks. As preliminary, we inves-
tigate the observations of Amann et al. on a simplistic case, for which an explicit solution is
available. We consider the case of a dielectric (low) conductive material Ω which is the annulus
of radii r0 ∈ (0, 1) and 1 and with conductivity equal to 1, surrounded by a high conductive
sheet Oε of thickness ε, and whose conductivity –after nondimensionalisation– is of order 1/ε`,
where ` = 1 or 2 and ε is a small parameter. The electroquasistatic potential uε satisfies the
following elliptic problem

1

r
∂r(r∂ruε) +

1

r2
∂2
θuε = 0 in ({r0 < r < 1} ∪ {1 < r < 1 + ε})× R/(2πZ), (1a)

with the following transmission conditions:

uε|r=1− − uε|r=1+ = 0, ∂ruε|r=1− −
1

ε`
∂ruε|r=1+ = 0, (1b)

and the boundary conditions

∂ruε|r=1+ε = 0, uε|r=r0 = 1 + eiθ. (1c)

The corresponding floating potential problem consists in finding (u, α) ∈ H1(Ω)×R such that

1

r
∂r(r∂ru) +

1

r2
∂2
θu = 0 in {r0 < r < 1} × R/(2πZ), (2a)

with the boundary conditions

u|r=1 = α, such that

∫ 2π

0
∂ru(1, θ) dθ = 0, (2b)

u|r=r0 = 1 + eiθ, (2c)

To prevent errors due to numerical computations, it is convenient to give the expression of the
solution uexact to Problem (1). In {r0 < r < 1} × R/(2πZ), uexact reads:

uexactε (r, θ) =
εr0e

iθ

d(r0, ε)

((
εl+1 + 2εl + 2εl−1 − ε− 2

)
r +

(
εl+1 + 2εl + 2εl−1 + ε+ 2

)
r

)
+ 1,

and in {1 < r < 1 + ε} × R/(2πZ) it reads

uexactε (r, θ) =
2εlr0e

iθ

d(r0, ε)

(
r +

(ε+ 1)2

r

)
+ 1,

where d(r0, ε) = 2εlr2
0(1 + (ε+ 1)2)− ε(r2

0 − 1)(εl+1 + 2εl + 2εl−1 + ε+ 2).
This solution is then compared with the numerical resolution by standard second order finite

difference scheme. This enables us to compare simultaneously how the solution to Problem (1) is
approached by the solution to Problem (2), and how accurate is a standard second order numer-
ical scheme for Problem (1). Numerical results are shown in Figure 1. Two main observations
arise from these simplistic simulations.

First, for ` = 1, the floating potential does not approach the solution to Problem (1), while it
does with an order of accuracy in O(ε) for ` = 2, which means that floating potential cannot be
used to approach the electric potential when the ratio Rlength of the thickness of the conductor
divided by the characteristic length of the dielectric is of the same order as the ratio Rcond
of the conductivity of the dielectric divided by the conductivity of the high conductive sheet.
Second, one can see that when ε becomes too small compared with the mesh grid, the numerical
solution to the Problem (1) is not accurate, which provides an explanation to the statement by
Amann et al. that the penalization method is less accurate than the floating potential.
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Figure 1. (Left): Comparison of the explicit solution uexactε to Problem (1)
with the floating potential problem for ` = 1 (dashed and dotted blue line)
and 2 (red line), and comparison of the explicit and the numerical solutions (1)
(green dashed line) as ε tends to zero. One can see that for ` = 1 the floating
potential is not accurate: the conductive sheet is too thin to be an equipotential.
For ` = 2, the floating potential approaches the exact solution with an order
of accuracy in O(ε). Due a high condition number of the matrix, a direct
numerical resolution of Problem (1) gives a worse approximation for smaller ε.
(Right): Numerical convergence with the steps (dθ, dr) ∈
{(314, 200), (628, 400), (1256, 800), (2512, 1600)} of the second order scheme
to solve Problem (1) for ε = 1 (dashed blue line) and ε = 0.01 (red line).
Condition number of the matrix for the discretization of Problem (1) grows
considerably when ε approaches zero. With small discretization steps the
instability increases and the numerical solution has lower accuracy.
(?) value not available due to not reasonable computational cost to compute it.

1.2. Outline of the paper. As shown on the previous simplistic example, the direct resolution
of the electroquasistatic problem in a domain with highly conductive inclusion leads to ill-
conditioned matrix and floating potentials are preferred to avoid the computational cost. The
numerical resolution of such floating potential problems has been studied for several decades.
One can cite for instance the paper by Dular et al. [3], where the authors proposed a finite
element method, which consists in enriching the finite elements space with specific functions
defined on the nodes of the interfaces Γk. Amann et al. proposed in [1] a boundary element
method to tackle the problem using single boundary layer integral formulation of the solution.
Note that recently, a hybrid Galerkin method has been proposed by Sala et al. for a similar
problem in the context of ocular hemodynamic, the electric potential being replaced by the
Darcy pressure [11].

The aim of the paper is twofold. On the one hand, after the proof of the well-posedness
of the floating potential problem in the case of N multiple highly conductive inclusions, we
propose a new numerical strategy to tackle the floating potential problem. Unlike the previous
works cited above, our numerical strategy does not require any new specific numerical method.
More precisely, it consists in characterising the solution to the floating potential problem as a
linear combination of N + 1 explicit Dirichlet problems thanks to the definition of well designed
Steklov-Poincaré operators. On the second hand, we propose an asymptotic analysis of the
electroquasistatic potential in the case of a highly conductive thin inclusion, in the asymptotic
regime where the ratio of the conductivities Rcond is of order ε2, while the ratio Rlength is of
order ε. In particular, we prove the convergence of the asymptotic approximation at any order
as ε goes to 0.

3



2. Analysis and computation of the floating potential problem

Even though the use of well-designed numerical methods can be useful, they require deep
changes in the computing software that prevent the use of standard softwares, which have
been designed for Dirichlet, Neumann and/or Robin conditions in most cases. In the following,
we show that the solution to the floating potential problem can be obtained as the linear
combination of N + 1 independent potentials with Dirichlet conditions. The parallelization of
the independent problem implies that the floating potential is almost reduced to a Dirichlet
problem, and the problem does not necessarily require the use of advanced numerical strategies.

Let us state precisely the problem. Let O be a domain of Rd, d = 2, 3 and let (Ok)Nk=1 be
N highly conductive inclusions embedded in O. We denote by Γout the outer boundary of O,
and by Γk the boundary of Ok for k = 1, · · ·N . Define Ω = O \ ∪Ok. Let σ ∈ L∞(Ω) be the
conductivity map of Ω which satisfies for a given constant a > 0

a ≤ ‖σ‖L∞(Ω) ≤ 1/a.

Given (gk)
N
k=1 ∈ R and f ∈ H−1(Ω), the floating potential problem1 consists in finding the

N + 1-uple (u, α1, ·, αN ) ∈ H1(Ω)× RN such that

−∇ · (σ∇u) = f in Ω, u|Γout = 0, (3a)

and on Γk, for k = 1, · · ·N

u|Γk = αk,

∫
Γk

σ∂nu ds = gk. (3b)

2.1. Existence and Uniqueness of floating potential problem. Even though the well-
posedness of Problem (3) has been addressed by Amann et al. in [1] for one inclusion, we
present a variant proof for N inclusions that will lead to our simple numerical strategy.

For i = 1, · · · , N , we consider the following Steklov-Poincaré operators defined as

Λ
(i)
out : H−1(Ω) −→ H−1/2(Γi)

f 7−→ σ∂nv|Γi
s. t.

{
−∇ · (σ∇v) = f in Ω,

v|Γout
= 0, v|Γ`

= 0, for ` = 1, · · · , N.

For k = 1, · · · , N , we define Λ
(i)
k by

Λ
(i)
k : H1/2(Γk) −→ H−1/2(Γi)

γ 7−→ σ∂nv|Γi
s. t.


−∇ · (σ∇v) = 0 in Ω,

v|Γi
= γ,

v|Γout
= 0, v|Γ`

= 0, for ` 6= i.

If it exists, the solution (u, α1, · · · , αN ) to Problem (3) satisfies

σ∂nu|Γi
=

N∑
`=1

α`Λ
(i)
` (1) + Λ

(i)
out(f), for i = 1, · · · , N ,

and the nonlocal constraints (3b) read

gi =
N∑
`=1

α`

∫
Γi

Λ
(i)
` (1)ds+

∫
Γi

Λ
(i)
out(f)ds, for i = 1, · · · , N. (4)

Denoting by M = (Mij)i,j=1,··· ,N the matrix defined as

Mij =

∫
Γi

Λij(1)ds, (5a)

1Note that if the inclusion Ok is isolated, then gk is nothing but 0.
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and B = (Bi)i=1,··· ,N the vector defined as

Bi = gi −
∫

Γi

Λiout(f)ds. (5b)

Then equality (4) reads

M

α1
...
αN

 = B, (5c)

and the proof of the well-posedness of Problem (3) is reduced to proving the invertibility ofM.

Proposition 1. Let Ω be a domain of Rd, d = 2, 3. Let us endow the space (L2(Ω))d, d = 2, 3
with the scalar product < ·, · >(L2(Ω))d defined by

< F,G >σ(L2(Ω))d=

∫
Ω
σF ·Gdx, ∀(F,G) ∈ (L2(Ω))d.

The matrixM defined by (5a) is a Gram matrix of the linearly independent vectors ∇v1, · · · ,∇vN
of (L2(Ω))d, where the functions (v`)

N
`=1 are defined by

−∇ · (σ∇v`) = 0 in Ω,

v`|Γ` = 1,

v`|Γout = 0, v`|Γk = 0, for k 6= `.

(6)

Therefore M is invertible and there exists a unique N + 1-uple (u, α1, · · · , αN ) ∈ H1(Ω)×RN
solution to Problem (3).

Proof. Observe first that thanks to the Dirichlet boundary conditions on Γk for k = 1, · · · , N ,
the vectors (v`)

N
`=1 are linearly independent in H1(Ω), hence the vectors ∇v1, · · · ,∇vN are

linearly independent in (L2(Ω))d.
By definition of M and by construction of vi, one has

Mij =

∫
Γi

σ∂nvjvidx =

∫
Ω
σ∇vj · ∇vi dx.

ThusM is a Gram matrix of linearly independent vectors of (L2(Ω))d, it is therefore invertible
(see for instance [2]). �

2.2. Numerical strategy to solve the floating potential problem. Proposition 1 leads to
a simple characterization of the solution to Problem (3), and thus a simple numerical strategy
which is as follows.
• Compute v` given defined by (6) for ` = 1, · · · , N and compute vout, which is the solution in
H1

0 (Ω) to {
−∇ · (σ∇vout) = f in Ω,

vout|∂Ω
= 0.

(7)

• Compute (Mij) and (Bij) given by (5a)–(5b) or equivalently

Mij =

∫
Ω
σ∇vi · ∇vj dx, Bi = gi −

∫
Ω
σ∇vout · ∇vi dx,

and deduce (α1, · · · , αN ) by solving the linear system (5c).
• Then the solution u to the floating potential problem (3) is obtained by the following linear
combination:

u = vout +

N∑
`=1

α`v`.

In other words, to compute u one just has to solve N + 1 independent Dirichlet problems,
which can be easily parallelized.
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3. Asymptotic analysis and generalization of the floating potential problem
for thin highly conductive sheets

3.1. The conductivity problem. In this section, we present the electroquasistatic problem
in the case of one thin high conductive inclusion. We consider the asymptotic regime where the
ratio between the dielectric/low conductive material Rcond is 2 order of magnitude greater than
the ratio of the characteristic length Rlength of the dielectric/low conductive material divided
by the (small) thickness of sheet.

More precisely, we consider a smooth bounded domain Ω of Rd, d = 2 or 3, which represents
a conductive domain with a hole. We denote by Γout the external boundary of Ω, and by Γ the
inner boundary corresponding the interface between Ω and the inner hole. The domain Ω is
complemented with a thin highly conducting sheet coating the hole, and denoted by Oε, where
ε is the ratio between the small thickness of the conductive sheet and the characteristic length
of Ω. In addition we assume that the magnitude of the highly conductive sheet is of order 1/ε2.
The domain Oε may represent a inner passive electrode or a highly conductive thin inclusion as
a surgical clip. We denote by Ωε the assembly Ωε = Ω∪Γ∪Oε, and Γε is the interface between
Ωε and the hole. Figure 2 provides a schematic of the geometrical framework.
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Figure 2. Schematics of the toy model. (Left): The domain with one thin
highly conductive inclusion of thickness ε. The domain Oε may represent a
inner passive electrode or a highly conductive thin inclusion as a surgical clip.
(Right): The domain Ω in the limit ε = 0.

The nondimensionalized conductivity2 map σε of the domain Ωε is given by

σε(x) =

{
σ(x), if x ∈ Ω,

ε−2, if x ∈ Oε,
(8)

where σ is a strictly positive function in Ω.
The electroquasistatic potential uε in Ω satisfies the following elliptic problem

−∇ · (σε∇uε) = 1Ωf in Ω ∪ Oε, (9a)

with the transmission conditions on Γ:

uε|Γ+ − uε|Γ− = 0, σ∂nuε|Γ+ − 1

ε2
∂nuε|Γ− = 0, (9b)

and the boundary conditions

∂nuε|Γε = 0, uε|Γout
= 0, (9c)

where the source term f ∈ H−1(Ω). The following a priori estimate holds.

2To simplify notation, we consider the non dimension conductivity map σε, which is the conductivity map
divided by the characteristic conductivity of the domain, which might the average of the conductivity on the low
conductive domain.
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Proposition 2 (A priori estimate). Let Ω and Oε be smooth connected domains. Denote by
Ωε = Ω∪Γ∪Oε. Let f ∈ H−1(Ω). There exists a unique solution uε to Problem (9) in H1(Ωε).
Moreover there exists a constant C > 0 independent of ε such that

‖uε‖H1(Ω) +
1

ε
‖∇uε‖L2(Oε) ≤ C‖f‖H−1(Ω).

Proof. The well-posedness of the elliptic problem (9) is standard by a straightforward application
of the Lax-Migram lemma. The proof of the estimate is based on standard Poincaré estimate [6]
in Ω since uε|Ω ∈ H1(Ω) is such that uε|Γout = 0. Indeed, multiplying by uε and integrating by
parts leads to∫

Ω
σ|∇uε|2dx+

1

ε2

∫
Oε
|∇uε|2dx ≤ ‖f‖H−1(Ω)‖uε‖H1(Ω) ≤ C‖f‖H−1(Ω)‖∇uε‖L2(Ω),

where C is independent of ε, which ends the proof. �

The goal of this section is to provide the asymptotic expansion of uε as ε goes to 0.

3.2. Local coordinates and Laplace operator. To perform the asymptotic expansion it is
natural to introduce the following change of variables which straightens up the thin inclusion.
More precisely, let xT = (ξ1, ξ2) be a system of local coordinates on Γ = {Ψ(xT)}, where Ψ is
a mapping of Γ. By abuse of notation, we denote by xT ∈ Γ the point Ψ(xT) ∈ Γ. We define
the following map Φ by

Φ(xT, ξ3) = Ψ(xT) + ξ3 n(xT) ∀(xT, ξ3) ∈ Γ× R,
where n is the outer normal vector of Γ. The layer Oε is parameterized by

Oε = {Φ(xT, ξ3) | (xT, ξ3) ∈ Γ× (0, ε)} .
The Euclidean metric tensor (gij)i j=1,2,3, defined as

gij = 〈∂iΦ, ∂jΦ〉
reads as follows [10]

g33 = 1, gα3 = g3α = 0 ∀α ∈ {1, 2},
gαβ(xT, ξ3) = g0

αβ(xT) + 2 ξ3 bαβ(xT, ξ3) + ξ3
2 cαβ(xT, ξ3) ∀α, β ∈ {1, 2}2,

where

g0
αβ = 〈∂αΨ, ∂βΨ〉, bαβ = 〈∂αn, ∂βΨ〉, cαβ = 〈∂αn, ∂βn〉.

The Laplace-Beltrami operator ∆g in the system of local coordinates of Oε reads then

∆g =
1√
g

∑
i,j=1,2,3

∂i(
√
ggij∂j),

where (gij) = (gij)
−1 and g the absolute value of the tensor metric determinant.

Define ∀` ∈ N the coefficients

a`ij = ∂`3

(
∂i(
√
g gij)
√
g

)∣∣∣∣
ξ3=0

, ∀(i, j) ∈ {1, 2, 3}2,

A`αβ = ∂`3

(
gαβ

)∣∣∣
ξ3=0

, ∀(α, β) ∈ {1, 2}2,

and let S`Γ be the surface differential operator of order 2 on Γ defined as

S`Γ =
∑

α,β=1,2

alαβ∂β +Alαβ∂α∂β.

Remark 1. As noticed in [10], the operator S0
Γ is nothing but the surface Laplace-Beltrami

operator on Γ, so S0
Γ = ∆Γ. Moreover a0

33 is the sum of the principal curvatures of Γ, in other
words, denoting by H the mean curvature of Γ one has a0

33 = 2H.
7



The Laplace-Beltrami operator in Oε can be rewritten as

∆g = ∂2
3 +

∑
l≥0

ξl3
l!

(al33∂3 + SlΓ) ∀(xT, ξ3) ∈ Γ× (0, ε).

Performing the change of variable η = ξ3/ε, we denote by Φε(xT, η) = Φ(xT, εη), and we obtain

∆g =
1

ε2
∂2
η +

1

ε
a0

33 ∂η +
∑
l≥0

εl
ηl

l!

(
η

l + 1
al+1

33 ∂η + SlΓ

)
∀(xT, η) ∈ Γ× (0, 1).

3.3. Formal expansion. Denote by Uε the electroquasistatic potential in local coordinates
in Oε:

Uε(xT, η) = uε ◦ Φ(xT, εη), (xT, η) ∈ Γ× (0, 1).

Thanks to this change of variables, Problem (9) reads as follows

−∇ · (σ∇uε) = f in Ω,

−∆gUε = 0 on Γ× (0, 1),

uε|Γ = Uε|η=0
◦Ψ−1,

σ ∂nuε|Γ = ε−3 ∂ηUε|η=0
◦Ψ−1,

∂ηUε|η=1
= 0,

uε|Γout
= 0.

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

We are now ready to derive formally the expansion. Set the following Ansatz:

uε(x) =
∑
k≥0

εk uk(x), ∀x ∈ Ω, (11a)

Uε(xT, η) =
∑
k≥0

εk uk(xT, η), ∀(xT, η) ∈ Γ× (0, 1). (11b)

Injecting the formal series in Problem (10) and identifying the terms with the same power in ε
lead to the following relations for any p ≥ 0,

−∇ · (σ∇up) = δpf in Ω, (12a)

∂2
ηup = −a0

33∂ηup−1 −
p−2∑
l=0

ηl

l!

(
η

l + 1
al+1

33 ∂ηup−2−l + SlΓup−2−l

)
on Γ× (0, 1), (12b)

up|Γ = up|η=0
, (12c)

σ ∂nup−3|Γ = ∂ηup|η=0
, (12d)

∂ηup|η=1
= 0, (12e)

up|Γout
= 0, (12f)

where δp is the Kronecker symbol equal to 1 if p = 0 and 0 elsewhere, and with the convention
up and up are 0 if p ≤ 0.

3.3.1. Derivation of the 0th and 1rst order coefficients. Using (12b) with p = 0 together with
the boundary condition (12e), implies that ∂ηu0 = 0 and thus u0 = u0(xT), and then similarly
∂ηu1 = 0 and thus u1 = u1(xT). Then using (12b) for p = 2 implies that

∂2
ηu2 = −∆Γu0(xT).

The boundary conditions (12d)–(12e) imply thus that ∂ηu2 = 0 and −∆Γu0 = 0. Therefore
we infer that u0 is a constant denoted by α0 and thus u0|Γ = α0. Then using (12b) for p = 3
implies that

∂2
ηu3 = −∆Γu1(xT), (13)
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since ∂ηu2 = 0, and S1
Γu0 = 0. We thus infer thanks to (12e) that∫

Γ
∂ηu3(xT, 1)dxT = −

∫
Γ

∆Γu1 = 0,

from which we infer using (12d) the floating potential problem :

Find (u0, α0) ∈ H1(Ω)× R such that

−∇ · (σ∇u0) = f, in Ω, u0|Γout
= 0, (14a)

u0|Γ − α0 = 0, such that

∫
Γ
σ∂nu0 ds = 0. (14b)

Note also that the derivation process leads

u0 = α0, ∂ηu1 = ∂ηu2 = 0. (15a)

To get the 1rst order coefficient, since ∂ηu1 = 0, using (13) with (12d) implies that

∂ηu3(xT, η) = (1− η)∆Γu1, and ∆Γu1 = σ∂nu0|Γ ,

thus one can write u1 = g1(xT) + α1 where g1 is uniquely determined by

∆Γg1 = σ∂nu0|Γ ,

∫
Γ
g1ds = 0,

and thanks to (12c), u1|Γ−α1 = g1 ◦Ψ−1. It remains to determine the constant α1. Using (12b)
with p = 4, one has

∂2
ηu4 = −a0

33∂ηu3 −
2∑
l=0

ηl

l!

(
η

l + 1
al+1

33 ∂ηu2−l + SlΓu2−l

)
= −(1− η)a0

33∆Γu1 −∆Γu2 − ηS1
Γu1,

and thanks to (12e) one infers

∂ηu4 = −
(
η − η2/2− 1/2

)
a0

33∆Γu1 − (η − 1)∆Γu2 − (η2/2− 1/2)S1
Γu1.

Note that since u2 is not determined, the above equality does not define ∂ηu4. However, inte-
grating over Γ and using (12d), we obtain∫

Γ
σ∂nu1 ds =

1

2

∫
Γ

(
a0

33∆Γu1 + S1
Γu1

)
ds =

1

2

∫
Γ

(
a0

33∆Γg1 + S1
Γg1

)
ds,

and then (u1, α1) is the solution to the following problem:

Find (u1, α1) ∈ H1(Ω)× R such that :

−∇ · (σ∇u1) = 0, in Ω, u1|Γout
= 0,

u1|Γ − α1 = g1 ◦Ψ−1, such that

∫
Γ
σ∂nu1ds = h1,

where g1 and h1 are given by

∆Γg1 = σ∂nu0|Γ ,

∫
Γ
g1ds = 0,

h1 =
1

2

∫
Γ
a0

33∆Γg1 + S1
Γg1ds.

Then one also has

u1(xT) = g1(xT) + α1, ∂ηu2 = 0, ∂ηu3 = (1− η)∆Γg1.
9



3.3.2. Derivation of the coefficients at any order k by induction. Assume that there exists a
smooth enough function gk defined on Γ such that

∫
Γ gkds = 0 and a constant hk such that

(uk, αk) is the solution to the following problem:

Find (uk, αk) ∈ H1(Ω)× R such that

−∇ · (σ∇uk) = δkf, in Ω, uk |Γout
= 0,

uk |Γ − αk = gk ◦Ψ−1, such that

∫
Γ
σ∂nukds = hk,

and assume that the following profile terms u` for ` = k, k + 1, k + 2 read as

u`(xT, η) = P`−1(xT, η) + g`(xT) + α`,∫
Γ
∂ηuk+3(xT, 0) = hk,

where P`−1 is a given polynomial of order `−1 in η and vanishing in η = 0, for ` = k, k+1, k+2,
and g` and α` are unknown for ` = k + 1, k + 2, with the constraint

∫
Γ g`ds = 0.

Then, using (12b)–(12e) with p = k + 3, we infer that for any r ∈ (0, 1)

∂ηuk+3(xT, r)−
∫ 1

r
∆Γuk+1dη =

∫ 1

r
a0

33∂ηuk+2 + a1
33η∂ηuk+1

+

k+1∑
l=1

ηl

l!

(
η

l + 1
al+1

33 ∂ηuk+1−l + SlΓuk+1−l

)
dη.

We thus infer that ∂ηuk+3 is polynomial of order k + 2 or in other words uk+3 reads as

uk+3(xT, η) = Pk+2(xT, η) + gk+3(xT) + αk+3,

where Pk+2 is explicitly given by the above equality vanishes in η = 0, and gk+3 is not determined
but its mean value over Γ is 0 and αk+3 is a still undetermined constant. Using (12d) and the
recurrence hypothesis, we also infer

−∆Γgk+1 = −σ∂nuk +

∫ 1

0
η∆ΓPk(xT, η)dη

+

∫ 1

0
a0

33∂ηuk+2 + a1
33η∂ηuk+1

k+1∑
l=1

ηl

l!

(
η

l + 1
al+1

33 ∂ηuk+1−l + SlΓuk+1−l

)
ds,

which entirely determines gk+1 using the recurrence assumption since
∫

Γ gk+1ds = 0. It remains
to determine the constant αk+1. Using (12b)–(12e) with p = k + 4 we infer that∫

Γ
∂ηuk+4ds =

∫
Γ

∫ 1

η
a0

33∂ηuk+3 +
k+2∑
l=0

rl

l!

(
r

l + 1
al+1

33 ∂ηup−2−l + SlΓup−2−l

)
drds,

and (12d) leads to∫
Γ
σ∂nuk+1ds =

∫
Γ

∫ 1

0
a0

33∂ηuk+3 +
k+2∑
l=0

rl

l!

(
r

l + 1
al+1

33 ∂ηup−2−l + SlΓup−2−l

)
drds := hk+1.

The condition (12c) implies then that (uk+1, αk+1) is the solution to the following problem:

Find (uk+1, αk+1) ∈ H1(Ω)× R such that

−∇ · (σ∇uk+1) = 0, in Ω, uk+1|Γout
= 0,

uk+1|Γ − αk+1 = gk+1 ◦Ψ−1, such that

∫
Γ
σ∂nuk+1ds = hk+1,

Remark 2. It is worth noting that thanks to Proposition 1, the elementary problems are well-
posed at any order.
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3.3.3. Proof of the expansion. Let us now prove the convergence of the expansion.

Theorem 1. Let N ≥ 0. Let f ∈ C∞(Ω), such that the above inductive process to obtain
the coefficients of the expansion (11) holds at any order. Let uε be the smooth solution to
Problem (9). Let uε,N be the function defined by

uε,N =


∑N

k=0 ε
kuk, in Ω,

∑N+2
k=0 εkuk ◦ Φ−1

ε , in Oε,
where the functions uk, uk are defined by the above inductive process.

Then there exists a constant CN independent of ε such that

‖uε − uε,N‖H1(Ω) +
1

ε
‖∇(uε − uε,N )‖L2(Oε) ≤ CNεN+1.

Proof. Note that by hypothesis on f , uN ∈ C∞(Ω) and uN ∈ C∞(Γ × (0, 1)) (as well as their
traces on Γ and derivatives) are uniformly bounded independently of ε.

Denote by vε = uε − uε,N . By construction of the expansion coefficients, vε satisfies the
following problem:

−∇ · (σ∇vε) = 0, in Ω,

−∆vε = ∆uε,N (= OL∞(Ω)(ε
N+1)), in Oε,

vε|Γ− − vε|Γ+
= 0,

σ∂nvε|Γ− −
1

ε2
∂nvε|Γ+

= σ∂nuε,N |Γ− −
1

ε2
∂nuε,N |Γ+ (= OL∞(Γ)(ε

N )),

∂nvε|Γε = 0,

vε|Γout
= 0.

(16a)

(16b)

(16c)

(16d)

(16e)

(16f)

Using the fact that

‖OL∞(Ω)(ε
N )‖L2(Oε) ≤ CεN+1/2,

multiplying by vε and integrating lead to∫
Ω
σ|∇vε|2dx+

1

ε2

∫
Oε
|∇vε|2dx ≤ C

(
εN+1/2‖vε‖L2(Oε) + εN+1|vε|L2(Γ)

)
.

Since the diameter of Ωε is bounded below by the diameter of Ω, uniform Poincaré estimate
holds for any function in H1(Ωε) vanishing on Γout. Thus thanks to Dirichlet trace estimate,
there exists a constant C independent of ε such that∫

Ω
σ|∇vε|2dx+

1

ε2

∫
Oε
|∇vε|2dx ≤ C

(
εN+1/2‖∇vε‖L2(Ωε) + CεN+1|vε|L2(Γ)

)
≤ CεN+1/2‖∇vε‖L2(Ωε),

hence

‖uε − uε,N‖H1(Ω) +
1

ε
‖∇(uε − uε,N )‖L2(Oε) ≤ CNεN+1/2.

We similarly have

‖uε − uε,N+1‖H1(Ω) +
1

ε
‖∇(uε − uε,N+1)‖L2(Oε) ≤ CNεN+3/2.

Observing that wε,N defined by wε,N = uε,N+1 − uε,N , satisfies

‖wε,N‖H1(Ω) +
1

ε
‖∇wε,N‖L2(Oε) ≤ CNεN+1,

we infer the result. �
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4. Conclusion

In this paper, we have proposed an asymptotic analysis to approach accurately the solution
to the electroquasistatic potential in a smooth domain with a highly conductive inclusion. We
have shown that the so-called floating potential approaches the electroquasistatic potential
with a first order accuracy, and we have given the expansion at any order. For the sake of
simplicity, we have only considered the case where the relative thickness of the inclusion is of
order ε and the ratio of the conductivities (the conductivity of the conductive inclusion divided
by the conductivity of the domain) is of order 1/ε2. It is worth noting that in the case of
higher conductive thin inclusions – that is for ratios of the conductivities of order 1/ε2+s, with

s > 0 – the floating potential provides an approximation of order ε1+bsc, since the terms ui
for i = 1, · · · , bsc vanish. This observation, which easily comes from the formal derivation of
Section 3.3 is left to the reader.

This paper also provides an efficient numerical method to compute accurately the floating
potential problem in the case of N highly conductive inclusions, by replacing the PDE with
nonlocal constraints on the total flux along the interfaces by the resolution of N + 1 Dirichlet
problems uncoupled, the solution of the floating potential problem being obtained thanks to
the inversion of a definite Gram matrix of size N . This efficient and rigorous approach has been
used recently by the authors and colleagues in [12].
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