A. Brown, Insecticide resistance in mosquitoes: a pragmatic review, Journal of the American Mosquito Control Association, vol.2, issue.2, pp.123-140, 1986.

J. Hemingway and H. Ranson, Insecticide Resistance in Insect Vectors of Human Disease, Annual Review of Entomology, vol.45, issue.1, pp.371-391, 2000.

H. Schechtman and M. O. Souza, Costly Inheritance and the Persistence of Insecticide Resistance in Aedes aegypti Populations, PLOS ONE, vol.10, issue.5, p.e0123961, 2015.

B. Levick, A. South, and I. M. Hastings, A Two-Locus Model of the Evolution of Insecticide Resistance to Inform and Optimise Public Health Insecticide Deployment Strategies, PLOS Computational Biology, vol.13, issue.1, p.e1005327, 2017.

S. Oosthoek, Pesticides spark broad biodiversity loss, Nature, 2013.

E. A. Mcgraw and S. L. O'neill, Beyond insecticides: new thinking on an ancient problem, Nature Reviews Microbiology, vol.11, issue.3, pp.181-193, 2013.

J. Kean, S. M. Rainey, M. Mcfarlane, C. L. Donald, E. Schnettler et al., Fighting Arbovirus Transmission: Natural and Engineered Control of Vector Competence in Aedes Mosquitoes, Insects, vol.6, issue.1, pp.236-278, 2015.

N. L. Achee, J. P. Grieco, H. Vatandoost, G. Seixas, J. Pinto et al., Alternative strategies for mosquito-borne arbovirus control, PLOS Neglected Tropical Diseases, vol.13, issue.1, p.e0006822, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02359327

T. Walker, P. H. Johnson, L. A. Moreira, I. Iturbe-ormaetxe, F. D. Frentiu et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, vol.476, issue.7361, pp.450-453, 2011.

L. Alphey, Genetic Control of Mosquitoes, Annual Review of Entomology, vol.59, issue.1, pp.205-224, 2014.

P. T. Leftwich, M. Bolton, and T. Chapman, Evolutionary biology and genetic techniques for insect control, Evolutionary Applications, vol.9, issue.1, pp.212-230, 2015.

C. J. Mcmeniman, R. V. Lane, B. N. Cass, A. W. Fong, M. Sidhu et al., Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes aegypti, Science, vol.323, issue.5910, pp.141-144, 2009.

A. A. Hoffmann, B. L. Montgomery, J. Popovici, I. Iturbe-ormaetxe, P. H. Johnson et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, vol.476, issue.7361, pp.454-457, 2011.

M. J. Keeling, F. M. Jiggins, and J. M. Read, The invasion and coexistence of competing Wolbachia strains, Heredity, vol.91, issue.4, pp.382-388, 2003.

J. Z. Farkas and P. Hinow, Structured and Unstructured Continuous Models for Wolbachia Infections, Bulletin of Mathematical Biology, vol.72, issue.8, pp.2067-2088, 2010.

B. Zheng, M. Tang, and J. Yu, Modeling Wolbachia Spread in Mosquitoes Through Delay Differential Equations, SIAM Journal on Applied Mathematics, vol.74, issue.3, pp.743-770, 2014.

L. Yakob, S. Funk, A. Camacho, O. Brady, and W. J. Edmunds, Aedes aegypti Control Through Modernized, Integrated Vector Management, PLoS Currents, vol.9, 2017.

L. Xue, C. A. Manore, P. Thongsripong, and J. M. Hyman, Two-sex mosquito model for the persistence ofWolbachia, Journal of Biological Dynamics, vol.11, issue.sup1, pp.216-237, 2016.

D. E. Campo-duarte, D. Cardona-salgado, and O. Vasilieva, Establishing wMelPop Wolbachia Infection among Wild Aedes aegypti Females by Optimal Control Approach, Applied Mathematics & Information Sciences, vol.11, issue.4, pp.1011-1027, 2017.

P. Bliman, M. S. Aronna, F. C. Coelho, and M. A. Da-silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, Journal of Mathematical Biology, vol.76, issue.5, pp.1269-1300, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01261164

L. Almeida, Y. Privat, M. Strugarek, and N. Vauchelet, Optimal Releases for Population Replacement Strategies: Application to Wolbachia, SIAM Journal on Mathematical Analysis, vol.51, issue.4, pp.3170-3194, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01807624

H. Hughes and N. F. Britton, Modelling the Use of Wolbachia to Control Dengue Fever Transmission, Bulletin of Mathematical Biology, vol.75, issue.5, pp.796-818, 2013.

J. Koiller, M. Silva, M. Souza, C. Codeço, A. Iggidr et al., Aedes, Wolbachia and dengue, Inria Nancy -Grand Est, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00939411

M. Z. Ndii, R. I. Hickson, D. Allingham, and G. N. Mercer, Modelling the transmission dynamics of dengue in the presence of Wolbachia, Mathematical Biosciences, vol.262, pp.157-166, 2015.

A. A. Hoffmann and M. Turelli, Facilitating Wolbachia introductions into mosquito populations through insecticide-resistance selection, Proceedings of the Royal Society B: Biological Sciences, vol.280, issue.1760, p.20130371, 2013.

G. D. Garcia, Dinâmica da resistência a inseticidas de populações de Aedes aegypt (Linnaeus, 1762) de quatro regiões do Brasil, RJ, 2012.

G. A. Garcia, A. A. Hoffmann, R. Maciel-de-freitas, and D. A. Villela, Aedes aegypti insecticide resistance underlies the success (and failure) of Wolbachia population replacement, Scientific Reports, vol.10, issue.1, 2020.

G. De-azambuja, G. Garcia, R. Sylvestre, G. B. Aguiar, A. J. Da-costa et al., Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion, PLoS neglected tropical diseases, vol.13, issue.1, p.7023, 2019.

P. E. Pérez-estigarribia, P. Bliman, and C. E. Schaerer, A class of fast?slow models for adaptive resistance evolution, Theoretical Population Biology, vol.135, pp.32-48, 2020.

D. Langemann, O. Richter, and A. Vollrath, Multi-gene-loci inheritance in resistance modeling, Mathematical Biosciences, vol.242, issue.1, pp.17-24, 2013.

P. Bliman, A feedback control perspective on biological control of dengue vectors by Wolbachia infection, European Journal of Control, 2020.

A. Edwards, Punnett's square, data-Driven Research in the Biological and Biomedical Sciences On Nature and Normativity: Normativity, Teleology, and Mechanism in Biological Explanation, vol.43, pp.219-224, 2012.

P. E. Pérez-estigarribia, Mathematical model and control of arbovirus vectors by Wolbachia infection, Ph.D. dissertation, Facultad Politécnica, 2020.

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Evolutionary games and population dynamics, 1998.

A. A. Hoffmann, I. Iturbe-ormaetxe, A. G. Callahan, B. L. Phillips, K. Billington et al., Stability of the wMel Wolbachia Infection following Invasion into Aedes aegypti Populations, PLoS Neglected Tropical Diseases, vol.8, issue.9, p.e3115, 2014.

. O'neill, Stability of the w mel wolbachia infection following invasion into aedes aegypti populations, PLoS Negl Trop Dis, vol.8, issue.9, p.3115, 2014.

A. I. Adekunle, M. T. Meehan, and E. S. Mcbryde, Mathematical analysis of a Wolbachia invasive model with imperfect maternal transmission and loss of Wolbachia infection, Infectious Disease Modelling, vol.4, pp.265-285, 2019.

L. M. Styer, S. L. Minnick, A. K. Sun, and T. W. Scott, Mortality And Reproductive Dynamics of Aedes aegypti (Diptera: Culicidae) Fed Human Blood, Vector-Borne and Zoonotic Diseases, vol.7, issue.1, pp.86-98, 2007.

C. J. Mcmeniman and S. L. O'neill, A Virulent Wolbachia Infection Decreases the Viability of the Dengue Vector Aedes aegypti during Periods of Embryonic Quiescence, PLoS Neglected Tropical Diseases, vol.4, issue.7, p.e748, 2010.

P. M. Luz, C. T. Codeço, J. Medlock, C. J. Struchiner, D. Valle et al., Impact of insecticide interventions on the abundance and resistance profile of Aedes aegypti, Epidemiology and Infection, vol.137, issue.8, pp.1203-1215, 2009.